SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN (AUTONOMOUS), MADURAI-02

DEPARTMENT OF CHEMISTRY CBCS SYLLABUS FOR B.Sc., CHEMISTRY FROM 2019 ONWARDS

ABOUT THE DEPARTMENT OF CHEMISTRY

The department of chemistry was established in the year 1965 for the pre-university course. Bachelor degree of Chemistry was started in the year 1968 with a few staff members. The department has been upgraded to post graduate department in 2017.

FACULTY

The Department comprises of a goal oriented group of highly qualified, experienced and dynamic faculty members. The Department of Chemistry has 17 faculty members, of which 12 are Ph.D., holders. At present, 4 of our staff members are pursuing their Ph.D. degree. Their areas of expertise and research include organic, inorganic, physical, electrochemistry, phytochemistry, nanotechnology and supramolecular chemistry.

ACTIVITIES AND ACHIEVEMENTS

Most of the staff members are actively involved in research and various important decision making committees at the College level and act as expertise in Boards of studies at college as well as University level. The staff members have been serving as NSS & NCC coordinators, Science Forums coordinator, Autonomy-in-charge, remedial/ special coaching coordinators, Sports committee member, Thaatha-paatti kuzhu coordinator, Admission committee member, admission coordinator, Career guidance cell coordinator, Controller of examinations, additional controller of examinations, Deputy warden in college hostel, Youth welfare association coordinator, Parent Teacher Association treasurer, Old student's association, Course coordinators, syllabus committee representatives, question paper setters and external examiners at undergraduate as well as postgraduate levels. Faculty members have contributed to academics by publishing books, contributing research articles in journals, presenting papers in conferences and delivering guest lectures. Faculty members have been recognized by national agencies and Universities with awards for their contribution to research.

Four staff members (retired from service) were elevated to the cadre of Principal, Regional Joint Director and have served as efficient administrators at various colleges and regional offices. Some of the staff members are carrying out UGC funded minor research projects, received research awards, awards from All India Radio serial programme and have also served as editors in peer journals like Elsevier.

COURSE

At present our department caters to the needs of 282 (UG - 251 and PG - 31) major chemistry students and 222 Ancillary chemistry students. Our march towards the zeal will continue in the forth coming years also.

DEPARTMENT HIGHLIGHTS

The Department organizes National Conferences, workshops and faculty Development Programmes for the benefit of students. The Department, with a focus on enhancing the knowledge and skills of the students, has been conducting inter-Departmental and intercollegiate activities, through the Chemistry Association, Science Forum and Chemistry Club. It has also been actively involved in various outreach programmes for the uplift of society. Equal opportunity centre program has been conducted by our department.

RESOURCES

The Department has three laboratories which are fully equipped with instruments for teaching and research activities. The instruments available in the laboratories include UV-visible spectrophotometer, Conductometer, Potentiometer, pH meter, Polarimeter, etc. The Government has recently sanctioned fund for setting up two new laboratories which are under construction.

The Department has an excellent library for the benefit of students, faculty members and research scholars. Library has a large collection of books covering various branches of Chemistry like organic, inorganic, physical, electrochemistry, green chemistry and nano chemistry. Internet facility is available in the department.

ALUMNI ACTIVITIES

During 55 years of successful journey, our department has produced flourishing alumni who have occupied various positions in different sectors like academic, administrative, research, innovative scientists, overseas employment, banking and recent blooming fields like information technology.

The alumni of the department, had served as the Principal in Govt Arts College, HOD and eminent professor in the School of chemistry at MKU, Madurai. It is a privilege to specify that, 22 alumni of chemistry department are serving as Associate Professors and Assistant Professors in various esteemed institutions. Alumni meet for the 1991 – 94 batch of B.Sc., Chemistry was organized on 8th January, 2017.

We have further goals to enrich our department as research department for the benefits of the students.

COURSES OFFERED:

- UG COURSE : B.Sc., CHEMISTRY
- PG COURSE : M.Sc., CHEMISTRY

VISION

To create an academically sound environment that nurtures, motivates and inspires excellence in teaching along with concern for society.

MISSION

To impart theoretical and practical training in different areas of chemistry which encourages creativity, insight development and a passion for science.

B.Sc., CHEMISTRY PROGRAMME OUTCOMES

After successful completion of the programme the student is able to

PO 1. Exhibit sustained thirst of Knowledge

Sustained arousal of curiosity and interest to know the basic and amazing facts in chemistry.

PO 2. Demonstrate the Understanding

Ability to demonstrate the firm foundation in the fundamentals about the basic concepts in Chemistry.

PO 3. Show critical thinking and analytical reasoning

Ability to think analytically by approaching the reactions through appropriate mechanisms involved in the reactions.

PO 4. Display the skill of applying the Gained knowledge

Ability to apply the theoretical knowledge to laboratory experiments by way of keen observation, inquiring independently, interpreting, documenting the quantitative and qualitative data and analyze them.

Ability to solve the problems.

PO 5. Identify the contribution of Chemistry to the society

Ability to recognize the role of chemistry in various disciplines and assess the key issues in the environment and health.

Ability to handle chemicals safely and display the positive role as an ethical chemist.

PO 6. Extrapolate Life-long learning

Ability to adapt to new changes and updations in the discipline and maintain life-long learning.

PO 7. Able to communicate

Ability to communicate effectively in writing and discussing the concepts effectively.

B.S.c., CHEMISTRY PROGRAMME SPECIFIC OUTCOMES

After successful completion of the course the student is able to exhibit the following programme specific outcomes

PSO 1. A platform for employment or self-employment.

With the gained knowledge and acquired skill the student is able to become selfemployed or employed.

PSO 2. Substantial part of further academic path.

Having acquired the thorough knowledge about the fundamental concepts in Chemistry, enable the students in pursuing higher studies

PSO 3. Able to discuss the concepts of chemistry confidently and perform laboratory testing/experiments independently.

PSO 4. safety and hygiene

The students is able to be aware of laboratory safety, the safe physical manipulation of materials & Instruments, first-aid, hygiene, method of disposing chemicals, environmental impact of chemical pollutants and exhibit as a socially responsible person.

Able to demonstrate effective time and task management.

PSO 5. Able to update day-to-day knowledge in Chemistry

PSO 6. Team Work and Contribution to the Society

Able to apply and deliver the knowledge gained in the Course to the society, ability to work as a team and contribute service to the society by realizing the perspective of Chemistry as an integral part of it.

PSO 7. Able to adapt to various progression routes in seeking professional career.

SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN(A), MADURAI-2

DEPARTMENT OF CHEMISTRY

SYLLABUS – NEW PATTERN – CBCS FOR B.Sc Chemistry For those who are admitted from July 2019 onwards.

Semester	Part	Subject	Hrs/week	Exam hrs	Credits	Int.marks	Ext.marks	Total
	Ι	Language	6	3	3	25	75	100
	II	Language	6	3	3	25	75	100
	III	Allied 1- theory	4	3	3	25	75	100
		Allied 1 practicals	3	-	-		-	-
Ι		Major paper 1	4	3	4	25	75	100
		Major paper 2	2	-	-		-	-
		Major paper 3	4	-	-	-	-	-
		practicals-1						
	IV	Value Education	1	-	-	-	-	-
		TOTAL	30		13			400
	Ι	Language	6	3	3	25	75	100
	II	Language	6	3	3	25	75	100
	III	Allied 1- theory	4	3	4	25	75	100
II		Allied 1 practicals	3	3	3	40	60	100
		Major paper 4	4	3	4	25	75	100
		Major paper 2	2	3	4	25	75	100
		Major paper3	4	6	4	40	60	100
		practicals -1						
	IV	Value Education	1	3	2	25	75	100
		TOTAL	30		27			800
	Ι	Language	6	3	3	25	75	100
	Π	Language	6	3	3	25	75	100
	III	Allied 2- theory	4	3	3	25	75	100
		Allied 2 practicals	3	-	-		-	-
		Major paper 5	4	3	4	25	75	100
III		Major paper 6	2	-	-	-	-	-
		Major paper 7	4	-	-	-	-	-
		practicals -2						
	IV	Skill based elective-1	*	3	2	25	75	100
		Skill based elective 2	1	-	-	-	-	-
	V	Extension activities	-	-	1	100	-	100
		TOTAL	30		16			600
	Ι	Language	6	3	3	25	75	100
	II	Language	6	3	3	25	75	100
	III	Allied 2- theory	4	3	4	25	75	100
		Allied 2 practicals	3	3	3	40	60	100
IV		Major paper 8	4	3	4	25	75	100
		Major paper 6	2	3	4	25	75	100
		Major paper 7 practicals -2	4	6	4	40	60	100
	IV	Skill based elective-2	1	3	2	25	75	100

		Skill based elective-3	*	3	2	25	75	100
		TOTAL	30		29			900
Semester	Part	Subject	Hrs/week	Exam hrs	Credits	Int.marks	Ext.marks	Total
	III	Non major elective 1	2	3	2	25	75	100
		Elective 1	5	3	5	25	75	100
		Elective 2	5	3	5	25	75	100
		Major paper 9	5	3	5	25	75	100
		Major paper 10	5	3	5	25	75	100
V		Major paper 11 practicals -3	5	-	-	-	-	-
	IV	Skill based elective 4 GK	2	3	2	25	75	100
		Skill based elective 5	1	-	-	-	-	-
		TOTAL	30		24			600
	III	Non major elective 2	2	3	2	25	75	100
		Elective 3	5	3	5	25	75	100
		Major paper 12	5	3	5	25	75	100
		Major paper 13	4	3	4	25	75	100
VI		Major paper 14	4	3	4	25	75	100
		Major paper 11 practicals-3	5	6	5	40	60	100
	IV	Skill based elective 5	1	3	2	25	75	100
		Skill based elective 6	2	3	2	25	75	100
		Environmental studies	2	3	2	25	75	100
		TOTAL	30		31			900
		GRAND TOTAL			140			4200

For want of hours required for the credits in core subjects, the following skill based elective courses are conducted out of the class hours.

* - 2 hrs in III semester and 2 hrs in IV semester

Skill based elective 1 –Small scale industries

Skill based elective 2 - Analytical chemistry (2 semesters)*

Skill based elective 3 – Chemistry for competitive examinations

Skill based elective 4 – GK (common for all)

Skill based elective 5 – Computer applications in Chemistry (2 semesters)

Skill based elective 6 – Water treatment

Elective 1 – Analytical techniques/Biochemistry

Elective 2 – Food Chemistry/Polymer Chemistry

Elective 3 – Pharmaceutical Chemistry/Agricultural Chemistry

8

CORE	
------	--

Semester	Paper	Code	Title	Lecture	Credits	Exam at
	no.			hrs /		the end
				week		of
Ι	1	C11	General Chemistry – 1	4	4	Ι
I & II	2	C21	General chemistry – 2	2+2	4	II
I & II	3	PC1	Practicals -1(Qualitative analysis & organic preparation)	4+4	4	п
II	4	C22	General chemistry – 3	4	4	II
III	5	C31	General chemistry – 4	4	4	III
III & IV	6	C41	Applied Chemistry	2+2	4	IV
III & IV	7	PC2	Practicals 2 (Volumetric analysis and organic	4+4	4	IV
			estimation)			
IV	8	C42	Physical and Inorganic chemistry	4	4	IV
V	9	C51	Organic Chemistry – 1	5	5	V
V	10	C52	Physical Chemistry – 1	5	5	V
V & VI	11	PC3	Practicals -3 (Gravimetric analysis, Organic analysis and Physical Chemistry)	5+5	5	VI
VI	12	C61	Inorganic Chemistry	5	5	VI
VI	13	C62	Organic Chemistry – 2	4	4	VI
VI	14	C63	Physical Chemistry – 2	4	4	VI
TOTAL	14				60	

ELECTIVE

V	1	EC51	Elective-1 Analytical Techniques	5	5	V
V			Elective-1 Biochemistry			
V	2	EC52	Elective -2 Food Chemistry	5	5	V
V			Elective-2 Polymer Chemistry			
VI	3	EC63	Elective-3 Pharmaceutical Chemistry	5	5	VI
VI			Elective-3 Agricultural Chemistry			

SKILL BASED ELECTIVE & NON-MAJOR ELECTIVE

Semester	Paper	Code	Title	Lecture	Credits	Exam at
	no.			hrs /		the end
				week		of
III	1	SC31	SBE -1 (Small scale industries)	2	2	III
III&IV	2	SC42	SBE -2 (Analytical Chemistry)	1+1	2	IV
IV	3	SC43	SBE -3 (Chemistry for competitive	2	2	IV
			examinations)			
V	4	SGK4	SBE -4 (GK)	2	2	V
V &VI	5	SC65	SBE -5 (Computer applications in	1+1	2	VI
			Chemistry)			
VI	6	SC66	SBE -6 (Water treatment)	2	2	VI
V		NMC1	NME -1 Chemistry in life	2	2	V
VI		NMC2	NME – 2 Day to day Chemistry	2	2	VI

ALLIED CHEMISTRY

III	AC1	Allied-1 Ancillary Chemistry -1	4	3	III
IV	AC2	Allied-1 Ancillary Chemistry -2	4	4	IV
III & IV	CPA	Allied Practicals	3+3	3	IV

SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN (A), MADURAI -2.

BLUE PRINT (For CORE & SBE Theory Paper)

For students admitted from June 2019

Course : B.Sc Chemistry

Max Marks : 75(External)

Title of the Paper :

Total Marks: 100 (Internal(25) +External(75))

Semester:

Paper Code:

Exam Duration : 3 Hrs

			UNIT					
SECTION						Question Paper Pattern	Marks	
	Ι	II	III	IV	V			
Section A	2	2	2	2	2	10 Questions (Answer all the	$10 \times 1 = 10$	
						questions)		
Section B	2	2	2	2	2	5 Questions (Either OR Type	5×7 = 35	
						(Internal choice))		
Section C	1	1	1	1	1	3 Questions (open choice)	3x10 = 30	

Practicals :

Internal : 40

External: 60

Programme: B.Sc CHEMISTRY Semester : I

Part III: (Core) major paper I Hours: 4 / W, 60 / S

12

5

Code: C11

Credit–4

TITLE OF THE PAPER: GENERAL CHEMISTRY-I

Pedagogy Hours Lecture Peer Teaching/Seminar/Role play/Discussion/ Tutorial/Problem solving Quiz/videos/Demonstration class(Lab / Library session is conducted after the class hours) ICT 5 3 1 1 PREAMBLE: The objective of the course is emphasizing the fundamental concepts of chemistry and applying them and make the students to understand the chemistry of alkanes, alkeres and alkynes, explaining the atomic models, theory of gases, periodicity, discussing the reactions metallurgy and the chemistry of hydrides. Unit Hrs / S COURSE OUTCOME metallurgy and the chemistry of hydrides. Unit Hrs / S 1 2 1 1 UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. 1 12 UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. 2 12 UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12		11									
Quiz/videos/Demonstration class(Lab / Library session is conducted after the class hours) I 5 3 1 1 PREAMBLE: The objective of the course is emphasizing the fundamental concepts of chemistry and applying them and make the students to understand the chemistry of alkanes, alkenes and alkynes, explaining the atomic models, theory of gases, periodicity, discussing the principles of metallurgy and the chemistry of hydrides. COURSE OUTCOME At the end of the Semester, the students will be able to UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. 1 demonstrate the polar effects and apply them to suitable examples 1 12 UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. 2 12 UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12	Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/ Tutorial/Problem solving	ICT						
session is conducted after the class hours) I PREAMBLE: The objective of the course is emphasizing the fundamental concepts of chemistry and applying them and make the students to understand the chemistry of alkanes, alkenes and alkynes, explaining the atomic models, theory of gases, periodicity, discussing the principles of metallurgy and the chemistry of hydrides. COURSE OUTCOME Unit Hrs / S At the end of the Semester, the students will be able to Unit Hrs / S UNIT 1 CO1 : discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. 1 12 demonstrate the polar effects and apply them to suitable examples 1 12 UNIT 2 CO2 : explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. 1 12 UNIT 3 CO3 : describe the atomic structure and theories associated with it. 3 12				Quiz/videos/Demonstration class(Lab / Library							
531PREAMBLE: The objective of the course is emphasizing the fundamental concepts of chemistry and applying them and make the students to understand the chemistry of alkanes, alkenes and alkynes, explaining the atomic models, theory of gases, periodicity, discussing the principles of metallurgy and the chemistry of hydrides.1COURSE OUTCOMEUnitHrs / SAt the end of the Semester, the students will be able toUnitHrs / SUNIT 1 CO1:discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.212UNIT 2 CO2:explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.12UNIT 3 CO3:describe the atomic structure and theories associated with it.312				session is conducted after the class hours)							
5311PREAMBLE: The objective of the course is emphasizing the fundamental concepts of chemistry and applying them and make the students to understand the chemistry of alkanes, alkenes and alkynes, explaining the atomic models, theory of gases, periodicity, discussing the principles of metallurgy and the chemistry of hydrides.UnitHrs / SCOURSE OUTCOMEUnitHrs / SAt the end of the Semester, the students will be able toUnitHrs / SUNIT 1 CO1:discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.212UNIT 2 CO2:explain the petroleum products, the reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.312UNIT 3 CO3:describe the atomic structure and theories associated with it.312											
PREAMBLE: The objective of the course is emphasizing the fundamental concepts of chemistry and applying them and make the students to understand the chemistry of alkanes, alkenes and alkynes, explaining the atomic models, theory of gases, periodicity, discussing the principles of metallurgy and the chemistry of hydrides. COURSE OUTCOME Unit At the end of the Semester, the students will be able to Unit UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. 1 demonstrate the polar effects and apply them to suitable examples 1 Analyze the aromaticity with the help of Huckel's rule. 2 UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the 2 Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. 3 UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12		5	3	1	1						
PREAMBLE: The objective of the course is emphasizing the fundamental concepts of chemistry and applying them and make the students to understand the chemistry of alkanes, alkenes and alkynes, explaining the atomic models, theory of gases, periodicity, discussing the principles of metallurgy and the chemistry of hydrides. COURSE OUTCOME Unit At the end of the Semester, the students will be able to Unit UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. 1 demonstrate the polar effects and apply them to suitable examples 1 Analyze the aromaticity with the help of Huckel's rule. 2 UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. 3 UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12											
and applying them and make the students to understand the chemistry of alkanes, alkenes and alkynes, explaining the atomic models, theory of gases, periodicity, discussing the principles of metallurgy and the chemistry of hydrides.COURSE OUTCOMEUnitHrs / SAt the end of the Semester, the students will be able toUnitHrs / SUNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.112UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312UNIT 4 CO4: explain the petroleur products and discuss metallurgy and hydrides412	PREAMBLE: The objective of the course is emphasizing the fundamental concepts of chemistry										
alkynes, explaining the atomic models, theory of gases, periodicity, discussing the principles of metallurgy and the chemistry of hydrides.COURSE OUTCOMEUnitHrs / SAt the end of the Semester, the students will be able toUnitHrs / SUNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.112UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312UNIT 4 CO4: explain the periodic properties and discuss metallurgy and bydrides412	and applyin	g them	and make	the students to understand the chemistry of alkan	es, alke	enes and					
metallurgy and the chemistry of hydrides.UnitHrs / SCOURSE OUTCOMEUnitHrs / SAt the end of the Semester, the students will be able to112UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.112UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312UNIT 4 CO4: explain the periodic properties and discuss metallurgy and hydrides412	alkynes, exp	olaining	the atomic	c models, theory of gases, periodicity, discussing th	ie prin	ciples of					
COURSE OUTCOMEUnitHrs / SAt the end of the Semester, the students will be able to112UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.112UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312	metallurgy a	and the o	chemistry of	of hydrides.							
COURSE OUTCOMEUnitHrs / SAt the end of the Semester, the students will be able to112UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.112UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312											
At the end of the Semester, the students will be able to1UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.112UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312			0	COURSE OUTCOME	Unit	Hrs / S					
UNIT 1 CO1: discuss the tetrahedral arrangement of valency of carbon, types of cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.112UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312	At the end of	f the Sem	ester, the s	tudents will be able to							
cleavage of bonds, the different types of reaction intermediates, the different types reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.12UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312	UNIT 1 CO	1: discus	ss the tetral	nedral arrangement of valency of carbon, types of	1	12					
reactions. demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule. UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12 UNIT 4 CO4: explain the periodic properties and discuss metallurgy and hydrides 4 12	cleavage of b	onds, th	e different	types of reaction intermediates, the different types							
demonstrate the polar effects and apply them to suitable examples Analyze the aromaticity with the help of Huckel's rule.Image: Color of all the periodic properties and preparation, properties and reactions acetylene.UNIT 3 CO3: describe the atomic structure and theories associated with it.312UNIT 4 CO4: explain the periodic properties and discuss metallurgy and hydrides412	reactions.										
Analyze the aromaticity with the help of Huckel's rule.Image: Constraint of the second se	demonstrate	the polar	effects and	apply them to suitable examples							
UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene.212UNIT 3 CO3: describe the atomic structure and theories associated with it.312UNIT 4 CO4: explain the periodic properties and discuss metallurgy and hydrides412	Analyze the	aromatic	itv with the	help of Huckel's rule.							
UNIT 2 CO2: explain the petroleum products, the reactions of alkenes, the 2 12 Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition 2 12 mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. 2 12 UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12 UNIT 4 CO4: explain the periodic properties and discuss metallurgy and hydrides 4 12		1	, the metuel	1	2	10					
Markownikoff's rule, peroxide effect, the Diels alder reactions and 1,4 addition mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12	$\frac{1}{2}$	$\frac{2}{5}$ explain	in the petrol	eum products, the reactions of alkenes, the	Z	12					
mechanism and the reactions of alkynes and preparation, properties and reactions acetylene. Image: Construction of alkynes and preparation, properties and reactions acetylene. UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12 UNIT 4 CO4: explain the periodic properties and discuss metallurgy and hydrides 4 12	Markowniko	IT's rule,	peroxide e	frect, the Diels alder reactions and 1,4 addition							
acetylene. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure and theories associated with it. Image: Construction of the atomic structure a	mechanism a	ind the	reactions of	alkynes and preparation, properties and reactions							
UNIT 3 CO3: describe the atomic structure and theories associated with it. 3 12 UNIT 4 CO4: explain the periodic properties and discuss metallurgy and hydrides 4 12	acetylene.										
UNIT 4 CO4 : explain the periodic properties and discuss metallurgy and hydrides 4 12	UNIT 3 CO	3: descril	be the atom	ic structure and theories associated with it.	3	12					
	LINIT 4 CO	1. evolui	n the nerio	lic properties and discuss metallurgy and hydrides	1	12					

UNIT 5 CO5: explain the kinetic theories of gases.

UNIT – I (ORGANIC CHEMISTRY): (12 Hrs)

- *IUPAC nomenclature* homologous series.
- Fundamental Concepts:
- > Tetrahedral arrangement of valencies of carbon atom.
- > Cleavage of bonds: Homolytic and heterolytic cleavage of carbon bond
- Reaction intermediates: carbonium ion and carbanion their generation and stability. Nucleophilic and electrophilic reagents.
- > Types of reactions: Substitution, addition, elimination, rearrangement and polymerisation with suitable examples. [No mechanism needed].
- Inductive effect, electromeric effect, resonance, hyperconjugation, aromaticity and Huckel's (4n+2) rule with examples.

UNIT – II (ORGANIC CHEMISTRY): (12 Hrs)

Aliphatic hydrocarbons:

Alkanes: Preparation – Hydrogenation of alkenes or alkynes, reduction of alkyl halides, decarboxylation of carboxylic acids, hydrolysis of Grignard reagent, Wurtz synthesis. Isomerism in alkanes (more than 4 carbon atoms) – petroleum products, cracking and pyrolysis, octane number and flash points.

Alkenes: Preparation - By dehydrogenation of alcohols, dehydrohalogenation of alkyl halides, dehalogenation of vicinal dihalides by controlled hydrogenation of alkynes, by cracking of alkanes. Isomerism in alkenes – dehydrohalogenation of alkyl bromides – electrophilic addition reactions – Markownikoff's rule and peroxide effect. Dienes and their classification – butadiene – Diels- Alder reaction – 1,4 addition mechanism – Thiele's theory of partial valency.

Alkynes: Preparation- dehydrohalogenation of vicinal halides, dehalogenation of tetrahalides, reaction of sodium acetylides with primary alkyl halides, reaction of calcium carbide with water. Nature of triple bond in alkynes – acidity – electrophilic addition reactions. Preparation, Properties and reactions of acetylene.

UNIT- III (INORGANIC CHEMISTRY) (12 Hrs)

Atomic structure:

Rutherford's atom model – Bohr's atom model – derivation of radius of orbit – Energy levelspectra of hydrogen atom – quantum numbers – Pauli's exclusion principle – Hund's rule – Electronic configuration of element – Aufbau principle - Shapes of atomic orbitals.

UNIT-IV (INORGANIC CHEMISTRY): (12 Hrs)

Periodic properties – atomic radii, ionic radii, covalent radii, ionization potential – electronegativity – Pauling scale and Mullikan's scale.

Metallurgy: Principles involved in Van-Arkel-deBoer's process and aluminothermite process.

Hydrides- - Classification, preparation, properties and uses.

UNIT- V (PHYSICAL CHEMISTRY): (12 Hrs)

Kinetic Theory of gases:

Maxwell-Boltzmann law of distribution of molecular velocities (Derivation not necessary) – Graphical representation –Effect of Temperature on velocity distribution- Experimental verification of Maxwell velocity distribution [Stern method] – Mean free path – Viscosity of gases and determination of molecular diameter – collision frequency – collision number – Brownian movement and determination of Avogadro Number – Loschmidt number – Principle of equipartition of energy.

TEXT BOOKS

Text book of Organic Chemistry by P.L. Soni - Sultan Chand & Sons; 29th edition (2012).
Sathyaprakash's Modern Inorganic Chemistry by R.D. Madan ; S. Chand Publishing 3rd ed. reprint (2016).

3. Principles of Physical Chemistry- Puri, Sharma and Pathania - Vishal Publishing Co.; 46th edition (2012).

4. Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R. Santhanalakshmi, N. Vijayathara, M. Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

5. Kanima Vethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi

N. Vijayathara, Sudha soundirapandian, D.Sarala Thambavani, Published by Madurai Kamaraj University, Madurai, 1998.

6. Arimurai Iyarpu Vethiyal by Sudha soundirapandin, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

References

1. Textbook of Organic Chemistry by Arun Bahl, B.S. Bahl, S. Chand & Company, 22nd edition.

2. Organic Chemistry by Morrison & Boyd, Pearson Publishers, 7th edition.

UNITS	TOPIC	LECTURE	MODE OF
		поско	TEACHING
UNIT 1: (O	RGANIC CHEMISTRY)		-
	tetrahedral arrangement of valency of carbon	3	ICT
	cleavage of bonds, polar effects, different types	9	Lecture
	reactions of reaction intermediates, different types		
	reactions.		Problem solving
	Aromaticity and Huckel's rule		
UNIT II (OF	RGANIC CHEMISTRY)		
	petroleum products	1	Assignment
	Markownikoff's rule and peroxide effect	2	ICT
	Diels alder reactions and 1,4 addition mechanism,	9	Lecture
	reactions of alkene, reactions of alkynes,		
	preparation, properties and reactions acetylene.		
UNIT III (IN	NORGANIC CHEMISTRY)		
	Atomic model	3	ICT
	Energy level spectra	7	Lecture
	Electronic configuration	2	Lecture, Tutorial
			& Problem
			solving.
UNIT IV (I	NORGANIC CHEMISTRY)		
	metallurgy	2	ICT
	periodic properties	7	Lecture & Quiz.
	Hydrides	3	Lecture &
			Tutorial.
UNIT V (PH	IYSICAL CHEMISTRY)		
	Distribution of molecular velocities	3	ICT
	Viscosity of gases, Collision properties	6	Lecture
	Principle of equipartition of energy	3	Lecture

Course Outcom es	Prog	gramn	ne Ou	tcome	es (PC	s)		Programme Specific Outcomes (PSOs)					Mean scores of		
(COs)															COs
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	03	04	05	06	07	
CO1	4	4	3	3	4	3	3	3	5	5	4	4	3	3	3.71
CO2	5	5	3	4	4	4	3	3	5	3	5	4	4	3	3.93
CO3	4	3	4	4	4	3	4	3	4	4	4	4	3	4	3.6
CO4	3	4	4	4	4	4	4	3	4	3	3	4	4	4	3.7
CO5	4	4	3	4	3	3	4	4	3	4	4	4	3	4	3.6
							Mea	an Ove	erall So	core					3.71

Result: The Score for this Course is 3.71 (High Relationship)

Course Designer: Dr. P. SHANTHY

Dr. A. MARY REMONA

Programme : B.Sc Chemistry Semester : I & II 4 hours in I semester and 4 hours in II semester

Part III: (Core) major paper 2 Hours : 4 / W, 60 / S Credits : 4

Exam at the end of II semester

Code: C21

TITLE OF THE PAPER: GENERAL CHEMISTRY- 2

	1									
Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/ Discussion/	ICT						
			Tutorial/Problem solving session/ Quiz/							
			/videos/Demonstration class (Lab / Library session							
			is conducted after the class hours).							
	2	3	1	1						
PREAMBL	E: The o	bjective of	the course is to make the student understand the ba	asic cor	ncepts of					
different types of liquid crystals, adsorptions and their applications, the basic principles of										
electrophilic, nucleophilic substitution reactions, Organometallic compounds. Group IA and										
Group IIA n	nembers	of the per	iodic table.	•						
-		(COURSE OUTCOME	Unit	Hrs / S					
At the end of	the Sem	lester, the s	tudents will be able to							
UNIT 1 CO	1	12								
types as well	as their	application	S.							
UNIT 2 CO	D2: cate	gorize the	types of adsorption and explain the principles of	2	12					
adsorption ar	nd cataly	sis along w	ith their applications.							
UNIT 3 CC)3 : demo	onstrate the	e mechanism of substitution and reactivity of alkyl	3	12					
halides, poly	halogen (derivatives	and aromatic halogen compounds.							
UNIT 4 CO	4: descri	be the cher	mistry of organometallic compounds along with their	4	12					
synthetic app	olications	and the va	arious aromatic substitution reactions along with their							
mechanisms.										
UNIT 5 CO	5: discu	ss the extr	action methods, properties and uses Group I A and	5	12					
Group II A e	lements.									
_										

UNIT- I (PHYSICAL CHEMISTRY): (12 Hrs)

- *Liquid Crystals* Theory of different types of liquid crystals and their applications glassy state swarm theory of liquid crystals.
- *Colloids:* Colloidal state of matter various types of classification.
 - Solids in Liquids (Sol) properties, kinetic, optical and electrical stability of colloids and protective action – Hardy-Schulz law – Gold number – Hofmeister series.

- Liquids in liquids (Emulsion) Types of emulsion emulsifier with suitable examples- demulsification.
- Liquids in solids (Gels) Classification preparation and properties thixotropy synerisis and imbibition – Donnan Membrane Equilibrium.
- > Applications of colloids

UNIT- II (PHYSICAL CHEMISTRY): (12 Hrs)

- Adsorption: Definition of the various terms adsorption of gases on solids characteristics of adsorption of gases on solids physisorption and chemisorption factors influencing adsorption adsorption isotherms Fruendlich and Langmuir adsorption isotherms BET theory elementary idea Applications of adsorption.
- *Catalysis:* Definition characteristics Theories of catalysis promoters and poisons enzyme catalysis acid-base catalysis –auto catalysis with suitable examples applications

UNIT – III (ORGANIC CHEMISTRY): (12 Hrs)

- Halogen derivatives of aliphatic hydrocarbons:
 - > Alkyl halides: (mechanism only) mechanism of substitution $-S_N^1$ and S_N^2 mechanism of elimination $-E_1$ and E_2 . Elementary treatment of Hofmann and Saytzeff rule relative reactivity of alkyl halides.
- > Poly halogen derivatives: Chlorofluoro carbons Westron and Freon preparation and uses.
 - Halogen derivatives of unsaturated hydrocarbons Vinyl chloride Allyl chloride, Allyl iodide and Chloroprene preparation and properties.

Aromatic Halogen Compounds:

Halogen compounds of Benzene: Preparation, properties and uses of chlorobenzene, bromobenzene and benzyl chloride. Reactivity of aryl halides

UNIT – IV (ORGANIC CHEMISTRY): (12 HRS)

- **Organometallic compounds:** Alkyl and aryl Grignard reagents preparation, synthetic applications (structure not necessary) Tetra ethyl lead
- Aromatic Substitution:
 - ▶ Electrophilic, nucleophilic and free radical substitution.
 - Mechanism of aromatic electrophilic monosubstitution (electronic interpretation) halogenation, nitration, sulphonation and Friedel – Craft's reaction.
 - Nucleophilic substitution unimolecular, bimolecular and benzyne mechanism free radical substitution in benzene.

UNIT-V (INORGANIC CHEMISTRY): (12HRS)

Group 1/I A elements: Group discussion – Lithium: diagonal relationship with magnesium and comparison with other members of the family –justification of its position – extraction, properties and uses.- Lithium compounds- peroxide, carbonate, bicarbonate and carbide of lithium.

Group 2/II A elements: Group discussion – Beryllium: Diagonal relationship with aluminium and comparison with magnesium – justification of its position- extraction, properties and uses – Oxide, hydroxide, halides of Beryllium – preparation and properties. Plaster of Paris, barites, lithopone - preparation, properties and uses.

TEXT BOOKS

1. Text book of Organic Chemistry by P.L. Soni - Sultan Chand & Sons; 29th edition (2012).

2. Sathyaprakash's Modern Inorganic Chemistry by R.D. Madan ; S. Chand Publishing 3rd ed. reprint (2016).

3. Principles of Physical Chemistry- Puri, Sharma and Pathania - Vishal Publishing Co.; 46th edition (2012).

4. Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R. Santhanalakshmi, N. Vijayathara, M. Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

5. Kanima Vethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi

N. Vijayathara, Sudha soundirapandian, D.Sarala Thambavani, Published by Madurai Kamaraj University, Madurai, 1998.

6. Arimurai Iyarpu Vethiyal by Sudha soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

References:

1. Textbook of Organic Chemistry by Arun Bahl, B.S. Bahl, S. Chand & Company, 22nd edition.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT 1: Phy	sical Chemistry		
	Theory of different types of liquid crystals and their	2	ICT
	applications, glassy state, swarm theory of liquid		
	crystals.		
	Colloids, Emulsions, Gels	9	Lecture &
			Quiz.
	Applications of colloids.	1	Seminar
UNIT 11: Ph	ysical Chemistry		
	Adsorption of gases on solids, characteristics of	2	ICT
	adsorption of gases on solids, physisorption and		
	chemisorption.		
	Factors influencing adsorption, adsorption isotherms,	9	Lecture
	Fruendlich and Langmuir adsorption isotherms, BET		
	theory, applications of adsorption.		
	Catalysis- Principles and theories.		

2. Organic Chemistry by Morrison & Boyd, Pearson Publishers, 7th edition.

Applications of adsorption.		1	Seminar						
Applications of catalysts.									
UNIT III: Organic Chemistry									
Mechanism of substitution $-S_N^1$ a of elimination $-E_1$ and E_2 . Hofman	and S_N^2 , mechanism n and Saytzeff rule.	3	ICT						
Relative reactivity of alkyl hal derivatives: Halogen derivative hydrocarbons Halogen compounds of Benzene halides.	ides, Poly halogen es of unsaturated , reactivity of aryl	9	Lecture						
UNIT IV : Organic Chemistry									
Mechanism of aromatic electrophil Electrophilic, nucleophilic and free	Mechanism of aromatic electrophilic monosubstitution Electrophilic, nucleophilic and free radical substitution								
Organometallic compounds, syn Tetra ethyl lead, Nucleophilic sy mechanism, free radical substitution	thetic applications abstitution, benzyne n in benzene.	9	Lecture						
UNIT-V : Inorganic chemistry									
Group discussion, Lithium: diagon magnesium and comparison with o family	hal relationship with ther members of the	3	ICT						
extraction, properties and uses of L Group discussion – Beryllium: D	ithium compounds iagonal relationship	7	Lecture, Quiz & Discussion.						
with aluminium and comparison wi	th magnesium.								
Plaster of Paris, barites, lithopone.		2	Tutorial						

Course	Pro	gramn	ne Ou	tcome	es (PC	Ds)		Programme Specific Outcomes (PSOs)						5)	Mean
Outco															scores
mes															of
(COs)															
	P PO PO PO PO PO PO PS PS PS PS PS PS										PS	PS			
	0	2	3	4	5	6	7	01	O2	O3	O4	O5	O6	07	
	1														
CO1	4	5	4	3	3	4	4	4	5	3	3	4	4	3	3.79
CO2	4	5	4	3	3	4	4	4	5	3	3	4	4	3	3.79
CO3	4	5	4	3	4	4	4	4	5	3	3	4	4	4	3.92
CO4	4	5	4	3	4	4	4	4	5	3	3	4	4	4	3.92
CO5	4	5	4	3	4	4	4	4	5	3	3	4	4	3	3.86
							Me	ean Ov	erall S	core					3.86

Result: The Score for this Course is 3.86 (High Relationship)

Course designer: Dr. K. ANURADHA Dr. K. ELANGOVAN

Credits : 4

TITLE OF THE PAPER: PRACTICALS-1 QUALITATIVE ANALYSIS & ORGANIC PREPARATION

Pedagogy	Hours	Lab session//Demonstration class/Viva voce						
	4	4						
PREAMBL	E: The objectiv	ve of the course is to make the student analyse the mixtur	re cont	aining				
two cations and anions and prepare some important organic compounds in the laboratory.								
		COURSE OUTCOME	Unit	Hrs				
At the end of	the Semester,	the students will be able to						
UNIT 1 CO	1: analyse the r	nixture containing two cations and two anions.	1	90				
UNIT 2 CO2	2	30						

Unit- I : QUALITATIVE ANALYSIS

Analysis of a mixture containing two cations and two anions (one being an interfering radical) Acid radicals: Interfering – oxalate, borate, fluoride, phosphate, chromate

Non-interfering – carbonate, sulphate, nitrate, chloride, bromide.

Basic radicals:

I group – lead,

II group – bismuth, copper, cadmium, antimony

III group - Iron, manganese, aluminium, chromium

IV group - cobalt, nickel, manganese, zinc

V group – barium, strontium, calcium

VI group – magnesium and ammonium.

Unit - II : ORGANIC PREPARATION

Hydrolysis - Ester hydrolysis, Amide hydrolysis

Benzoylation of beta naphthol

Acetylation of an amine

Bromination of acetanilide

Oxidation : Benzoic acid from benzaldehyde

Internal =40 marks, 40marks = Unit-I-20 + Unit 2 -20 {Preparation 15+Viva-5} External = 60 marks Qualitative analysis -25 marks (acid radicals with correct procedure 10 marks+ basic radicals with correct procedure 10 + elimination and original solution preparation - 05) Organic Preparation- 25 marks {Procedure- 5+ Crude Quantity-10+ Recrystallisation-10} Record - 5 marks viva voce - 5 marks

20											
UNITS	TOPIC	LAB HOURS	MODE OF								
			TEACHING								
UNIT 1: QUALITATIVE ANALYSIS											
	Analysis of mixture	75	Lab session								
	Analysis of mixture	10	Demonstration								
	Analysis of mixture	5	Viva-Voce								
UNIT 11: O	RGANIC PREPARATION										
	Organic preparation	20	Lab session								
	Organic preparation	5	Demonstration								
	Organic preparation	5	Viva-Voce								

Course	Prog	ramme	e Outo	comes	(POs	;)		Prog	ramme	e Speci	fic Ou	tcomes	(PSO	s)	Mean
Outco										scores of					
mes															
		Т	r	r	r	1	r		1	1	1	-	1		
(COs)	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	03	04	05	06	O7	
CO1	5	5	4	5	5	4	4	4	4	4	4	4	4	3	4.21
CO2	5	5	4	5	4	4	4	4	4	4	4	4	4	3	4.14
	Mean Overall Score												4.18		

Result: The Score for this Course is 4.18 (Very High Relationship)

Course designer: Dr. A. JOSEPHINE VANITHA Dr. T. UMAMATHI

Programme : B.Sc Chemistry Semester : II Sub. Code : C22

Part III: (Core) Major paper 4 Hours : 4/W, 60 Hrs/S Credits: 4

TITLE OF THE PAPER: GENERAL CHEMISTRY 3

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/ Discussion/ Tutorial/Problem solving session/Quiz/ /videos/Demonstration class (Lab / Library session is conducted after the class hours).	ICT
	4	2	1	1

PREAMBLE: The objective of the course is to make the student understand the types of chemical bonds, oxidation reduction, Acids and bases, Solid state, Hydroxy compounds, Ethers sulfur compounds and phosphorous compounds

COURSE OUTCOME	Unit	Hrs / S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: demonstrate chemical bonding including ionic, covalent and metallic	1	12
bonds with suitable examples.		
UNIT 2 CO2: discuss the concepts of oxidation and reduction and the theories of	2	12
acids and bases.		
UNIT 3 CO3: demonstrate the fundamentals of crystallography and the types of	3	12
crystals.		
UNIT 4 CO4: discuss the chemistry of alcohols.	4	12
UNIT 5 CO5: discuss the preparation and properties of aliphatic/aromatic ethers, and	5	12
demonstrate the role of free radicals.		

UNIT-I: (INORGANIC CHEMISTRY) (12 Hrs)

Chemical Bonding

Ionic bond – Introduction, characteristics of Ionic compounds, Lattice energy, Born-Haber cycle **Covalent bond** – valence bond concept, – σ bonds and π bonds, types of hybridization – illustrations with suitable examples sp, sp², sp³, sp³d² and sp³d³ and shapes of molecules VSEPR theory, Shapes of molecules- H₂O, NH₃, PCl₃, PCl₅, IF₅ and SF₆. MO theory. Examples – H₂, He₂, Li₂, N₂, O₂, F₂, HF, NO, CO – Bond order.

Metallic bond: nature – Band theory – explanation of properties by metallic bond – conductors, insulators, semiconductor and superconductors (conditions and example).

Hydrogen bond: Types of hydrogen bond – Conditions for the formation of hydrogen bond – effects of hydrogen bonding.

Van der Waal's forces: Types – factors affecting the strength of the Van der Waal's forces – applications.

UNIT-II: (INORGANIC CHEMISTRY) (12 Hrs)

Oxidation – Reduction – Modern concept – oxidation number – calculation of oxidation number – redox reactions – oxidizing agents – reducing agents – auto-oxidation . Balancing redox equations by oxidation number and ion-electron methods.

Acids and Bases – Modern concept of acids and bases – Arrhenius theory – Bronsted and Lowry concept - Lux-Flood concept - Lewis theory and Usanovich concept – leveling effect of water.

Principles of qualitative analysis: Solubility principle – Sodium Carbonate extract – elimination principle- complex formation – complexes of Cu, Cd, Ni, Co, Fe, Zn.

UNIT III : (PHYSICAL CHEMISTRY) (12 Hrs)

Solid State:

Crystallography: Definition – unit cell – face and edge of a crystal - interfacial angle – crystal lattice

Laws of crystallography: i) Law of constancy of interfacial angle ii) Law of rationality of indices iii) Law of symmetry – symmetry elements – plane, axis and center of symmetry.

Crystallographic system – Bravais lattices – simple cubic, face centered cubic and body centered cubic systems.

Applications of X-rays to the study of crystal structure – Bragg's equation - determination of inter-planar distance and wavelength of X-ray.

Types of crystals: Ionic, molecular, covalent and metallic crystals.

- i. Ionic crystals: Analysis of NaCl, KCl and CsCl Determination of Avogadro number
- ii. Molecular crystals: Water and ammonia.
- iii. Covalent crystals: Diamond and Graphite.
- iv. Metallic crystals: geometrical arrangements in metallic crystals -examples.

v.

UNIT – IV (ORGANIC CHEMISTRY): (12 Hrs)

Hydroxy Compounds:

Alcohols:

Classification according to the number of hydroxy groups and the nature of carbon atom with suitable examples – preparation of primary alcohols by hydroboration method.

Unsaturated monohydric alcohols – Allyl alcohol – preparation and properties.

Estimation of number of hydroxyl groups.

Phenols:

Acidity of phenols – substitution reactions of phenol – mechanism of Kolbe's reaction, Reimer-Tiemann reaction – Test for phenol – Estimation of phenol.

Nitrophenol- picric acid – preparation and properties.

Aminophenol – preparation and properties.

Dihydric Phenol – catechol, resorcinol and quinol – preparation and properties.

Trihydric phenol – pyrogallol, phloroglucinol – preparation and properties.

Aromatic Alcohol:

Benzyl alcohol – distinction between phenol and benzyl alcohol.

UNIT – V (ORGANIC CHEMISTRY): (12 Hrs)

Ethers:

Aliphatic ethers: classification – preparation, properties – isomerism (metamerism) – estimation of alkoxy groups.

Aromatic ethers: Preparation of anisole and phenetole.

Sulphur Compounds:

Thio alcohols – preparation and properties of ethyl mercaptan.

Thio ethers – preparation and properties – mustard gas.

Aromatic sulphonic acids – Preparation, properties and uses – saccharin, chloramine –T, dichloramine – T.

Phosphorus Compounds: Ylides –preparation, properties – Wittig reaction – examples with mechanism.

Free Radicals: Definition – preparation and reactions of short lived and long lived free radicals– role of free radicals in chain reactions, substitution, addition and rearrangement reactions.

TEXT BOOKS

1. Text book of Organic Chemistry by P.L. Soni - Sultan Chand & Sons; 29th edition (2012).

2. Sathyaprakash's Modern Inorganic Chemistry by R.D. Madan ; S. Chand Publishing 3rd ed. reprint (2016).

3. Principles of Physical Chemistry- Puri, Sharma and Pathania - Vishal Publishing Co.; 46th edition (2012).

4. Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R. Santhanalakshmi, N. Vijayathara, M. Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

5. Kanima Vethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi

N. Vijayathara, Sudha soundirapandian, D.Sarala Thambavani, Published by Madurai Kamaraj University, Madurai, 1998.

6. Arimurai Iyarpu Vethiyal by Sudha soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

References

- 1. Organic Chemistry by Morrison & Boyd, Pearson Publishers, 7th edition.
- 2. Inorganic Chemistry by J. D. Lee, Wiley publishers.

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
UNIT I: (Ir	organic chemistry)		
	Types of hybridisation	2	ICT
	Chemical bonding(Ionic bond,	8	Lecture
	Covalent bond, Metallic bond		
	and Hydrogen bond).		
	Applications of Vander Waals	2	Seminar, Assignment
	forces and H- bonding		
UNIT II (In	organic chemistry)	L	
	Redox reactions with examples	2	ICT
	Concepts of acid bases,	10	Lecture with interactive discussion.
	Principles of qualitative analysis		
UNIT III (I	Physical chemistry)		
	crystallographic systems	2	ICT
	Laws of crystallography and	10	Lecture
	Applications of X-ray to study		
	the crystal systems		
	Types of crystals		
UNIT IV (Organic chemistry)		
	Study the mechanism of Kolbe's	2	ICT
	reaction and Reimer-Tiemann		
	reaction.		
	Alcohols, phenols and Benzyl	9	Lecture
	alcohol.		
	Distinction between phenols and	1	Quiz
	Benzyl alcohol		
UNIT V (O	rganic chemistry)		
	Wittig reaction and free radicals	2	ICT
	Preparation and properties of	9	Lecture

	<i>2</i> 1	
sulphur compounds and		
phosphorous compounds,		
preparation of aliphatic &		
aromatic ethers, estimation of		
alkoxy groups		
Preparation of anisole and	1	Tutorial & Assignment.
phenetole, ethyl mercaptan and		
mustard gas.		

course	Prog	ramme	e Outo	comes	(POs	;)		Programme Specific Outcomes (PSOs)						s)	Mean
Outcom															scores of
es															COs
(COs)	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	03	04	05	06	O7	
CO1	4	3	4	4	3	3	4	5	3	4	4	4	4	3	3.71
CO2	5	4	3	3	4	4	4	4	4	3	3	4	4	4	3.86
CO3	5	3	3	4	4	3	4	3	5	4	4	3	4	4	3.71
CO4	5	4	3	4	3	3	4	4	5	4	4	4	4	3	3.86
CO5	5	5	4	3	3	3	4	4	5	4	4	4	3	4	3.92
							Mean	n Over	all Sco	ore					3.81

Result: The Score for this Course is 3.81 (High Relationship)

Course designer: Dr. P. SHANTHY Dr. A. MARY REMONA

Programme : B.Sc Chemistry Semester : III Sub. Code : C31

Part III: Core, Major paper 5 Hours : 4 / W, 60 Hrs / S Credits : 4

Pedagogy	Hours	Lecture	PeerTeaching/Seminar/Roleplay/Discussion/Tutorial/Problemsolvingsession/Quiz/videos/Demonstrationclass(Lab /Librarysessionis conducted after the class hours).	ICT						
	4	2	1	1						
PREAMBLE: The objective of the course is to make the student understand the importance of aliphatic and aromatic carbonyl compounds, their preparations and properties along with mechanisms, the principles and theory behind volumetric analysis, different phase transitions and fundamentals of quantum mechanics.										
At the end of	the Sem	C ester, the s	COURSE OUTCOME tudents will be able to	Unit	Hrs / S					
UNIT 1 CO	1 : demor	nstrate the	chemistry of aliphatic aldehydes and ketones.	1	12					
UNIT 2 CO2	2 : demoi	nstrate the o	chemistry of aromatic aldehydes and ketones.	2	12					
UNIT 3 CC calculations l	D3 : exp based on	olain the t it.	heory behind the volumetric analysis and perform	3	12					
UNIT 4 CO4 heterogeneou	4	12								
UNIT 5 CO	5 : demor	nstrate the	fundamentals of quantum mechanics.	5	12					

TITLE OF THE PAPER : GENERAL CHEMISTRY – 4

Unit I: ORGANIC CHEMISTRY (12 hours)

Aliphatic aldehydes and ketones:

Chemical reactivity of carbonyl group – mechanism of important carbonyl addition and condensation of aldehydes and ketones - nucleophilic addition reactions – relative reactivities of aldehydes and ketones – acidity of hydrogen atom in carbonyl compounds. Difference in properties between acetone and ethyl methyl ketone.

Unsaturated aldehyde: Acrolein, crotonaldeyde – preparation and properties.

Halogen substituted aldehyde: chloral – preparation, properties and structure.

Hydroxy aldehyde and ketones: Glycolaldehyde – aldol – hydroxy acetone and diacetone alcohol – preparation and properties.

Dialdehyde and diketones: Glyoxal, succinaldehyde, dimethyl glyoxal, acetyl acetone and acetonyl acetone – preparation and properties.

Unit-II: ORGANIC CHEMISTRY (12 hours)

Aromatic aldehydes and ketones:

Benzaldehyde: Mechanism of Cannizzaro's, Perkin, Claisen, Knoevenagel reactions and benzoin condensation.

Unsaturated aldehyde: Cinnamaldehyde – preparation and properties.

Phenolic aldehyde: salicylaldehyde and Vanillin – preparation and properties.

Ketones: Acetophenone, benzophenone - preparation by Friedel Craft's acylation -

properties - comparison and reactivities, phenacyl chloride.

Diketones: o & p-benzoquinones – preparation and properties.

Phenolic ketones: phloroacetophenone – preparation by Houben-Hoesch synthesis.

Unit III – ANALYTICAL CHEMISTRY (12 hours)

Principles of Volumetric analysis:

Expression of concentrations of a solution

Calculation of equivalent weight for various substances involved in volumetric analysis.

Classification of reactions in titrimetric analysis.

Primary and secondary standards: selection of primary standards.

Principle involved in acid-base, precipitation and complexometric titrations [EDTA titrations].

Indicators: Theory of indicators – choice of indicators – use of titration curves for the proper choice of indicators in acid-base titration – calculation of pH during and at the end of the titration - determination of end points in precipitation and complexometric titrations – metal ion – adsorption and fluorescence indicators.

Unit-IV: PHYSICAL CHEMISTRY (12 hours)

Phase Rule:

Statement and significance of the terms involved – thermodynamic derivation of phase rule.

One-component system – water, sulphur and carbon dioxide.

Two-component system – Ag-Pb system and Bi-Cd system

Condensed systems and reduced phase rule: reduced phase rule – statement and reasons.

Solids in solid: Simple eutectic with suitable examples - Compound formation with congruent [Zn-Mg system and Sn-Mg system] and incongruent melting points [sodium – potassium system] with suitable examples.

Two components systems involving salt and water: Simple eutectic systems: sodium chloride – water system and KI – water system – Principle of freezing mixtures - Compound formation with congruent melting point – ferric chloride-water system and sodium sulphate-water system.

Salt hydrates: Efflorescence, deliquescence and hygroscopic – dehydration of copper sulphate crystal – Transition temperature.

Unit-V: PHYSICAL CHEMISTRY (12 hours)

Quantum Mechanics - Particle and wave character of electron – de Broglie's theory – equation – Davisson-Germer experiment – photoelectric effect – Compton Effect – Heisenberg's uncertainty principle. The Schrodinger wave equation – derivation – postulates of quantum theory – Eigen values and eigen functions – significance of ψ and ψ^2 – solutions of Schrödinger wave equation – particle in one-dimensional box – atomic orbital, Probability distribution curves – radial probability distributions – shapes of orbitals – representation of angular and radial parts – nodal planes and spheres – 'g' & 'u' character.

TEXT BOOKS

1. Text book of Organic Chemistry by P.L. Soni - Sultan Chand & Sons; 29th edition (2012).

2. Principles of Physical Chemistry- Puri, Sharma and Pathania - Vishal Publishing Co.; 46th edition (2012).

3. Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R. Santhanalakshmi, N. Vijayathara, M. Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

4. Arimurai Iyarpu Vethiyal by Sudha soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

27 5. Elements of Analytical chemistry - R.Gopalan, P.S. Rangarajan, Sultan Chand and Sons (2004). **References** Subramanian and K.

1. Inorganic qualitative Analysis by Vogel.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I:	DRGANIC CHEMISTRY: ALIPHATIC ALDEHYDES AND I	KETONES	
	Chemical reactivity of carbonyl group – mechanism of important carbonyl addition and condensation of aldehydes and ketones - nucleophilic addition reactions	3	Lecture
	Relative reactivities of aldehydes and ketones – acidity of hydrogen atom in carbonyl compounds. Difference in properties between acetone and ethyl methyl ketone.	2	ICT
	Preparation and properties of acrolein, crotonaldehyde and chloral	2	Seminar & Peer teaching
	Preparation and properties of : Glycolaldehyde – aldol – hydroxy acetone and diacetone alcohol	2	Lecture & Assignment
	Preparation and properties of glyoxal, succinaldehyde, dimethyl glyoxal, acetyl acetone and acetonyl acetone	3	Lecture & tutorial.
UNIT II:	ORGANIC CHEMISTRY : AROMATIC ALDEHYDES AND	KETONES	
	Benzaldehyde: Mechanism of Cannizzaro's, Perkin and Claisen reactions	3	ICT
	Mechanism of Knoevenagel reactions and benzoin condensation. Preparation and properties of Cinnamaldehyde, salicylaldehyde and Vanillin, Preparation and properties of o & p- benzoquinones, preparation of phloroacetophenone by Houben-Hoesch synthesis. Preparation and properties of Acetophenone and benzophenone by Friedel Craft's acylation comparison and reactivities, phenacyl chloride.	8	Lecture
	Preparation and properties of o & p-benzoquinones, preparation of phloroacetophenone by Houben-Hoesch synthesis	1	Tutorial / Assignment
UNIT III	ANALYTICAL CHEMISTRY: PRINCIPLES OF VOLUME	TRIC ANALY	YSIS
	Expression of concentrations of a solution, Calculation of equivalent weight for various substances involved in volumetric analysis	3	Lecture Quiz & problem solving
	Classification of reactions in titrimetric analysis, Primary and secondary standards: selection of primary standards Principles involved in acid-base, precipitation and complexometric titrations [EDTA titrations].	5	Lecture
	Indicators: Theory of indicators – choice of indicators, use of titration curves for the proper choice of indicators in acid-base titration	2	ICT
	calculation of pH during and at the end of the titration - determination of end points in precipitation and	2	Seminar/ Group discussion

28		
complexometric titrations – metal ion – adsorption and		
fluorescence indicators		
UNIT IV: PHYSICAL CHEMISTRY: PHASE RULE		
Statement and significance of the terms involved –	3	Lecture
thermodynamic derivation of phase rule.		
One-component systems – water and carbon dioxide		
Phase diagram of Sulphur and Ag-Pb system and Bi-Cd system	1	chart preparation
Phase diagram of Sulphur and Ag-Pb system and Bi-Cd	5	Lecture
system.Condensed systems and reduced phase rule, Solids in		
solid: Simple eutectic with suitable examples.		
Two components systems involving salt and water: sodium		
chloride – water system, KI – water system, ferric chloride-		
water system and sodium sulphate -water system.		
Compound formation with congruent [Zn-Mg system and Sn-	2	ICT
Mg system] and incongruent melting points [sodium –		
potassium system]		
Salt hydrates: Efflorescence, deliquescence and hygroscopic –	1	Peer teaching/
dehydration of copper sulphate crystal – Transition temperature		tutorial
UNIT V: PHYSICAL CHEMISTRY: QUANTUM MECHANICS		
Particle and wave character of electron – de Broglie's theory –	3	Lecture
equation – Davisson-Germer experiment		
Photoelectric effect, Compton effect, Heisenberg's uncertainty	1	Group discussion
principle.		
The Schrodinger wave equation – derivation, significance of ψ	6	Lecture
and ψ^2 , postulates of quantum theory – Eigen values and eigen		
functions.		
Particle in one-dimensional box – atomic orbitals Probability		
distribution curves – radial probability distributions,		
representation of angular and radial parts.		
Shapes of orbitals, nodal planes and spheres – 'g' & 'u'	2	ICT
character		

Course	Prog	gramm	ne Out	tcome	s (PO	s)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean
Outcom															scores
es															of
(COs)															COs
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	02	03	04	05	06	O7	
CO1	4	4	5	3	2	3	3	3	5	4	2	3	3	4	3.42
CO2	4	5	4	4	3	3	3	3	5	4	3	4	3	4	3.71
CO3	4	5	4	5	4	3	3	4	4	5	5	3	3	3	3.92
CO4	4	4	3	4	4	3	3	3	4	3	3	3	3	3	3.36
CO5	5	5	3	3	3	3	3	3	5	4	3	4	3	4	3.64
							Mea	an Ove	rall Sc	ore					3.61

Result: The Score for this Course is 3.61 (High Relationship)

Course designer: Mrs. D. RENUGA Dr. (Mrs). T.UMAMATHI Programme : B.Sc Chemistry Semester : III & IV Sub. Code : C41

Part III: (Core) Major paper 6 Hours : 2 / W, 60 Hrs / two Sem Credits: 4

TITLE OF THE PAPER: APPLIED CHEMISTRY

		-										
Pedagogy	Hours	Lecture	Peer Teaching/ Role play	ICT								
			Seminar/Discussion/Tutorial/Problem									
			Solving session/Quiz/Videos/									
			Demonstration class (Lab / Library									
			session is conducted after the class									
			hours).									
	5	3	1	1								
PREAMBLE: The objectives of the course is to understand the different types of fuels and its												
uses, fire prevention, preparation of organic dyes, photographic process, basic clinical tests,												
chemotherapy and to know about insecticides, fertilizers, construction chemistry and oils, fats,												
soaps and dete	soans and detergent.											
I	soups und detergente											
		COUR	SE OUTCOME		Unit	Hrs / S						
At the end of th	e Semest	ter, the Stud	ents will be able to									
UNIT 1 CO1:	demonstr	ate the knov	vledge about fuels and fire prevention		1	12						
UNIT 2 CO2:	discuss	the prepara	tion and uses of various dyes and proc	cess	2	12						
involved in pho	otography	· · ·	7 1									
UNIT 3 CO3:	demonst	rate the clin	ical tests for detection of sugar in serun	n & 1	3	12						
urine and cho	lesterol	in blood, e	estimation of hemoglobin and the vari	ious								
chemotherapeu	tic drugs	and their us	es.									
	1			1	4	10						
UNIT 4 CO4:	aiscuss	the classific	cation of insecticides, fungicides, pestici	laes	4	12						
and fertilizers a	and their	applications	and explain the chemistry behind setting	and fertilizers and their applications and explain the chemistry behind setting of								

cements and paints and discuss about PVC, varnishes and refractories.Image: Construction of the second second

Unit – I (12 hours)

- *Fuels:* Definition requirements of a good fuel classification characteristics of fuels properties ignition temperature calorific value units of heat solid fuels (wood, coal) liquid fuels mining of petroleum and its fractional distillation knocking, octane number, antiknocking agents, unleaded petrol kerosene, alcohol merits and demerits of liquid fuels, gaseous fuels advantages and disadvantages of gaseous fuels (LPG, Gobar gas, producer gas, water gas)
- *Fire prevention:* and protection in homes: Major causes of fire in homes, types of fire protection and fire fighting in homes, methods of extinguishing fire, chemical fire extinguisher, their relative merits and demerits.

Unit – II (12 hours)

Organic Dyes: Definition – theory of colour and constitution – classification of dyes according to structure and applications:

a) Azo dyes: Preparation of methyl orange, Congo red and Bismark brown.

- b) Triphenyl methane dyes: Preparation of malachite green, rosaniline and crystal violet.
- c) Phthalein dyes: phenolphthalein, fluorescein and eosin prepartion and uses.
- d) Vat dyes: preparation and structure of indigo.
- e) Anthraquinone dye: preparation and structure of alizarin.

Photography: Photographic process – preparation of sensitive plates – exposure – developing – fixing – printing – toning – colour photography.

Unit – III (12 hours)

Clinical Chemistry:

- Diagnostic test for cholesterol in serum and urine standard value of cholesterol heart diseases.
- Diagnostic test for sugar in serum and urine –standard value of sugar- Benedict's test for glucose Glucose Tolerance test hypoglycemia and diabetes.

Estimation of hemoglobin – standard value – anaemia

Chemotherapy: (Elementary study only – structure elucidations not included) – sulpha drugs (sulphanilamide, sulphadiazine, prontosil) – antimalarials (quinine, plasmoquin) – arsenical drugs (salvarsan, seosalvarsan) – antibiotics :definition – penicillin, Streptomycin, Tetracyclin, chloromycetin – structure and uses – antipyretics and analgesics, anaesthetics, tranquilisers, sedatives.

Unit – IV (12 hours)

Insecticides, fungicides and pesticides: Definition – classification according to method of application and actions – DDT, BHC, Lead arsensate, Bordeaux mixture and dithiocarbamate.

Fertilizers: Definition – nutrients for plants – role of various elements in plant growth - natural and chemical fertilizers – classification of chemical fertilizers – urea – super phosphate and potassium nitrate – mixed fertilizers – fertilizer industry in India.

Construction chemistry

Cement: Composition-chemistry of setting – Concrete – Reinforced concrete – (Manufacture of cement not necessary)

Paints: Definition, Classification, constituents- setting of paints, requirements of good paint.

PVC – Significance of PVC.

Varnishes: Definition – Types – Raw materials.

Refractories – Definition – Chemical Classification – Fire Clay bricks, Properties and uses of Fire Clay bricks

Unit V (12 hours) - Oils, Fats, Waxes, Soaps and Detergents

Introduction – Distinction between oils and fats

Vegetable oil: Manufacture of Soya bean oil by solvent Extraction Method

Animal fats and oil - processing of animal fats and oil

Waxes – classification – Manufacture of candles.

Soaps: Manufacture of Soaps (Continuous process) – Toilet and transparent soaps ((Manufacture not necessary)

Detergents: Principal groups of detergents – Classification of surface active agents – anionic detergents - Cationic detergents – and non ionic detergents- aggregation and Preparation and manufacture of Shampoo.

TEXT BOOKS

1. Ancillary Chemistry for Home science students by Thankamma Jacob.

2. Text book of Organic Chemistry by P.L. Soni- Sultan Chand & Sons; 29th edition (2012).

3. Fundamentals of Biochemistry for medical students by Ambika Shunmugam ; Wolters Kluwer; 8^{th} edition.

4. Text Book of Biochemistry for medical students by D.M. Vasudeva and S. Sreekumari ; Jaypee Brothers Medical Publishers; 8th edition.

References:

1. Pharmaceutical Chemistry by Dr.S. Lakshmi

2. Industrial Chemistry by B.K. Sharma; Krishna Prakashan Media (P) Ltd. (2011)

3. Engineering Chemistry by S.S. Dara; S. Chand & Company

UNITS	TOPIC	LECTURE	MODE OF
LINIT 1.		ΠΟΟΚ5	ILACHING
	Various types of fuels and their Characteristics, merits and demerits. Calorific value, ingnition temperature, Knocking, octane number, Antiknocking agents, unleaded petrol, Composition and uses of LPG, gobar gas, producer gas and water gas.	9	Lecture
	Fire prevention at home, methods of extinguishing fires	2	ICT
	Fire prevention at home, methods of extinguishing fires	1	Role play
UNIT II			
	Theory of colour and constituents, Preparation and uses of azo, triphenyl methane dyes	6	Lecture
	Classification of dyes	1	Seminar
	Preparation and uses of Phthalein, vat and anthraquinone dyes	2	Lecture & Demonstration
	Photographic process	3	ICT
UNIT III			
	Diagnostic test for cholesterol in serum and urine Diagnostic test for sugar in serum and urine	2	ICT & Lab session.
	Glucose tolerance test	1	Discussion
	Estimation of hemoglobin and anemia Chemotherapeutic drugs- sulpha drugs, arsenical drugs, antibiotics, antimalarials, antipyretics, anesthetics, analgesics, sedatives.	9	Lecture
UNIT IV			
	Definition and classification of insecticides,	3	Seminar /

	fungicides, pesticides. DDT, BHC, lead arsenate,		Assignment
	Bordeaux mixture, dithiocarbonate.		
	Nutrients for plants, role of various elements in plant	2	ICT
	growth, chemistry of setting of cement.		
	Classification of chemical fertilizers. Urea, super	6	Lecture
	phosph Classification of paints, setting of paints,		
	requirement of good paint. PVC. Varnishes- types,		
	raw materials.		
	Refractories – Classification, Properties and uses of		
	fire clay bricks.ate, potassium nitrate. Fertilizer		
	industry in India.		
	Cement composition, concrete and reinforced	1	Lecture &
	concrete.		Discussion
UNIT V			
	Difference between oils and fats. Manufacturing	10	ICT with
	process of soyabean oil, candles, soaps, shampoo		Lecture and
			Discussion
	Classification of detergents	2	Peer teaching /
			Assignment

Course	Prog	gramr	ne Ou	tcome	es (PC)s)		Prog	Programme Specific Outcomes (PSOs)					5)	Mean
Outco															scores
mes															of
(COs)															COs
	Р	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	0	2	3	4	5	6	7	01	O2	O3	O4	O5	06	O 7	
	1														
CO1	4	4	4	4	3	3	5	3	4	2	4	4	4	3	3.64
CO2	5	4	3	4	4	5	5	5	4	4	4	4	4	4	4.21
CO3	4	4	4	4	4	5	5	4	4	5	4	4	3	3	4.07
CO4	4	4	3	4	3	4	3	3	4	4	5	4	4	3	3.71
CO5	4	3	4	4	4	3	4	5	4	4	4	3	4	4	3.85
							Me	ean Overall Score							3.89

Result: The Score for this Course is 3.89 (High Relationship)

Course Designer: Dr. A. JOSEPHINE VANITHA Mrs. A. PREMA Programme : B.Sc Chemistry Semester : III & IV

Part III: (Core) Major Paper 7 Hours: 4 / W, 60 / S

4 hours in III semester and 4 hours in IV semester Sub. Code : PC2

Credits : 4

TITLE OF THE PAPER:

PRACTICAL – 2 VOLUMETRIC ANALYSIS AND ORGANIC ESTIMATION

Pedagogy	Hours	Lab session//Demonstration class/Viva voce							
	4	4							
PREAMBLE: The objective of the course is to make the student to prepare standard solution, estimate the given inorganic/ organic solution using suitable standard and link solution and to understand the theory behind the practical classes involved.									
		COURSE OUTCOME	Unit	Hrs					
At the end of	the Sem	ester, the students will be able to							
UNIT 1 CO	UNIT 1 CO1: estimate the given inorganic solution, volumetrically180								
UNIT 2 CO2	UNIT 2 CO2: estimate the given organic solution, volumetrically240								

Unit –I : VOLUMETRIC ANALYSIS

A double titration involving the making up of the solution to be estimated and the preparation of a primary standard

Acidimetry and alkalimetry: titrations

Acids used: hydrochloric acid, sulphuric acid and oxalic acid Bases used: sodium carbonate, sodium hydroxide. Standard solutions prepared: sodium carbonate and oxalic acid.

Oxidation and reduction titrations

Oxidising agents: Potassium permanganate (permanganometry) Reducing agents: ferrous sulphate, ferrous ammonium sulphate, oxalic acid Standard solutions prepared: ferrous sulphate, ferrous ammonium sulphate and oxalic acid Iodimetry titrations Titrations of liberated iodine against sodium thiosulphate using acidified potassium permanganate, potassium dichromate and copper sulphate solutions. Standard solutions: potassium dichromate, copper sulphate. AR arsenious oxide against iodine solution.

Unit – II : ORGANIC ESTIMATION

Estimation of aniline Estimation of phenol Estimation of glucose (Lane Eynon method-Demo only) Internal =40 (unit I -20+ Unit II – 20] External = 60 mark Volumetric analysis–25 marks (procedure – 8, exp–17, 1% -17, 2% - 15, 3% - 13 4%-10, above 4% - 7) Organic estimation -25 marks (procedure-8, exp- 17, 2% -17, 3% - 15, 4% - 13 above 4% - 7) Viva voce - 5 marks, December 5 marks

Record - 5 marks.

UNITS	TOPIC	LECTURE	MODE OF TEACHING							
		HOURS								
UNIT 1: VOLUMETRIC ANALYSIS										
	Volumetric Estimation	60	Lab session							
	Volumetric Estimation	10	Demonstration							
	Volumetric Estimation	10	Viva-Voce							
UNIT 11: O	RGANIC ESTIMATION									
	Organic Estimation	30	Lab session							
	Organic Estimation	6	Demonstration							
	Organic Estimation	4	Viva-Voce							

Course	Prog	gramn	ne Ou	tcome	s (PO	s)		Programme Specific Outcomes (PSOs)					s)	Mean	
Outcom															scores
es															of
(COs)															COs
	PO PO PO PO PO PO PO							PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	03	O4	05	06	O7	
CO1	5	5	4	5	4	4	4	4	4	5	4	3	4	3	4.14
CO2	5	5	4	5	4	4	4	4	4	4	4	3	4	3	4.07
							Mea	an Ove	erall Sc	core					4.11

Result : The Score for this Course is 4.11 (Very High Relationship)

Course Designer : Dr. C. MEENAKSHI Mrs. B. MARIAMMAL Programme : B.Sc Chemistry Semester : IV Sub. Code : C42

Part III: (Core) Major paper -8 Hours : 4 / W, 60 Hrs / S Credits: 4

TITLE OF THE PAPER: PHYSICAL AND INORGANIC CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class /(Lab / Library session is conducted after the class hours).	ICT
	4	2	1	1

PREAMBLE: The objective of the course is to educate the students about the importance of nuclear chemistry and radioactivity, provide the scientific knowledge about solutions and distribution law, understand the chemistry of important compounds of Group IIIA, IVA and VA elements

COURSE OUTCOME	Unit	Hrs / S
At the end of the Semester, the students will be able to		
UNIT 1 CO1 : describe the fundamental issues in nuclear chemistry, explain the	1	12
different kinds of radioactive decay and calculate kinetic parameters related to it.		
	2	10
UNIT 2 CO2: identify and define various types of nuclear transmutation including	2	12
fission, fusion reactions, and explain the fundamental concepts involved in nuclear		
weapons		
UNIT 3 CO3 : recognize the binary solutions and the types of distillation to purify	3	12
those binary liquids, illustrate the laws governing the distribution of solute between		
two immiscible solvents		
UNIT 4 CO4: discuss the periodic trends in group IIIA and IVA, preparation and	4	12
properties of industrially important compounds		
UNIT 5 CO5 : discuss the preparation properties and uses of compounds of group VA	5	12
elements		

Unit – I: PHYSICAL CHEMISTRY (12 hours)

Nuclear Chemistry:

Nuclear spin and magnetic moments – ortho and para states of molecules with hydrogen as an example.

Constitution of the nucleus: stable and unstable nuclei and their relationship. n-p ratio – magic number – mass defect and binding energy – whole number rule and packing fraction – mass energy relationships – shell model and liquid drop model.

Radioactivity:

Theory of radioactivity – laws of radioactivity – Soddy's Group Displacement law. Radioactive equilibrium – rate of radioactive disintegration – half-life period – average life. Radioactive series – mode of decay – alpha, beta and gamma particle emissions - orbital electron capture – nuclear isomers and internal conversion.

Unit – II: PHYSICAL CHEMISTRY (12 hours)

Radioactivity:

Artificial radioactivity: Definition – different types of artificial radioactivity brought about by accelerated particles.

Artificial transmutation: of atoms by projectiles- spallation.

Nuclear fission and fusion: Theories of fission – application of fission and the principle of atom bomb – nuclear reactors – nuclear fusion and emission of energy – stellar energy and hydrogen bomb.

Application of radioactivity: radioactive isotopes as tracer elements - applications in medicine, agriculture and industry –in the elucidation of structure and in the investigation of reaction mechanisms in analytical chemistry – activation analysis – carbon dating.

Particle accelerators: Linear accelerators – cyclotron and synchrotron

Unit – III: PHYSICAL CHEMISTRY (12 hours)

Solutions:

Gases in liquid –Bunsen adsorption coefficient – solubility – factors affecting the solubility of gas in a liquid – Henry's law and its applications – deviations from Henry's law.

Liquids in liquids: i) completely miscible liquid system: ideal and non-ideal systems – Raoult's law and Konowalaff's rule – distillation of homogeneous binary liquid mixtures - theory of fractional distillation - azeotropes and azeotropic distillation.

ii) Partially miscible liquid systems: Variation of solubility with temperature – critical solution temperature (consolute temperature) – lower, upper, lower and upper critical solution temperature – influence of impurities on CST and application.

iii) Immiscible liquid systems: Theory of steam distillation and its applications.

Distribution Law:

Statement – mathematical formulation – experimental verification – conditions under which the distribution law is obeyed – deviations from distribution law- derivation from the kinetic theory and application of the law of solvent extraction.

Unit IV: INORGANIC CHEMISTRY (12 hrs)

Group 3/III A elements: Group discussion – Diagonal relationship between boron and silicon – comparison of boron and aluminium – Isolation of boron – borax, diborane, boron nitride – preparation, properties, structure.

Group 4 / IVA: Group discussion

Carbides – General methods of preparation, properties; classification with examples– uses and structure of calcium carbide, boron carbide and silicon carbide

Silicates: Structure and types of silicates –orthosilicates, pyrosilicates, chain silicates, cyclic or ring silicates, sheet silicates, feldspars, zeolites and ultramarines.

Unit V: INORGANIC CHEMISTRY (12 hours)

Group 5 / VA elements:

Group discussion

Extraction of Arsenic

Arsine and stilbene – comparison of their properties with ammonia and phosphine

Preparation, properties and uses of the following compounds: hydrazine, hydroxylamine, hydrazoic acid, tartar emetic and sodium bismuthate.

Nitrides – general methods of preparation, properties, classification with examples – uses and structure.

Volumetric estimation of As₂O₃.

TEXT BOOKS

1. Principles of Physical Chemistry- Puri, Sharma and Pathania - Vishal Publishing Co.; 46th edition

2. Advanced Inorganic Chemistry by Tuli, Basu and Madan, S.Chand publishing; 19th edition.

.

3. Arimurai Iyarpu Vethiyal by Sudha soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

- 4. Kanima Vethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi
- N. Vijayathara, Sudha soundirapandian, D.Sarala Thambavani, Published by Madurai Kamaraj University, Madurai, 1998.
| UNITS | TOPIC | LECTURE | MODE OF |
|-------------|---|---------|-----------------|
| LINIT I. DI | IVSICAL CHEMISTRY, NUCLEAR CHEMISTRY | HOURS | IEACHING |
| | Nuclear spin and magnetic moments – ortho and para | 2 | ICT |
| | states of molecules with hydrogen as an example | 2 | 10.1 |
| | Constitution of the nucleus: stable and unstable nuclei | | |
| | and their relationship | | |
| | n-p ratio, magic number, mass defect and binding | 2 | Lecture |
| | energy mass energy relationships, whole number rule | | |
| | and packing fraction | | |
| | Shell model and liquid drop model. | 2 | Lecture |
| | Theory of radioactivity – laws of radioactivity – | 2 | Lecture |
| | Soddy's Group Displacement law. | | |
| | Rate of radioactive disintegration ,half-life period,
average life and Radioactive equilibrium | 2 | problem solving |
| | Radioactive series, orbital electron capture, nuclear | 2 | Lecture |
| | isomers and internal conversion. | | |
| UNIT II: PH | HYSICAL CHEMISTRY: ARTIFICIAL RADIOACTI | VITY | |
| | Theories of Nuclear fission and fusion: principle of | 6 | Lecture |
| | atom bomb – nuclear reactors, stellar energy and | | |
| | hydrogen bomb | | |
| | Artificial radioactivity: Definition, types of artificial | | |
| | radioactivity brought about by accelerated particles, | | |
| | elucidation of structure | | |
| | Application of radioactivity: radioactive isotopes as | 2 | Peer teaching / |
| | tracer elements - applications in medicine , agriculture | 2 | Lecture |
| | and industry, carbon dating | | |
| | Application of radioactivity in the investigation of | 2 | Lecture |
| | reaction mechanisms in analytical chemistry | _ | |
| | | | |
| | Particle accelerators: cyclotron and synchrotron | 2 | ICT |
| UNIT III: P | HYSICAL CHEMISTRY: SOLUTIONS | | |
| | Gases in liquid –Bunsen adsorption coefficient – | 3 | Lecture |
| | solubility – factors affecting the solubility of gas in a | | |
| | liquid – Henry's law. | | _ |
| | completely miscible liquid system: ideal and non-ideal | 5 | Lectue |
| | systems – Raoult's law and Konowalaff's rule, Partially | | |
| | miscible liquid systems: critical solution temperature | | |
| | Theory of fractional distillation, azeotropic distillation | | |
| | and steam distillation | | |
| | Statement, mathematical formulation, experimental | | |
| | verification of Nernst distribution law | 2 | Lecture |
| | Application of Nernst distribution law. Distillation (any | 2 | Demonstration |
| | one method) | | |
| | | | |

UNIT IV : INORGANIC CHEMISTRY				
<i>Group 3/III A elements</i> Group discussion – Diagonal relationship between boron and silicon – comparison of boron and aluminium – Isolation of boron	3	Lecture		
Preparation, properties and structure of borax, diborane, boron nitride	3	Lecture		
Group 4 / IVA: Group discussion General methods of preparation, properties; classification of carbides, structure of calcium carbide, boron carbide and silicon carbide	3	Lecture		
uses of calcium carbide, boron carbide and silicon	1	Discussion /		
carbide		Seminar		
Structure and types of silicates	2	ICT		
UNIT V: INORGANIC CHEMISTRY GROUP 5 / VA ELEMENT	S			
Group discussion	3	Lecture		
Extraction of Arsenic				
Volumetric estimation of As ₂ O ₃	2	Demonstration class		
Comparison of the properties of NH ₃ , PH ₃ ,AsH ₃ and SbH ₃	2	Discussion		
Preparation, properties of hydrazine, hydroxylamine, hydrazoic acid, tartar emetic and sodium bismuthate	3	Lecture		
Preparation, properties, Structure, classification of Nitrides, uses of hydrazine, hydroxylamine, hydrazoic acid, tartar emetic and sodium bismuthate	2	Tutorial		

Course	Prog	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)					s)	Mean
Outcomes															scores
(COs)															of
															COs
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	03	04	05	06	O7	
CO1	5	5	4	3	4	3	3	3	5	4	4	5	3	3	3.17
CO2	4	4	5	3	5	4	3	3	5	4	4	5	3	3	3.23
CO3	4	5	4	5	4	4	4	4	5	5	5	4	4	4	3.58
CO4	4	4	3	3	4	4	3	3	4	4	3	4	3	3	3.50
CO5	4	4	3	3	4	3	3	4	3	3	3	4	3	4	3.43
	Mean Overall Score												3.38		

Result: The Score for this Course is 3.38 (High Relationship)

Course designer: Mrs. D. RENUGA Dr. T. UMAMATHI

Programme : B.Sc Chemistry Semester : V Sub. Code : C51

TITLE OF THE PAPER: ORGANIC CHEMISTRY-1

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/roleplay/ Discussion/Turorial/Problem solving session/Quiz/Videos/ Demonstration Class(Lab / Library session is conducted after the class hours).	ICT
	5	3	1	1

PREAMBLE: The objective of the course is make the student understand and learn the stereochemistry of organic compounds, Chemistry of Carbohydrates, estimation methods of glucose, aliphatic and aromatic nitrogen containing compounds, aliphatic and aromatic acids, Chemistry of Alicyclic compounds and conformational analysis of simple aliphatic and alicyclic compounds.

COURSE OUTCOME	Unit	Hrs/S
At the end of Semester V, the students will be able to demonstrate		
thorough and clear knowledge of the following given below;		
Unit 1 CO1: Stereochemistry of organic compounds	1	15
Unit 2 CO2: Chemistry of Carbohydrates	2	15
Unit 3 CO3: Chemistry of Aliphatic and Aromatic Nitrogen compounds	3	15
Unit 4 CO4: Chemistry of Aliphatic and Aromatic Carboxylic acids	4	15
Unit 5 CO5: Chemistry of Alicyclic compounds and Conformational	5	15
analysis of Acyclic and Cyclic systems		

Unit – I (15 hrs)

Isomerism:

Stereoisomerism:

Geometrical isomerism.- definition - geometrical isomerism of maleic and fumaric acids – aldoximes and ketoximes – determination of configuration of geometrical isomers – E-Z notations, Beckmann transformations

Optical isomerism:

- i) **optical activity** specific rotation and its polarimetric determination definition of optical isomerism elements of symmetry.
- ii) Optical isomerism of compounds containing asymmetric carbon atom lactic and tartaric acids, enantiomers and diastereo isomers – racemic and mesoforms – racemisation and resolution of racemic mixtures, Walden inversion – asymmetric synthesis, chirality – specifications of absolute configuration by R and S notations.
- **iii) Optical activity of compounds without asymmetric carbon atoms**: allenes, spiranes and biphenyl compounds.
- iv) Optical activity of compounds containing elements other than carbon atoms [Nitrogen] : quaternary ammonium compounds and tertiary amine oxides.
- v) Stereospecific addition to double and triple bonds definition of stereospecific and stereoselective reactions addition of Br_2 to E and Z Butene-2 using Cahn-Ingold and Prelog nomenclature.

Unit – II: (15 hrs)

Carbohydrates:

Monosaccharides: Introduction and classsification of carbohydrates and chemistry of monosaccharides - glucose and fructose, reducing and non reducing sugars – structure and configuration – mutarotation and epimerisation – interconversion of glucose and fructose – methods of descending and ascending sugar series – estimation of glucose by Lane Eynon method and Bertrand's method.

Disaccharides: structure and properties of sucrose

Polysaccharides: structure of starch and cellulose [structural discussion not needed] – applications of cellulose derivatives.

Unit – III: (15 hrs)

Nitrogen Compounds:

Aliphatic nitrogen compounds: cyanides and isocyanides – general methods of preparation, properties – distinction between ethyl cyanide and isocyanide.

Alkyl nitrites and nitro alkanes: General methods of preparation and properties, distinction between ethyl nitrite and nitroethane.

Aliphatic diazo compounds- preparation, properties and structure of diazomethane and diazoacetic ester.

Derivatives of carbonic acids: Manufacture, properties, structure and uses of urea. Estimation of urea.

Aromatic nitro compounds: preparation and properties of nitro Toluene. Reduction products of nitrobenzene – TNT and TNB.

Aromatic amino compounds: Effect of substituent's on the basic character of aromatic amino compounds. Preparation and properties of isomers of toluidines. Estimation of aniline.

Diazotization - preparation and synthetic uses of Benzene diazonium chloride.

Unit – IV(15 hrs)

Aliphatic acids:

Monocarboxylic acid: General methods of preparation and properties of monocarboxylic acids. Resonance of carboxylate ion.

Effect of substituents on acidity – Inductive effect.

Halogen substituted acids: preparation, properties of mono chloro acetic acid –di and trichloro acetic acids – HVZ reaction mechanism - overall reactivity of halogen atom and the influence of halogen atom on the strength of acids.

Hydroxy acids: General methods of preparation and properties of hydroxy acids – glycollic, lactic and tartaric acids. Action of heat on α , β , γ and δ hydroxy acids.

Aldehydic and ketonic acids: Preparation and properties of glyoxalic acid, pyruvic acid.

Dicarboxylic acids: Preparation and properties – action of heat on dicarboxylic acids - Blanc's rule. Preparation and properties of maleic and fumaric acids.

Active methylene compounds: Ethyl acetoacetate and diethyl malonate.

Aromatic acids:

Benzoic and toluic acids, effect of substituents on acidic character.

Substituted benzoic acid – salicylic acid and anthranilic acid – preparation and properties.

Dicarboxylic acids: Preparation and properties of phthalic acid – derivatives of phthalic acid – phthalic anhydride and phthalimide – NBS – preparation and uses.

Side chain carboxylic acid: preparation, properties of phenyl acetic acid. Mandelic acid, cinnamic acid – coumarin.

Unit – V(15hrs)

Alicyclic compounds:

General methods of preparation, properties of cycloparaffins - Baeyer's strain theory and its modification.

Conformation – definition – differences between conformation and configuration - Fischer's plane projection formula, Newmann projection formula and Saw horse formula of ethane, Butane, 1,2-dichloro ethane, cyclohexane and mono substituted cyclohexane.

TEXT BOOKS

- 1. Text book of Organic Chemistry by P.L.Soni- Sultan Chand & Sons; 29th edition (2012)
- 2. Advanced Organic Chemistry by B.S.Bahl and Arun Bahl; S. Chand Publishing 20th edition
- 3. Organic Chemistry by Morrison and Boyd; Pearson Education India; 7th edition (2010)
- 4. Organic Chemistry Vol. 1 by I. L. Finar; Pearson Education India; 6th edition (2002)

5. Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R. Santhanalakshmi, N.

Vijayathara, M. Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

References

- 1. Stereochemistry, Conformation and mechanism by P S Kalsi, 8th edition (2015)
- 2. Modern Organic Chemistry by M K Jain and S C Sharma, 4th edition (2014).

UNITS	ТОРІС	LECTURE	MODE OF
		HOURS	TEACHING
UNIT 1 : Stereoison	merism		
	Definition and Classification of stereoisomerism and	3	ICT
	elements of symmetry		
	Enantiomers, Diastereoisomers, Racemisation,	9	Lecture
	Resolution, Walden Inversion, Asymmetric		
	Synthesis and Stereospecific addition to double and		
	triple bonds		
	Allenes, Spiranes, Biphenyl compounds,	2	Seminar,
	Quraternary ammonium compounds and tertiary		Tutorial and
	amine oxides		Assignment.
	Assignment of E/Z nomencalure for alkenes and	1	Problem solving
	syn/anti nomenclature for oximes and R/S		with the aid of
	configuration with examples		teacher.
UNIT II Carboh	ydrates		
Monosaccharides	Study of Glucose and Fructose -	11	Lecture,
	Structure and Configuration, Concept of		Demonstration
	Mutarotation and Epimerisation		class, ICT,
	Interconversion of Glucose and Fructose		Videos &
	Methods of Descending and Ascending Sugar series.		Problem Solving
	Estimation of Glucose by Lane Eynon and		
	Bertrand's method.		
Disaccharides	Structure and Properties of Sucrose	2	Lecture & videos
Polysaccharides	Structure of Starch and Cellulose, Applications of	2	Lecture &
-	Cellulose derivatives.		Seminar Library

UNIT III Nitroger	1 Compounds										
Aliphatic Nitrogen Compounds	General methods of preparation, properties of Cyanides and Isocyanides. Distinction between Ethyl Cyanide and Isocyanide	3	Lecture & Demonstration class								
Alkyl nitrites and nitroalkanes	General methods of preparation and properties of Ethyl Nitrite and Nitroethane. Distinction between Ethyl Nitrite and Nitroethane.	3	Lecture & Discussion								
Aliphatic diazo compounds	Preparation, Properties and Structure of Diazomethane and Diazoacetic Ester.	2	Lecture & Discussion								
Derivatives of carbonic acids	Manufacture, properties, structure, estimation and uses of Urea.	3	Lecture & Videos. Library								
Aromatic nitro compounds	Preparation and Properties of Nitro Toluene. Reduction products of Nitrobenzene - TNT and TNB.	1	Tutorial and Seminar.								
Aromatic amino compounds	Effect of substituents on the basic character of aromatic amino compounds. Preparation and properties of isomers of toluidines. Estimation of aniline. Diazotization - preparation and synthetic uses of Benzene Diazonium Chloride	3	Lecture, ICT, Problem Solving								
UNIT IV : Alipha	UNIT IV : Aliphatic acids										
	Resonance of carboxylate ion, Inductive effect, Influence of halogen atom on the strengths of acids, HVZ reaction mechanism, Blanc's rule, synthetic applications of active methylene compounds	7	Lecture								
	Effect of substituents on acidity in monocarboxylic, halogen substituted acids and aromatic carboxylic acids	2	ICT								
	Nomenclature of carboxylic acids, Order of acidity in monocarboxylic and aromatic carboxylic acids	2	Problem solving								
	Preparation, properties and uses of aliphatic and aromatic carboxylic acids	4	Tutorial, seminar and assignment								
UNIT V : Alicyclic	compounds and Conformation										
Alicyclic compounds	General methods of preparartion, properties of Cycloparaffins.Baeyer's strain theory and its Modification.	7	Lecture, Video and assignment								
Conformation	Definition, difference between configuration and conformation, Conformational analysis of Ethane, Butane, 1,2-dichloroethane and Cyclohexane	3	Lecture								
	Fischer, Newmann and Sawhorse projection Formulae and Chair and boat conformation of acyclic and cyclic organic compounds	3	ICT								
	Ball and Stick models for conformational analysis	2	Demonstration with the help of teacher								

Course	Prog	ramme	e Outo	comes	(POs	5)		Programme Specific Outcomes (PSOs)						s)	Mean
Outcom															scores
es															of
(COs)															COs
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	O3	04	O5	06	O7	
CO1	4	5	4	4	3	4	4	3	4	4	3	4	4	4	3.85
CO2	4	4	3	3	4	3	3	3	4	4	3	3	4	4	3.50
CO3	4	4	3	3	4	3	3	3	4	4	3	3	4	4	3.50
CO4	4	4	4	4	4	4	4	4	3	4	4	3	4	4	3.86
CO5	4	4	3	3	4	3	3	4	4	4	3	3	4	4	3.57
				an Overall Score						3.66					

Result: The Score for this Course is 3.66 (High Relationship)

Course Designer:

Mrs. P. ROOPAKALYANI Dr. R. MUTHUSELVI

Programme : B.Sc Chemistry Semester : V Sub. Code : C52

Part III: (Core) Major paper 10 Hours : 5 / W, 75 / S Credits : 5

TITLE OF THE PAPER: PHYSICAL CHEMISTRY I

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role	ICT						
			play/Discussion/Tutorial/Problem solving							
			session/Quiz/videos/Demonstration class(Library							
			session is conducted after the class hours).							
	5	3	1	1						
PREAMBL	PREAMBLE: The objective of the course is to make the student to recognize the significance of									
Thermodynamics and laws associated with it, decipher the importance of entropy, free energy										
and real life	e applica	tions of th	ermodynamics such as Joule Thomson effect, the ro	le of c	chemical					
kinetics in s	tudying	the rate of	f the reaction, the relationship between chemical co	nstitu	tion and					
physical pro	physical properties.									
	Unit	Hrs / S								
At the end of	f the Sen	nester, the s	students will be able to							
UNIT 1 CC	D1 : exp	lain the b	basic terminologies and laws of thermodynamics and	1	15					
calculations	of enthal	py, entropy	and free energies.							
UNIT 2 CO	2: demo	nstrate the	different ways of stating II law of thermodynamics	2	15					
and its signif	icance, H	Entropy, fre	e energy function and Partial molar quantities.							
UNIT 3 CO	3: expla	ain the III	law of thermodynamics	3	15					
UNIT 4 CO	4: derive	the rate co	nstants for 1 st , 2 nd , 3 rd and zero order reactions	4	15					
UNIT 5 CO	ries of reaction rates and the influence of temperature	5	15							
on rate of	the rea	iction and	correlating the physical properties and chemical							
constitution.										
				·						

Unit-I (15 hrs)

Thermodynamics –I

Introduction: Scope and importance of thermodynamics – energy and its units – mechanical work and heat and their relation – thermodynamic systems and their characteristics – state of a system – state function and path function and their characteristics – thermodynamic functions – exact and inexact differentials.

First Law: Statement – mathematical formulation – change in internal energy and enthalpy – heat changes at constant volume and constant pressure – C_p - C_v relationship – work done in isothermal, reversible expansion and compression of an ideal gas – work done in isothermal irreversible expansion of an ideal gas. Calculation of ΔE , ΔH and w for adiabatic expansion – reversible adiabatic expansion (P,V and T relationship) – comparison of isothermal and adiabatic reversible expansion. Reversible isothermal expansion of a real gas – calculation of ΔE , q, w and ΔH for a van der Waal's gas – Joule-Thomson effect ($\delta E/\delta V$)_T value for ideal gas - Joule – Thomson coefficient in ideal and real gases. Inversion temperature, calculation and significance. **Thermochemistry**: Variation of enthalpies with temperature – Kirchoff's equation – Laws of thermochemistry – i) Lavoisier and Laplace's law, ii) Hess's law of constant heat summation –

statement and applications. Bond enthalpies – definition –calculation from the thermochemical data and applications.

Zeroth law of thermodynamics and its significance.

Unit – II(15hrs)

Thermodynamics – II

II law of thermodynamics – objective of the II law – different ways of stating II law and its significance.

Conversion of heat into work – Carnot's theorem and cycle – Thermodynamic efficiency – thermodynamic scale of temperature.

Entropy – definition and significance –the concept of entropy – entropy changes in isolated systems – entropy as a thermodynamic function – dependence of entropy on variables of the system. Entropy changes - in ideal gas, in mixing of gases, physical transformations and in chemical reactions. Entropy and probability

Free energy functions: Helmholtz free energy (A) – definition and temperature dependence – Gibb's free energy (G) – definition. Variation of Gibb's free energy with temperature and pressure – Gibb's-Helmholtz equation and its applications – Maxwell's relations – criteria for reversible and irreversible processes in terms of Gibb's free energy.

Partial molar quantities: Chemical potential – relationship between partial molar quantities – Gibb's-Duhem equation – chemical potential in case of a system of ideal gases – application of the concept of chemical potential – Clausius-Claypeyron equation – derivation and its applications – thermodynamic properties of real gases – fugacity and activity concepts.

Unit – III(15hrs)

Application of thermodynamics to various types of equilibria – equilibrium constant and free energy changes – van't Hoff reaction isotherm and van't Hoff isochore – thermodynamic interpretation of law of mass action and Le Chatelier's principle.

Thermodynamics of ideal solution – free energy change of mixing, enthalpy change of mixing and entropy change of mixing.

Relation between osmotic pressure and vapour pressure lowering – thermodynamic derivation.

Relation between the depression of freezing point and concentration, elevation of boiling point and concentration – thermodynamic derivation.

Thermodynamics – III

Nernst heat theorem and its applications -Third law of thermodynamics – a simple treatment of the law. Temperature dependence of heat capacity - its use in the determination of absolute entropy. Exceptions to III law – residual entropy of CO, N₂O, H₂O, NO and H₂

Unit – IV(15hrs)

Chemical Kinetics:

Rate of a reaction – rate law and rate constant – order and molecularity of a reaction.

Reactions of first order and psuedo first order reaction – derivation of rate constant and half life period – catalytic decomposition of hydrogen peroxide, conversion of

N-chloro acetanilide to p- chloro acetanilide, decomposition of dinitrogen pentoxide – hydrolysis of ester by acids – inversion of cane sugar

Reactions of II order: derivation of rate constant and half- life period – saponification of ester.

Reactions of III order: derivation of rate constant and half- life period. Reaction between FeCl₃ and SnCl₂.

Methods of determining the order of reactions.

Complex reactions, consecutive, parallel and reversible reactions (preliminary discussion with examples – derivation not expected)

Reactions of zero order surface reactions – derivation of rate law - specific examples.

Unit – V(15hrs)

Chemical Kinetics:

Influence of temperature on the rate of a reaction – Arrhenius rate equation and its significance – measurement of Arrhenius parameters, A and E_a .

Theory of reaction rates – Collision theory – unimolecular reactions – Lindemann – Christiansen mechanism– Theory of absolute reaction rates – enthalpy of activation – entropy of activation.

Physical Properties and chemical constitution:

Constitutive properties: a) Dipole moment: definition – experimental determination – bond moments and group moments – various applications.

Magnetic properties: Magnetic susceptibility – para, dia and ferromagnetic – specific, molar magnetic susceptibility and constitution – determination by Gouy's method.

TEXT BOOKS

- 1. Principles of Physical Chemistry- Puri, Sharma and Pathania Vishal Publishing Co.; 46th edition.
- 2. Text book of physical chemistry by P.L. Soni., O.P. Dharmarha, U.V.Dash., S.Chand., 2016.
- 3. Arimurai Iyarpu Vethiyal by Sudha soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

References

1. Essential of physical chemistry by Arun Bahl and B.S. Bahl and G.D. Tuli, S.Chand, 2014.

2. Basic chemical kinetics by G.L.Agarwal, tata Mc Graw Hill., 1990.

3. Electrochemistry by V.Viswanathan, Dr. S. Sundaram, Viswanathan Printers and Publishers, 2007.

4. Physical chemistry by Peter Atkins., Oxford Univ Press, 2017.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1: T	hermodynamics I		
	Terminologies in thermodynamics, Laws of thermodynamics First law, Kirchoff's equation Laws of thermochemistry, Zeroth law Scope and importance of thermodynamics, Bond enthalpies and Exact and inexact differential	12	Lecture Discussion, Problem solving.
	Joule Thomson coefficient and Isothermal reversible and irreversible expansion.	3	ICT
UNIT 11	Thermodynamics –II		
	Second Law of thermodynamics, Carnot Theorem and cycle, Gibbs Helmholtz equation Maxwell's relations Gibbs Duhem equation Clasius Claypeyron equation Partial molar quantities, Concepts of entropy and free energy	12	Lecture
	Entropy, Entropy and Probability(Examples) Free energy Functions(Examples)	3	ICT

UNIT III Thermodynamics-I	Π						
Vant Hoff Reaction	n Isotherm, Vant Hoff Isochore	11	Lecture				
Enthalpy Change of	of mixing, Entropy change of mixing						
Relation between	Osmotic Pressure and Lowering of						
Vapour pressure,	Relation between Depression of						
Freezing point and	d concentration, Elevation of Boiling						
point and concentr	ation, LeChatelier's principle, Nernst						
Heat Theorem an	nd its applications, Third Law of						
Thermodynamics							
Applications of	Third Law of Thermodynamics	1	Discussion				
Exceptions to III	Law (Examples of imperfection)						
LeChatelier's princ	ciple	3	ICT				
UNIT IV Chemical kinetics I							
Rate law and rate	constant, Rate constant and half life	9					
period for 1 st , 2 nd ,3	rd and zero order reactions						
Order and molecul	Order and molecularity of a reaction, Types of chemical						
reactions(complex)	, parallel, consecutive) Examples for		Seminar &				
1^{st} , 2^{nd} , 3^{rd} and zero	order reactions		Quiz				
Methods for deterr	nining order of the reaction	3	ICT				
UNIT V Chemical kinetics II							
Significance and n	neasurement of Arrhenius parameters	10	Lecture				
Theories of reaction	n rates						
Unimolecular, Line	demann, Absolute reaction rates						
Applications of bo	nd and group moments						
Enthalpy of activat	ion and entropy of activation						
Influence of tempe	rature on reaction rates	2	Seminar &				
Para,dia and ferror	nagnetic properties		Discussion				
Collision theory, I	Experimental determination of dipole	3	ICT				
moment, Guoy's 1	nethod of determination of magnetic						
susceptibility							

Course	Progr	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)						Mean
Outco															scores of
mes															COs
(COs)	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	03	O4	O5	06	O 7	
CO1	4	5	4	3	4	4	4	4	5	3	4	4	4	3	3.93
CO2	4	5	4	3	4	4	4	4	5	3	4	4	4	3	3.93
CO3	4	4	5	4	4	4	4	4	5	3	4	4	4	3	4.00
CO4	4	5	4	3	4	4	4	4	5	3	3	4	4	3	3.86
CO5	4	4	5	4	4	4	4	4	5	3	4	4	4	3	4.00
							Mea	ın Ove	rall Sc	ore					3.94

Result: The Score for this Course is 3.94 (High Relationship)

Course Designer :

Dr. K. VIGNESWARI

Dr. N. MANONMANI

Programme : B.Sc Chemistry Semester : V & VI 5 hours in V semester and 5 hours in VI semester Sub. Code : PC3

Part III: (Core) Major paper 11 Hours : 5 / W, 75 / S

Credits : 5

TITLE OF THE PAPER: PRACTICALS -3, GRAVIMETRIC ANALYSIS, ORGANIC ANALYSIS AND PHYSICAL CHEMISTRY EXPERIMENTS

Pedagogy	Hours Lab session//Demonstration class/Viva voce								
	5	5							
PREAMBLI unknown so compound.	PREAMBLE: The objective of the course is to make the student to estimate the weight of the unknown solution gravimetrically, handle physical experiments and analyse the given organic compound.								
	COURSE OUTCOME Unit Hrs P/S								
At the end of	the Sem	ester, the Students will be able to							
UNIT 1 CO1	1. actime	to the given inorganic solution gravimatrically	1	40					

UNIT I COT: estimate the given morganic solution gravimetrically.	1	40
UNIT 2 CO2: demonstrate the physical experiments and handle instruments	2	50
UNIT 3 CO3: analyse the given organic compound and find out the functional group and prepare its derivatives	3	60

Unit – I Gravimetric Analysis:

Estimation of Ca as calcium monohydrate Estimation of Ba as chromate Estimation of Lead as chromate

Unit – II Physical Chemistry:

Thermometric experiments: Determination of K_f of a solute by Rast method (cryoscopy) Determination of molecular weight of a solvent by Rast method Simple eutectic phase diagram Determination of transition temperature of a salt hydrate Determination of molecular weight by transition temperature method Determination of C.S.T. of phenol – water system Study of effect of impurities on C.S.T Partition Coefficient: Determination of partition coefficient of iodine in CCl₄ and water system. Determination of equilibrium constant of $KI + I_2 \rightarrow KI_3$ system Determination of strength of potassium iodide Kinetic study Determination of rate constant of a first order reaction - ester hydrolysis Comparison of strengths of two acids by ester hydrolysis method Electrochemistry: Conductivity titration between an acid and a base Potentiometric titration between ferrous sulphate and potassium dichromate.

Unit –III

Organic Analysis: Analysis of the organic substance containing the following functional groups: Acids, phenols, aldehydes, ketones, esters, nitro compounds, amines, amides, anilides and halogenated hydrocarbons (side chain and nucleus) Monosaccharide –glucose Report should contain aromatic or aliphatic, saturated or unsaturated and a solid derivative or a colour reaction should be exhibited.

Examination: Unit I or Unit II (random choice) and Unit III (compulsory) Internal - 40 marks(unit I or II = 20 + Unit III = 15 +5) External - 60 marks Unit I (25 marks) Procedure -8 marks, Experiment–17 marks, error up to 1% -17, 2% -12, 3% -7, 4% and above - 5 Unit II (25 marks) Attendance – 10 marks, Experiment – 15 marks Unit III (25 marks) Record – 5 marks Viva voce – 5 marks

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
UNIT 1: Gra	vimetric Analysis		
	Gravimetric Estimation	30	Lab session
	Gravimetric Estimation	5	Demonstration
	Gravimetric Estimation	5	Viva-Voce
UNIT 11: Ph	ysical Chemistry		
	Physical Chemistry experiments	40	Lab session
	Physical Chemistry experiments	5	Demonstration
	Physical Chemistry experiments	5	Viva-Voce
UNIT 11: Or	ganic Analysis		
	Organic Analysis	50	Lab session
	Organic Analysis	5	Demonstration
	Organic Analysis	5	Viva-Voce

Course	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)					Mean		
Outco															scores of
mes														COs	
(COs)	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	O3	O4	05	06	O7	
CO1	5	5	4	5	4	4	4	4	4	5	4	3	4	3	4.14
CO2	5	5	4	5	4	4	4	4	4	4	4	3	4	3	4.07
CO3	5 5 4 5 4 4 4 4 4 4 3 4 3									4.07					
Mean Overall Score								4.09							

Result: The Score for this Course is 4.09 (Very High Relationship)

Course Designer : Dr. R. MUTHUSELVI Dr. K. VIGNESWARI Mrs. D. RENUGA

Programme : B.Sc Chemistry Semester : VI Sub. Code : C61

Part III: (Core) Major paper 12 Hours : 5 / W, 75 / S Credits : 5

TITLE OF THE PAPER: INORGANIC CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library	ICT
			session is conducted after the class hours).	
	5	3	1	1

PREAMBLE: The objective of the course is to make the student understand the chemistry of important compounds in VIA, VII A, d & f block elements, basic concepts, theories & applications of coordination compounds and structure of carbonyls and nitrosyls.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the students will be able to		
UNIT 1 CO1: demonstrate the chemistry of H2O2, ozone, peracids, the extraction of	1	15
Se & Te, Classification of oxides and solve the problems.		
UNIT 2 CO2: discuss the chemistry of halogens and interhalogen compounds.	2	15
UNIT 3 CO3: explain the extraction of some d & f block elements, preparation,	3	15
properties and uses of some industrially important inorganic compounds and the basic		
concepts of coordination chemistry.		
UNIT 4 CO4: discuss the various theories involved in coordination chemistry.	4	15
UNIT 5 CO5: demonstrate the structure of carbonyls and nitrosyls and discuss the	5	15
applications of coordination compounds.		

Unit – I (15 hours)

Group 16 / VIA: Group discussion.

Oxides – classification.

Hydrogen peroxide : preparation, properties, structure, estimation – problems on estimation Ozone: Preparation, properties and structure.

Peracids and Persalts: Sulphur – permono and perdisulphuric acids - preparation and structure, potassium perdisulphate –preparation and structure.

Ores, extraction, properties and uses of Se and Te.

Unit – II (15 hours)

Group 17/VIIA - Halogens: group discussion

- a) Fluorine: Difficulties in isolation oxides of fluorine distinction from others.
- b) **Chlorine**: Oxides and oxyacids bleaching powder estimation of available chlorine, manufacture, properties and uses.
- c) **Bromine**: Oxides and oxyacids.
- d) Iodine: Oxides and oxyacids, periodic acids basic iodine
- e) Interhalogen compounds polyhalides psuedohalogens.

Unit – III (15 hours)

d- block elements: General characteristics.

Occurrence, extraction of the following metals: Vanadium, Molybdenum, Cobalt, Tungsten *f-block elements:* General characterisitics – Extraction and separation from monazite sand. Differences between Lanthanides and actinides - Lanthanides and actinides - Lanthanides - Lanthanides

Preparation, properties and uses of the following compounds: Thorium dioxide, ammonium molybdate, Vanadium pentoxide, sodium Cobaltinitrite, chloroplatinic acid.

Basic Concepts of Coordination Chemistry: Double salts and complexes, Classification of Ligands, , chelation– applications. Coordination number and stereochemistry of complexes, Nomenclature, Isomerism- structural and stereoisomerism, Werner's theory and its demerits, Sidgwick's EAN rule.

Unit – IV (15 hours)

Coordination Chemistry: Formation of inner and outer orbital octahedral complexes, tetrahedral, square planar complexes on the basis of valence bond theory [VBT].

Limitations of VBT. Crystal field theory – important features of crystal field theory [CFT] – crystal field splitting of d-orbital in octahedral, tetrahedral and square planar complexes – factors affecting the magnitude of Δ_{o} - spectrochemical series – high spin and low spin complexes, some applications of CFT. Magnetic properties of transition

metal complexes (spin only moment) – application of coordination compounds. Distortion of octahedral complexes and Jahn-Teller theorem, crystal field stabilization energy.

Unit V: (15hrs)

Applications of coordination compounds: Estimation of nickel using DMG and aluminium using oxine – estimations of hardness of water using EDTA

Biologically important coordination compounds: Functions of chlorophyll, haemoglobin and vitamin B12.

Carbonyls: Preparation and structure of Ni(CO)₄, Fe (CO)₅, Cr(CO)₆, Co₂(CO)₈, Mn₂(CO)₁₀

TEXT BOOKS

 Principles of Inorganicl Chemistry, Puri & Sharma, Vishal Publishing Co.; 46th edition
 Advanced Inorganic Chemistry by Tuli, Basu and Madan S.Chand publishing; 19th edition Kanima Vethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi
 N. Vijayathara, Sudha soundirapandian, D.Sarala Thambavani, Published by Madurai Kamaraj University, Madurai, 1998.

References:

1. Selected Topics in Inorganic Chemistry by Wahid U. Malik, G.D. Tuli and R. D. Madan S.Chand Publishing; revised edition (2010)

2. Concise Inorganic Chemistry, by J.D.Lee, Wiley India, 5th edition, 2009

3. Advanced Inorganic Chemistry by F.Albert Cotton, Geoffrey Wilkinson et al., Wiley India,6th edition 2012.

4. Principles, structure and reactivity by James E Huheey, Harper and Raw, 5th edition, 2012.

UNITS	TOPIC	LECTURE	MODE OF
		ΠΟΟΚδ	ILAUTING
UNIT 1: Gro	oup 16/VI A		
	Group discussion	3	ICT
	Classification of oxides		
	Chemistry of H_2O_2 , ozone, peracids, persulphate.	9	Lecture
	Solving the problems based on Estimation of H ₂ O ₂	1	Problem solving
	Extraction, properties and structure of Se & Te.	2	Problem solving

UNIT II	Group 17/ VII A Halogens group discussion		
	Chemistry of oxides and oxy acids of halogens,	9	Lecture
	integrate the different inter halogen compounds		
	Identify and differentiate fluorine from other	3	ICT
	halogens, compare halogen with pseudo halogen		
	Estimation of available chlorine	1	Problem solving
	Structure of oxy acids of halogen and inter halogen	2	seminar
UNIT III			
	Extraction of some d and f block elements Ti,V,Mo,	5	Lecture
	Co,W, Pt and U		
	Preparation and properties of some industrial	2	Seminar (peer
	important compounds		teaching)
	Basic concepts of coordination chemistry	5	Lecture
	Isomerism in coordination compounds, Chelation	2	ICT
	Applications of Chelates	1	Discussion/Role
			Play
UNIT IV CC	ORDINATION CHEMISTRY		
	Theories of coordination Chemistry	9	Lecture
	CFT models in octahedral, square planar &	3	ICT
	tetrahedral complexes.		
	Calculation of CFSE	2	Problem solving
	Applications of coordination compounds	1	Seminar (Peer
			teaching)
UNIT V			
	Application of coordination compounds, metal	9	Lecture
	carbonyls preparation, properties and structure		
	Biologically important coordination compounds	4	ICT
	Structure of nitrosyl compounds	1	discussion
	EAN rule calculation	1	Problem solving

Course	Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)				s)	Mean				
Outcomes													scores	of		
(COs)															COs	
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS		
	1	2	3	4	5	6	7	01	O2	03	O4	05	06	O7		
CO1	4	5	4	3	4	4	4	4	5	3	4	4	4	3	3.93	
CO2	5	5	4	3	4	3	4	4	5	4	4	4	3	3	3.93	
CO3	5	5	4	3	4	4	4	4	5	4	3	4	3	3	3.93	
CO4	5	5	4	3	4	4	4	4	5	3	2	4	4	3	3.86	
CO5	5	5	3	4	4	4	3	5	5	3	3	4	3	4	3.93	
Mean Overall Score									3.916							

Result: The Score for this Course is 3.916 (High Relationship)

Course Designer : Dr. J. ARUL MOLI Dr. R. PARIMALAM Programme : B.Sc Chemistry Semester : VI Sub. Code : C62

Part III: (Core) Major paper 13 Hours : 4 / W, 60 / S Credits : 4

TITLE OF THE PAPER : ORGANIC CHEMISTRY - 2

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library session is conducted after the class hours).	ICT
	5	3	1	1

PREAMBLE:

The objective of the course is to make the student understand, learn and gain knowledge about the chemistry of Polynuclear Hydrocarbons, Molecular rearrangements with complete mechanisms, Chemistry of Heterocyclic compounds with one hetero atom, Chemistry of some Alkaloids and Terpenoids, Preparation and properties of Amino acids, structure of proteins, role of enzymes in chemical reactions and biological systems, study of Nucleic Acids, Chemistry of Tautomerism with emphasis on triad systems and Chemistry of Polymers.

COURSE OUTCOME	Unit	Hrs /
At the end of the Semester VI, the students will be able to:		S
UNIT 1 CO1 : explain the definition and classification with example for polynuclear	1	12
hydrocarbons and the chemistry of some of them and their derivatives.		
UNIT 2 CO2 : express nine molecular rearrangements with complete mechanism, and their	2	12
importance in various chemical fields. They will also have a thorough knowledge of the		
chemistry of Heterocyclic compounds with one hetero atom.		
UNIT 3 CO3 : discuss the chemistry of alkaloids -Coniine, Piperineand Nicotine& the	3	12
chemistry of Terpenoids – Citral, Menthol and preparation of α -Terpeniol, Dipentene,		
Limonene.		
UNIT 4 CO4 : describe preparation and properties of some amino acids, properties, color	4	12
reactions and structure of proteins, role of enzymes in biological systems examples of a		
few reactions of various classes of enzymes and chemistry of nucleic acids with brief study		
of general structure of RNA and DNA.		
UNIT 5 CO5 : extend detailed explanation about the definition of Tautomerism, conditions	5	12
of tautomerism – prototropy and anionotropy, types of tautomerism their mechanism and		
uses. Also describe chemistry of Polymers, along with preparation and uses of some		
individual polymers.		

Unit – **I** (12 hrs)

Polynuclear hydrocarbons and their derivatives:

Isolated systems: Preparation and properties of diphenyl, diphenyl methane, triphenyl methane and stilbene.

Condensed systems: Naphthalene: isolation from coal tar - properties, uses and structural discussion of naphthalene. Derivatives of naphthalene – preparation, properties and uses of naphthylamines, naphthols and naphthaquinones.

Anthracene: Preparation, properties, uses and structural discussion of anthracene, derivatives of anthracene – anthraquinone, alizarin.

Phenanthrene: Preparation, properties and structure of phenanthrene

Unit- II: (12hrs)

Molecular rearrangements: Detailed mechanism of the following: i) Pinacol-Pinacolone, ii) Hofmann, iii) Curtius, iv) Benzil - Benzylic acid, v) Claisen, vi) Benzidine, vii) Beckmann, viii) Fries, ix) Wagner - Meerwin rearrangements

Heterocyclic compounds with one hetero atom: Preparation, properties and structure of pyrrole, furan and thiophene, pyridine, quinoline, isoquinoline and indole.

Unit – III(12hrs)

Alkaloids: Definition – occurrence – extraction – general properties – classification – general methods of determining the structure – structure and synthesis of the following: coniine, piperine and nicotine.

Terpenoids: Classification – occurrence – isolation – general properties – isoprene rule – general methods of determining the structure – structure and synthesis of citral, menthol Preparation and applications of α - terpeniol, dipentene, limonene.

Unit – IV (12hrs)

Amino acids: Classification, preparation, properties of glycine, alanine and phenyl alanine – action of heat on α , β and γ – aminoacids.

Proteins: Definition, classification, general properties – color reactions, primary and secondary (an elementary idea)

Enzymes: Definition – role of enzymes in biological systems – examples of a few reactions of various classes of enzymes.

Nucleic acids: Nucleocides, nucleotides – RNA and DNA – general structure.

Unit –V(12hrs)

Tautomerism: Definition – conditions of tautomerism – prototropy and anionotropy, types of tautomerism: a) Keto – enol tautomerism

- b) Nitro acinitro tautomerism
- c) Nitro isonitroso tautomerism
- d) Lactam lactim tautomerism
- e) Quinone monoxime p-nitroso phenol.

Polymerization: Definition of polymer, monomer, repeating units, degree of polymerization. Types of polymers (classification on different basis) – polymerization reactions (addition, condensation) – mechanisms - differences between addition polymers and condensation polymers – preparation, and uses of some individual polymers – polyethylene (HDPE and LDPE), polypropylene, polystyrene, PVC, PMMA, nylon, polyesters (PET), epoxy resin.

TEXT BOOKS

- 1. Text book of Organic chemistry by P.L.Soni- Sultan Chand & Sons; 29th edition (2012)
- 2. Advanced Organic Chemistry by B.S.Bahl and Arun Bahl ; S. Chand Publishing 2nd edition
- 3. Industrial Chemistry by B.K.Sharma Krishna prakashan (p) Ltd 2011
- 4. Sterochemistry by Kalsi, New Age International, 7th edition, 2010.
- 5. Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R. Santhanalakshmi, N. Vijayathara, M. Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998

References:

- 1. Organic Chemistry by Morrison and Boyd; Pearson Education India; 7th edition (2010)
- 2. Organic Chemistry vol 1 by Finar; Pearson Education India; 6th edition (2002)
- 3. Stereochemistry of organic compounds by Eliel., Wiley Publisshers, 2008.

- Organic chemistry by Morrison and Boyd., PHI, 6th edition, 2008.
 Organic chemistry Concept and Application by Dr. Jagdamba Singh, 6th edition, Pragati Prakashan publisher, 2008.

UNITS	TOPICS	LECTURE	MODE OF
		поско	TEACHING
UNIT I : Polynuclea	ir hydrocarbons and their derivatives	-	
	Definition, types, proper examples for Isolated and condensed systems, isomerism exhibited by stilbene, isolation of Naphthalene from coal tar.	2	ICT
	Preparation, properties, uses and structural elucidation Naphthalene, Anthracene and Phenanthrene.	8	Lecture
	Derivatives of naphthalene an antharacene.	2	Seminar/Assignment /tutorial
Unit II : Molecular r	rearrangements and Heterocyclic compounds with o	ne hetero ato	om
Molecular rearrangements	Detailed Reaction, mechanism and uses of the following rearrangements: i) Pinacol-Pinacolone, ii) Hofmann, iii) Curtius, iv) Benzil - Benzylic acid, v) Claisen, vi) Benzidine, vii) Beckmann, viii) Fries, ix)Wagner - Meerwin	7	Lecture, ICT, Assignment, discussion, problem solving and library class
Heterocyclic compounds with one hetero atom	Preparation, properties and structure of pyrrole, furan and thiophene, pyridine, quinoline, isoquinoline and indole.	5	Lecture, seminar, discussion and library class
Unit III: Alkaloids	and Terpenoids		
	Definition, occurrence, extraction, types of Alkaloids and Terpenoids, isoprene rule and special isoprene rule-suitable examples.	2	ICT
	Structural elucidation of Coniine, Piperine, Nicotine and Citral, Menthol and preparation and applications of α -Terpeniol, Dipentene, Limonene.	8	Lecture
	Naming, drawing the structures and identifying the types of alkaloids and terpenoids.	2	Quiz/Seminar/Assig nment
Unit IV : Aminoacio	ls, proteins, enzymes and nucleic acids		
	Classification, synthesis, properties of glycine alanine and phenyl alanine and definition classification and properties of proteins	3	Lecture
	Color reactions of proteins	1	Demonstration and lab session
	Primary and secondary structures of proteins	1	Video

	56			
	Action of heat on α , β , γ -amino acids, Zwitte ion, isoeloectric point, essential amino acid definition, sources and examples.	er 1s	1	Seminar/assignment /tutorial
Enzymes	Definition, classification, role of enzymes is biological systems, examples of a few reaction of various classes of enzymes.	3	Lecture, seminar, quiz	
Nucleic acids	Nucleosides, nucleotides, RNA and DNA general structure.	-	3	Lecture and assignment
Unit V : Tautomeris	m and Polymers			
Tautomerism	Definition – conditions of tautomerism – prototropy and anionotropy, types of tautomerism: a) Keto – enol, b) Nitro – acinitro c) Nitro – isonitroso, d) Lactam – lactim e) Quinone monoxime – p-nitroso phenol.	6		Lecture, ICT, Discussion and assignment
Polymers	Definition of monomer, polymer, repeating units, degree of polymerization,t ypes of polymers (classification on different basis), polymerization reactions (addition, condensation), mechanisms, differences between addition polymers and condensation polymers, preparation, and uses of some individual polymers, polyethylene (HDPE and LDPE), polypropylene, polystyrene, PVC, PMMA, nylon, polyesters (PET), epoxy resin.	6		Lecture, Videos, Demonstration class and seminar

Course	Prog	gramr	ne Ou	tcom	es (PC	Ds)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean
Outco															scores of
mes															COs
(COs)	PO PO PO PO PO PO PO PSO PSO PSO PSO PSO														
	1 2 3 4 5 6 7 1 2 3 4 5 6 7														
CO1	4 4 3 3 3 4 4 4 4 3 3 3 3 3											3.43			
CO2	4	3	3	4	4	3	3	3	4	3	3	3	4	4	3.43
CO3	4	3	3	4	3	3	4	4	3	4	3	4	3	3	3.43
CO4	4	3	3	4	4	3	3	3	4	3	3	3	4	4	3.43
CO5	4	4 3 3 4 4 3 3 4 3 3 4 4												4	3.43
							Me	ean Ov	erall S	core					3.43

Result: The Score for this Course is 3.43 (High Relationship)

Course Designer:

Mrs. P. ROOPAKALYANI Dr. R. MUTHUSELVI

Programme : B.Sc ChemistryPart III: (Core) Major paper 14Semester: VIHours: 4 / W, 60 / SSub. Code: C63Credits : 4TITLE OF THE PAPER: PHYSICAL CHEMISTRY -2

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role Play/Discussion/Tutorial/Problem	ICT							
			solving session/Quiz/videos/Demonstration class(Library								
1			session is conducted after the class hours).								
1	4	2	1		1						
PREAMBLE: The objective of the course is to make the student to understand the fundamentals of											
electrochemistry, Ionic equillibria and basic ideas in photochemistry and principles of group theory.											
COURSE O	UTCON	ME:At the	end of the Semester, the students will be able to	Unit	Hrs / S						
UNIT 1 CO1 describe conductance, significance of Ostwald's dilution law, Kohlrausch 1 12											
law and applications of conductivity measurements.											
UNIT 2 CO	2: expla	in the con	cept of hydrolysis constant, principles of buffer action and	2	12						
applications	of comm	non ion effe	ect and solubility product.								
UNIT 3 CC)3 : expla	ain the cor	ncept of electrode potential ,electro chemical cells and	3	12						
applications	emf me	asurements	S.								
UNIT 4 CO	D4 : dem	nonstrate t	he basic terminologies and laws of of photochemistry,	4	12						
Photochemic	al reacti	ons and ph	oto chemical processes								
UNIT 5 CO5 : demonstrate the basic ideas of symmetry operations, point group, matrix 5 12											
representatio	ons and c	onstructior	n of group multiplication tables.								

Unit – I (12hrs)

Electrochemistry-I

Conductance:

Definition and determination – specific, equivalent and molecular conductance – variation of equivalent conductance with dilution and its limiting values.

Strong and weak electrolytes: theory of strong electrolytes – Debye-Huckel-Onsager equation (no derivation) Ostwald's dilution law and its applications

Kohlrausch's law of ionic mobilities and its applications. Absolute velocity of ions and its determination – Transport number of ions and their determination.

Applications of conductivity measurements – degree of dissociation – solubility of a sparingly soluble salt - degree of hydrolysis – basicity of acids – conductometric titrations.

Unit – II (12hrs)

Ionic Equilibria:

Common ion effect and solubility product – quantitative study and their applications.

Hydrolysis: definition – nature of solutions of salts undergoing hydrolysis – degree of hydrolysis (α) – hydrolysis constant (K_h) – their experimental determination and derivation of these values for different salt solutions – based on K_w, K_a and K_b calculation involving hydrolytic constants.

Buffer solution – definition –types – theory of buffer action and applications – Henderson – Hasselbalch equation.

Unit- III (12hrs)

Electrochemistry – II

Electrode potentials and electrochemical cells.

single electrode potential – oxidation and reduction potentials. Thermodynamics and electromotive force (emf) – relation between chemical and electrical energies – calculation of ΔG , ΔS and ΔH of cell reaction. Calculation of emf. Nernst equation – standard electrode potential and its characteristics – calculation of equilibrium constant.

Electrochemical cells:

Chemical and voltaic cells: Definition – cell reaction and representations of electrodes and cells – emf of cell – conventions regarding signs of emf – calculation of cell emf from single electrode potentials. Calculation of cell emf with the aid of Nernst equation. Experimental determination of emf of cells. Measurement of single electrode potentials –electrochemical series – liquid junction potential and salt bridge.

Concentration cells: Definition and calculation of emf - types of concentration cells – concentration cells with and without transference.

Commercial cells: Primary and secondary cells -lead storage cell, Ni-Cd cell, fuel cell.

Applications of emf measurements.

Determination of solubility and solubility product of sparingly soluble salts. Determination of pH - using Hydrogen electrode, glass electrode, quinhydrone electrode. Determination of valency of ion. Potentiometric titrations – acid-base, redox, precipitation and complexometric titrations. Determination of transport number.

Unit – IV(12hrs)

Photochemistry:

Photochemical reactions – definition - comparative study of thermal and photochemical reactions – laws of photochemistry: Lambert and Beer's laws, Grotthus-Drapper law, Stark-Einstein law – quantum efficiency and its determination – consequences of light

Absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes.

Photochemical processes: Jablonski diagram - Kinetics of photochemical reactions.

- i) Gaseous reactions: Hydrogen-chlorine reaction, decomposition of HI
- ii) Reactions in liquid phase (solutions) isomeric transformation of maleic to fumaric acid polymerization of anthracene.
- iii) Photochemical equilibrium flash photolysis photosensitisation chemiluminescence.

Unit – V(12hrs)

Group theory:

Symmetry elements and symmetry operations – definition of a group, sub-group – relation between orders of a finite group and its sub-group – Similarity transformation, Point symmetry group, Schonflies symbols – representation of groups by matrices [statement and utility only, without proof]. Deduction group multiplication table : C2v, C3v example H_2O , NH_3 .

TEXT BOOKS

1. Principles of Physical Chemistry by Puri, Sharma and Pathania - Vishal Publishing Co.; 46^{th} edition

2. Group theory by Gopinathan Vishal publishing Co 2nd (reprint) edition

3. Group theory and its application in chemistry by K.V.Raman., Tata Mc Graw Hill, 1990.

4. Thermodynamics by J.C. Kuriacose and Rajaram, Pearson Edn., 2013.

5. Arimurai Iyarpu Vethiyal by Sudha soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

References:

- 1. Physical chemistry by Peter Atkins., Oxford Univ Press., 2017.
- 2. A text book of physical chemistry by K. L. Kapoor, Vol 6, 2nd edition.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1: Ele	ectrochemistry I		
	Debye Huckel onsagar equation, Ostwalds' dilution law, Kohlrausch's law, Variation of conductance with dilution, Types of conductance, Strong and weak electrolyte	7	Lecture
	Calculating the conductance of weak electrolytes using Kohlrausch's law	2	Problem solving
	Transport number determination Applications of conductivity measurements	1 2	ICT
UNIT 11 Ic	onic Equlibria		_
	Common ion effect, Solubility product, Hydrolysis Applications of common ion effect, Applications of solubility product, Buffer action	7 3	Lecture Seminar, Demo
	Experimental determination of hydrolysis constant, Applications of buffer action	2	ICT
UNIT III	Electrochemistry-II		_
	Single electrode potential, Oxidation and reduction potentials, Thermodynamics and electromotive force, Nernst equation, Types of electrodes, Chemical and voltaic cells	7	Lecture
	electrochemical series, Concentration cells with and without transference	3	Lecture and seminar
	Calculation of emf with the aid of Nernst equation, Measurement of single electrode potential	2	Problem solving
	Commercial cells, Applications of emf measurements	3	ICT
UNIT IV	Photochemistry		
	Comparative study of thermal and Laws of Photochemistry, Determination of Quantum efficiency, Kinetics of photochemical reactions, Flash photolysis, Photosensitisation, Chemiluminescence	9	Lecture
	Photophysical processes- Fluorescence and Phosphorescence	3	ICT
UNIT V Gro	oup theory		
	Types of groups, Point groups Construction of multiplication tables, Similarity transformation, Representation of group by matrices	7	Lecture
	Identifying Point groups	2	Peer Teaching
	Symmetry elements and operations	3	ICT

Course	Prog	gramn	ne Ou	tcome	s (PO	s)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean
Outcom															
es															COs
(COs)	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	03	O4	05	06	O7	
CO1	5	4	3	4	4	4	4	5	4	4	4	4	4	3	4.00
CO2	4	4	4	4	3	4	5	4	5	4	3	4	4	3	3.80
CO3	4	4	3	3	3	4	5	4	5	4	3	4	4	3	3.78
CO4	4	4	3	3	3	4	5	4	5	4	3	4	4	3	3.78
CO5	4	5	4	3	3	3	4	4	5	4	3	4	4	3	3.78
							Mean	n Over	all Sco	ore					3.83

Result: The Score for this Course is 3.83 (High Relationship)

Course Designer :

Dr. K. VIGNESWARI Dr. N. MANONMANI Programme : B.Sc Chemistry Semester : V Sub. Code : EC51

Part III: Elective paper 1 Hours : 5 / W, 75 / S Credits : 5

TITLE OF THE PAPER: ELECTIVE 1 – ANALYTICAL TECHNIQUES

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role	ICT							
			play/Discussion/Tutorial/Problem solving								
			session/Quiz/videos/Demonstration class(Library session								
			is conducted after the class hours).								
	5	3	1	1							
PREAMB	LE: The	objective	of the course is to make the student understand the basic	c conce	epts of						
different types of chromatography, their applications, the basic principles of Infrared, Raman											
UV, PMR, ESR, Mass and ¹³ C spectroscopy.											
COURSE OUTCOME: At the end of the Semester, the students will be able to Unit Hrs S											
UNIT 1 C	CO1: ex	xplain the	basic concepts of chromatography, its classification, the	1	15						
techniques	of colum	nn and thin	layer chromatography & their applications.								
UNIT 2 0	C O2 : ex	plain the	basic concepts, techniques of Paper and ion exchange	2	15						
chromatog	raphy and	d the basic	concepts of Gas Chromatography & HPLC.								
UNIT 3	CO3 : d	emonstrate	e the basic concepts of spectroscopy, IR and Raman	3	15						
spectroscop	by and th	eir applica	tions in structural diagnosis.								
UNIT 4 CO	04: dem	onstrate th	e basic principles in UV and PMR spectroscopy.	4	15						
UNIT 5 C	05: dem	onstrate th	e basic concepts of ¹³ C NMR, ESR and Mass spectroscopy.	5	15						

Unit- I: (15hrs) CHROMATOGRAPHY

Definition of chromatography, mobile phase and stationary phase. Classification of chromatography. Principles of adsorption and partition chromatography.

Column Chromatography: solid stationary phase – adsorbent –requirement of a good adsorbent – examples –liquid stationary phase – solid support- solvent mobile phase – requirement of a good solvent - Preparing a column for chromatography - Separation of a mixture of several components using adsorption column chromatography – development – identification of components - elution techniques – factors affecting column efficiency – applications of column chromatography.

Thin Layer Chromatography – adsorption and partition – preparation of plate – application of separating mixture – developing chambers – development of plate – identification of components – Rf value – factors affecting Rf value – Applications of TLC.

Unit – II (15Hrs)

Paper Chromatography – type of paper used – various methods of development (ascending, descending and radial) – Rf value – factors affecting Rf value – identification of components – applications of paper chromatography – Separation of amino acids by Paper chromatography-TLC is superior to other methods of chromatography.

Ion exchange chromatography – cation exchangers – anion exchangers – mode of their action – method of separation – separation of chloride and bromide ions – separation of zinc and magnesium ions – separation of cobalt and nickel ions. – other applications of ion exchange chromatography

Gas chromatography and HPLC – elementary idea only.

Unit – III (15 Hrs) SPECTROSCOPY

Regions of electromagnetic spectrum – parameters of electromagnetic radiation – molecular spectroscopy – Born- Oppenheimer approximation – relative energies required for rotational, vibrational, electronic transitions.

Infra red spectroscopy - Introduction – principle – types of stretching and bending vibrations. Vibrational frequency- factors influencing vibrational frequencies - instrumentation - simple problems involving identification of organic compounds from characteristic absorption bands. functional group detection – fingerprint region – study of hydrogen bond.

Raman Spectroscopy - Rayleigh and Raman scattering- stoke's and anti-stoke's lines. Complementation of Raman and IR spectroscopy. Application - mutual exclusion principle – structural diagnosis

Unit – IV(15 Hrs):

UV spectroscopy: Instrumentation - Frank-Condon principle- predissociation. Types of electronic transitions, chromophore, auxochrome, λ_{max} and intensity of absorption bands, factors influencing λ_{max} and ϵ . identification of conjugation – calculation of λ_{max} for dienes, α , β -unsaturated carbonyl compounds and aromatic compounds

PMR spectroscopy: Principle of nuclear magnetic resonance – Instrumentation - number of signals – equivalent and non-equivalent protons - shielding mechanism – chemical shift – peak area and proton counting- spin-spin coupling – coupling constant (J) – splitting of signals – NMR spectrum of ethanol – low and high resolution.

Unit – V: (15 Hrs)

C¹³ NMR spectroscopy – simple treatment.

ESR spectroscopy: Theory – selection rule for transition – hyperfine splitting – ESR spectra of simple radicals, hydrogen and methyl radicals.

Mass spectroscopy: Instrumentation – Basic principles of mass spectroscopy, molecular ion peak, base peak, isotopic peak and meta stable peak – nitrogen rule and ring rule. Mass spectrum of simple organic compounds(acetaldehyde, ethyl alcohol, methyl amine and toluene). McLafferty rearrangement.

Textbooks

1. Text Book of Organic Chemistry by P.L.Soni ; Sultan Chand &Sons 29th edition ; 2012

- 2. Analytical Chemistry by Gopalan et al ; Sultan Chand & Sons (2013)
- 3. Analytical spectroscopy by G.R.Chatwal, Himalaya Publishing House, 1st edition, 1996.
- 4. Specrtoscopy by B.K.Sharma, Goel Publishing House, 10th edition, 1993.

References:

- 1. Instrumental methods of Chemical Analysis by B.K.SharmaKrishna Prakashan Media Pvt Ltd 1/e edition (2011)
- 2. Fundamentals of Molecular spectroscopy by Colin.N.Banwell and Elaine.M. Mc cash, 4th edition, Mc Graw Hill Edn (Ind) Pvt Ltd, 2016.
- 3. Elementary of spectroscopy by Gupta, Kumar and Sharma., Pragati Prakasan, 10th edition, 1995.
- 4. Analytical chemistry by Skoog and West, Holler, HBJ publisher, 6th edition, 1992

UNIT 1: CHROMATOGRAPHY 100083 Preparation of column, TLC plates and separation of components. 4 ICT Basic principles of chromatography, classification, basic 9 Lecture terminologies used, separation techniques of column and thin layer 9 Lecture chromatography, R value and its calculation. Applications of Chromatography. 2 Seminar UNIT 1: Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper 2 Seminar and Assignment Basic principles of Paper chromatography, R value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT II SPECTROSCOPY Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & solving solving Solving Basic principles of molecular spectroscopy. Instrumentation of PMR and UV spectroscopy. 3 ICT ICT UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Spectra. Fran	UNITS	TOPIC	LECTURE	MODE OF
OTT Preparation of column, TLC plates and separation of components. 4 ICT Basic principles of chromatography, classification, basic terminologies used, separation techniques of column and thin layer chromatography, R, value and its calculation. 9 Lecture UNIT 11 Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper 2 Seminar UNIT 11 Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper 2 Seminar Seminar UNIT 11 Various methods of development of paper chromatography. 10 Lecture Basic principles of Paper chromatography, Rr value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT III SPECTROSCOPY 7 Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Punctional group detection and solving simple problems in IR 2 Group discussion & Problem solving UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Iacture solving spectroscopy. 3 ICT UNIT IV Types of clectronic transit	LINIT 1.	СНВОМАТОСВАРНУ	HOUKS	IEACHING
Inspiration of components, The principles of all operation of components. 9 Lecture Basic principles of chromatography, classification, basic terminologies used, separation techniques of column and thin layer chromatography, Rr value and its calculation. 9 Lecture Applications of Chromatography. 2 Seminar UNIT 11 Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper 2 Seminar and Assignment 3 ICT Chromatography and ion exchange chromatography. Rr value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography, and HPLC. 10 Lecture UNIT III SPECTROSCOPY Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & Problem solving UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Isplicing of signals, NMR of ethanol. 3 Problem solving session UNIT IV Types of signals, NMR of ethanol. 10 Lecture Viring apprecta		Prenaration of column TLC plates and separation of components	4	ICT
Land principles used, separation techniques of column and thin layer chromatography, R value and its calculation. 3 Lecture Applications of Chromatography. 2 Seminar UNIT 11 Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper Chromatography and ion exchange chromatography. 2 Seminar and Assignment Basic principles of Paper chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT 11 SPECTROSCOPY 11 Lecture Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT UNIT 11 SPECTROSCOPY 3 ICT Basic principles of molecular spectroscopy, IR and Raman spectroscopy 9 Lecture UNIT 11 Spectroscopy 3 ICT UNIT 11 Spectroscopy 3 ICT UNIT 11 Spectroscopy 10 Lecture UNIT 11 Spectroscopy 11 ICT UNIT 11 Spectroscopy 12 Group discussion & Problem solving Basic principles of molecular spectroscopy, IR and Raman spectroscopy 9 <td< td=""><td></td><td>Basic principles of chromatography classification basic</td><td>9</td><td>Lecture</td></td<>		Basic principles of chromatography classification basic	9	Lecture
chromatography, Ri value and its calculation. Applications of Chromatography. 2 Seminar UNIT 11 Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper 2 Seminar Chromatography and ion exchange chromatography. 2 Seminar Basic principles of Paper chromatography, Ri value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT III SPECTROSCOPY Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & Problem solving Basic principles of molecular spectroscopy, IR and Raman spectroscopy. 9 Lecture UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Max, Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol. 9 Lecture UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Lect		terminologies used separation techniques of column and thin layer	,	Lecture
Applications of Chromatography. 2 Seminar UNIT 11 Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper 2 Seminar Applications of paper chromatography explanation. 3 ICT Applications of paper chromatography. 2 Seminar and Assignment Basic principles of Paper chromatography, Rr value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT III SPECTROSCOPY Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & Solving Solving Basic principles of molecular spectroscopy, IR and Raman spectroscopy 9 Lecture solving Veroblem solving INIT IV Types of electronic transitions, Principle of PMR spectroscopy, and the industry of signals in NMR spectra. 3 ICT Instrumentation of PMR and UV spectroscopy. 3 ICT Section INIT IV Types of electronic transitions, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, session 9 Lecture <td< td=""><td></td><td>chromatography $\mathbf{R}_{\mathbf{s}}$ value and its calculation</td><td></td><td></td></td<>		chromatography $\mathbf{R}_{\mathbf{s}}$ value and its calculation		
UNIT 11 Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper 2 Seminar and Assignment Basic principles of Paper chromatography, R _f value and the factors affecting it, ion exchange chromatography, R _f value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT III SPECTROSCOPY 2 Seminar and Assignment UNIT III SPECTROSCOPY 2 Group discussion & Paper chromatography, R _f value and the factors affecting frequencies. 10 Lecture Functional group detection and solving simple problems in IR 2 Group discussion & Paper chromatography and PLC. 10 UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Instrumentation of PMR and UV spectroscopy. 3 ICT Session Amax. Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol. 9 Lecture UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy. 3 ICT Sepera of simple molecules. ESR spectroscopy, theory, selection rule, hyperfine splitting, Other conten		Applications of Chromatography	2	Seminar
Various methods of development of paper chromatography and separation of components. Gas chromatography explanation. 3 ICT Applications of paper Chromatography and ion exchange chromatography. 2 Seminar and Assignment Basic principles of Paper chromatography, R _I value and the factors affecting it, ion exchange chromatography, R _I value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT III SPECTROSCOPY Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & Problem solving 4 UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Calculation of λ _{max} , Finding out the number of signals in NMR spectra. 3 Lecture VINIT V Instrumentation of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol. 3 ICT UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules. 3 ICT UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR spectrum of simple organic compounds, ESR of hydrogen and wass spectrum of simple organic compounds, ESR of hydro	LINIT 11	Approacions of enformatography.	2	Seminar
Name Source (Components) (Gas chromatography explanation. Source (Components) (Gas chromatography) (Gas Chromatography) (Gas Chromatography) (Gas Chromatography) (Gas Chromatography). Source (Gas Chromatography) (Gas Chromatog		Various methods of development of paper chromatography and	3	ICT
Application of orgaper 2 Seminar Application of paper 2 Seminar Basic principles of Paper chromatography, Rr value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT III SPECTROSCOPY Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & Problem solving Basic principles of molecular spectroscopy, IR and Raman spectroscopy 9 Lecture UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Calculation of λ_{max} , Finding out the number of signals in NMR spectra. 3 Problem solving session sessession sessis sectroscopy, theory, selection rule, hyperfine spli		separation of components. Gas chromatography explanation	5	101
Chromatography and ion exchange chromatography. 2 Ortimital and Assignment Basic principles of Paper chromatography, Rr value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT III SPECTROSCOPY Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & Problem solving Basic principles of molecular spectroscopy, IR and Raman spectroscopy 9 Lecture UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Calculation of λ_{max} , Finding out the number of signals in NMR spectra. 3 Problem solving solving setting setting setting setting or signals in NMR spectra. 9 Lecture UNIT IV Types of signals, NMR of ethanol. 10 Lecture Lecture VINIT V Instrumentation of Mass, Basic concept of mass spectroscopy, splitting of signals, NMR of ethanol. 10 Lecture UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, splitting, Other contents of mass spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, 13C NMR spectroscopy 10 Lecture		Applications of paper	2	Seminar
Chronatography and for exchange chromatography. Ansignment Basic principles of Paper chromatography, Rt value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC. 10 Lecture UNIT III SPECTROSCOPY Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & Problem solving Basic principles of molecular spectroscopy, IR and Raman spectroscopy 9 Lecture UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Instrumentation of PMR and UV spectroscopy. 3 ICT session Frank Condon principles of UV, pre-dissociation, factors affecting petiting of signals, NMR of ethanol. 9 Lecture UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR 3 ICT ICT Spectra of simple molecules. ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy 10 Lecture UNIT V Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial Tutorial		Chromatography and ion exchange chromatography	2	and
Basic principles of Paper chromatography, R_f value and the factors affecting it, ion exchange chromatography, ion exchangers, Gas chromatography and HPLC.10LectureUNIT III SPECTROSCOPYRegions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies.4ICTFunctional group detection and solving simple problems in IR spectroscopy2Group discussion & Problem solvingBasic principles of molecular spectroscopy, IR and Raman spectroscopy9LectureUNIT IVTypes of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.10LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, theory, theory, table or spectroscopy10Lecture		Chromatography and for exchange enromatography.		Assignment
Basic principles of raper enromatography, Ri value and the factors of the formatography and HPLC. 10 Exercise of the factors		Basic principles of Paper chromatography $\mathbf{R}_{\mathbf{s}}$ value and the factors	10	Lecture
International operation of the section of the section operation of the section operation operat		affecting it ion exchange chromatography, ion exchangers Gas	10	Lecture
UNIT III SPECTROSCOPYICTRegions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies.4ICTFunctional group detection and solving simple problems in IR2Group discussion & Problem solvingBasic principles of molecular spectroscopy, IR and Raman spectroscopy9LectureUNIT IVTypes of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting nethanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy.10LectureMass spectrum of simple organic compounds, ESR of hydrogen and cutter disclared2Tutorial		chromatography and HPI C		
Citrum of DecretoriesRegions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies.ICTFunctional group detection and solving simple problems in IR2Group discussion & Problem solvingBasic principles of molecular spectroscopy, IR and Raman spectroscopy9LectureUNIT IVTypes of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting nechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and cutted and and cutteries2Tutorial	UNIT III	SPECTROSCOPV		
Regions of electromagnetic spectrum, IR instrumentation, spectral stretching frequencies. 4 ICT Functional group detection and solving simple problems in IR 2 Group discussion & Problem solving Basic principles of molecular spectroscopy, IR and Raman spectroscopy 9 Lecture UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Calculation of λ _{max} , Finding out the number of signals in NMR spectra. 3 Problem solving session Frank Condon principles of UV, pre-dissociation, factors affecting λ _{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol. 9 Lecture UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR 3 ICT Mass spectrus of mass spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Lecture	orun m			
Image: Stretching frequencies. Functional group detection and solving simple problems in IR 2 Group discussion & Problem solving Basic principles of molecular spectroscopy, IR and Raman spectroscopy 9 Lecture UNIT IV Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy. 3 ICT Calculation of λmax, Finding out the number of signals in NMR spectra. 3 Problem solving session Frank Condon principles of UV, pre-dissociation, factors affecting λmax, Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol. 9 Lecture UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR 3 ICT Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial		Regions of electromagnetic spectrum. IR instrumentation, spectral	4	ICT
Functional group detection and solving simple problems in IR2Group discussion & Problem solvingBasic principles of molecular spectroscopy, IR and Raman spectroscopy9LectureUNIT IVTypes of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTMass spectrum of simple organic compounds, ESR of hydrogen and umathed solved2Tutorial		stretching frequencies.		101
Instrumentation of pMR and UV spectroscopy, IR and Raman spectroscopy9LectureUNIT IVTypes of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting wamax, Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and restrict are directed.2Tutorial		Functional group detection and solving simple problems in IR	2	Group
Image: sector of the sector				discussion
Image: solvingSolvingBasic principles of molecular spectroscopy, IR and Raman9LecturespectroscopyUNIT IVTypes of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, 1 ³ C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and methed redical2Tutorial				& Problem
Basic principles of molecular spectroscopy, IR and Raman spectroscopy9LectureUNIT IVTypes of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and uter adical2Tutorial				solving
spectroscopy 1 <		Basic principles of molecular spectroscopy, IR and Raman	9	Lecture
UNIT IVTypes of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and reathed real and the splitting of signals2Tutorial		spectroscopy		
Types of electronic transitions, Principle of PMR spectroscopy, Instrumentation of PMR and UV spectroscopy.3ICTCalculation of λ_{max} , Finding out the number of signals in NMR spectra.3Problem solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and method metical2Tutorial	UNIT IV		•	
Instrumentation of PMR and UV spectroscopy.Instrumentation of PMR and UV spectroscopy.Calculation of λ_{max} , Finding out the number of signals in NMR3spectra.3Frank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9UNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, 1 ³ C NMR spectroscopy10Mass spectrum of simple organic compounds, ESR of hydrogen and method medical2		Types of electronic transitions, Principle of PMR spectroscopy,	3	ICT
Calculation of λ_{max} , Finding out the number of signals in NMR3Problem solving sessionspectra.Frank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and reathed a dired2Tutorial		Instrumentation of PMR and UV spectroscopy.		
spectra.solving sessionFrank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and methol method2Tutorial		Calculation of λ_{max} , Finding out the number of signals in NMR	3	Problem
SessionSessionFrank Condon principles of UV, pre-dissociation, factors affecting λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.9LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, 13 C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and methyl modical2Tutorial		spectra.		solving
Frank Condon principles of UV, pre-dissociation, factors affecting9Lecture λ_{max} , Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol.10LectureUNIT VInstrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules.3ICTESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy10LectureMass spectrum of simple organic compounds, ESR of hydrogen and method reading2Tutorial				session
Amax, Identification of conjugation, Principles of NMR, shielding mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol. Instrumentation of signals, NMR of ethanol. UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules. 3 ICT ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Lecture Mass spectrum of simple organic compounds, ESR of hydrogen and method and isolutional 2 Tutorial		Frank Condon principles of UV, pre-dissociation, factors affecting	9	Lecture
mechanism, Chemical shift, spin-spin coupling, proton counting, splitting of signals, NMR of ethanol. Instrumentation of signals, NMR of ethanol. UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR spectra of simple molecules. 3 ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial		λ_{max} , Identification of conjugation, Principles of NMR, shielding		
Splitting of signals, NMR of ethanol. Instrumentation of Mass, Basic concept of mass spectroscopy, ESR 3 ICT Instrumentation of Mass, Basic concept of mass spectroscopy, ESR 3 ICT spectra of simple molecules. 10 Lecture ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Lecture Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial		mechanism, Chemical shift, spin-spin coupling, proton counting,		
UNIT V Instrumentation of Mass, Basic concept of mass spectroscopy, ESR 3 ICT spectra of simple molecules. ICT ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Lecture Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial		splitting of signals, NMR of ethanol.		
Instrumentation of Mass, Basic concept of mass spectroscopy, ESR 5 IC1 spectra of simple molecules. IC1 ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Lecture Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial	UNIT	Instrumentation of Mass. Desis concert of mass spectroscopy, ESP	2	ICT
ESR spectroscopy, theory, selection rule, hyperfine splitting, Other contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Lecture Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial		Instrumentation of Mass, Basic concept of mass spectroscopy, ESK	3	ICI
ESR spectroscopy, meory, selection rule, hyperfine splitting, Other 10 Lecture contents of mass spectroscopy, ¹³ C NMR spectroscopy 10 Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial		Spectra of simple molecules.	10	Lastura
Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial		Los specific scopy, meory, selection rule, hyperfine splitting, Other	10	Lecture
Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial		contents of mass spectroscopy, convirt spectroscopy		
Mass spectrum of simple organic compounds, ESR of hydrogen and 2 Tutorial				
		Mass spectrum of simple organic compounds, ESR of hydrogen and	2	Iutorial

Course	Prog	gramn	ne Ou	tcome	es (PO	s)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean scores
Outcomes														of COs	
(COs)	POPOPOPOPOPSPSPSPSPSPS											PS			
	1	2	3	4	5	6	7	01	02	03	04	05	06	07	
CO1	4	5	4	3	3	4	4	4	5	3	3	4	4	3	3.79
CO2	4	5	4	3	3	4	4	4	5	3	3	4	4	3	3.79
CO3	4	5	4	3	4	4	4	4	5	3	3	4	4	4	3.92
CO4	4	5	4	3	4	4	4	4	5	3	3	4	4	4	3.92
CO5	4 5 4 3 4 4 4 5 3 4 4 4											4	3	3.86	
						N	/lean (Overal	1 Score	e					3.86

Result: The Score for this Course is 3.86 (High Relationship)

Course Designer: Dr. J. ARUL MOLI Dr. R. PARIMALAM Programme : B.Sc Chemistry Semester : V Sub. Code : EC54

Part III: Elective Paper I Hours : 5 / W, 75 / S Credits : 5

TITLE OF THE PAPER: BIOCHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library session is conducted after the class hours).	ICT							
	5	3	1		1						
PREAMB	LE: The	e objective	of the course is to make the concepts of carbohydrates,	amino	acids						
and proteins, lipids, nucleic acids and enzymes.											
COURSE	OUTCO	ME: At t	ne end of the Semester, the students will be able to	Unit	Hrs / S						
UNIT 1 CO1: CARBOHYDRATES											
explain the basic concepts of carbohydrates and Glycolysis, TCA cycle, energy yield,											
HMP pathy	vay.										
UNIT 2 CO	02: AM	INO ACII	DS AND PROTEINS	2	15						
demonstrat	e the bas	ic concept	s of amino acids, catabolism of amino acids and urea cycle.								
UNIT 3 CO	03: LII	PIDS		3	15						
describe the	e basic c	oncepts, i	mportance of fatty acids and their functions.								
UNIT 4 CO	04: NU(CLEIC AC	CIDS	4	15						
explain N	lucleosid	es and	nucleotides, Watson and Crick model, Replication,								
Transcription, Mutations and mutants, DNA repair, DNA sequencing and PCR,											
Recombinant DNA technology.											
UNIT 5 C	O5: ENZ	YMES		5	15						
demonstrat	demonstrate the properties and action of enzymes										

UNIT I : CARBOHYDRATES

Classification – reducing and non-reducing sugars, Occurrence, structure and biological importance of mono, di and polysaccharide (esp. starch, glycogen and cellulose). An introduction to mucopolysaccharide (proteoglycon). Reaction of Carbohydrates due to the presence of hydroxyl, aldehyde and ketone groups. Glycolysis, TCA cycle, energy yield, HMP pathway.

UNIT II: AMINO ACIDS AND PROTEINS

Classification and structure of amino acids based on structure - Essential amino acids - structure of standard amino acid as zwitter ion in aqueous solution - Chemical synthesis of poly peptide chain and solid phase polypeptide synthesis. Biologically important peptides-structure and functions (esp. insulin, glutathione, vasopressin) – Clasification – Properties, 3D structure – determination of amino acid sequence , denaturation, renaturation of protein molecules. Separation and purification of proteins – dialysis – Gel filtration – electrophoresis – Catabolism of amino acids: Transamination, oxidative deamination, decarboxylation – Urea cycle.

UNIT III LIPIDS

Introduction, definition of fatty acids, Classification, saturated fatty acids, unsaturated fatty acids, EFA, structures, properties of fatty acids – Hydrolysis - acid number and saponification number, auto-oxidation(Rancidity) –Addition reactions – iodine number, Polenske number Reichert – Meissl number, acetyl number Structure and function of prostaglandins, tri-acyl glycerol. Structure and functions of phospholipids (esp.lecithin cephalin, phospotidyl inositol and phospotidyl serine) spingomyelin, plasmologens. Structure and function of glycolipids, cholesterol.

65

UNIT IV NUCLEIC ACIDS

Nucleosides and nucleotides – purine and pyrimidine bases. Nucleic acids – DNA and RNA, Watson and Crick model, Replication, Transcription, Mutations and mutants, DNA repair, DNA sequencing and PCR, Recombinant DNA technology.

UNIT V ENZYMES

Classification and properties- specificity, factors influencing enzyme action, Mechanism of enzyme action, Lock and key model and induced fit models. Coenzymes- Cofactors – Prosthetic groups and importance of them (TPP, NAD, NADP, FAD, ATP) Mechanism of inhibition (Competitive, non & uncompetitive and allosteric), Immobilization of enzymes, isoenzymes.

TEXT BOOKS

1. Biochemistry, Dr. Ambika Shanmugam, Wolters Kluwer India Pvt. Ltd.

2. Essentials of Biochemistry, U.Sathyanarayana and U. Chakrapani, Books and Allied(P) Ltd., 2^{nd} ed.,

REFERENCES

- 1. Fundamentals of Biochemistry, J.L.Jain 4th revised Edition, S. Chand & Company Ltd.,
- 2. Advances in Bio Chemistry, S.N. Sriharsha Sonali Publications, New Delhi.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1 CA	ARBOHYDRATES		
	Classification, reducing and non-reducing sugars, Occurrence structure. An introduction to mucopolysaccharide (proteoglycon). Reaction of Carbohydrates due to the presence of hydroxyl, aldehyde and ketone groups. Glycolysis, TCA cycle, energy yield, HMP pathway.	, 9	Lecture
	Biological importance of mono, di and polysaccharide (esp. starch, glycogen and cellulose).	. 3	Discussion
	Glycolysis, TCA cycle, energy yield, HMP pathway.	3	ICT
UNIT 11	AMINO ACIDS AND PROTEINS		
	Classification and structure of amino acids based on structure Essential amino acids, structure of standard amino acid as zwitter ion, Chemical synthesis of poly peptide chain and solid phase polypeptide synthesis. Biologically important peptides, structure and functions (esp. insulin, glutathione, vasopressin) Classification, Properties, determination of amino acid sequence denaturation, renaturation of protein molecules. Separation and purification of proteins, Catabolism of amino acids, Urea cycle.	, 10 1 , , , , , , , , , , , , , , , , , , ,	Lecture
	Essential amino acids, Biologically important peptides	2	Seminar
	3D structure of proteins	3	ICT
UNIT III L	IPIDS		
	Introduction, definition of fatty acids. Classification, saturated fatty acids, unsaturated fatty acids, EFA, structures, properties of fatty acids, Structure and function of prostaglandins, tri-acy glycerol. Structure and functions of phospholipids, spinge	10 f 1	Lecture

1	myelin, plasmologens, Structure and function of glycolipids,		
	cholesterol.		
	Importance of EFA	1	Discussion
	saturated fatty acids, unsaturated fatty acids (examples), structure and function of glycolipids, cholesterol.	4	ICT
UNIT IV NU	UCLEIC ACIDS		
	Nucleosides and nucleotides – purine and pyrimidine bases . Nucleic acids, DNA and RNA, Watson and Crick model,	7	Lecture
]	Replication, Transcription, Mutations and mutants, DNA repair DNA sequencing and PCR Recombinant DNA		
1	technology.		
]	Mutations and mutants	1	Seminar
	Watson and Crick model, Replication, Transcription, Mutations and mutants, DNA repair, DNA sequencing and PCR, Recombinant DNA technology.	7	ICT
UNIT V EN	ZYMES		
	Classification and properties- specificity, factors influencing enzyme action, Mechanism of enzyme action, Lock and key model and induced fit models. Coenzymes, Cofactors, Prosthetic groups and importance of them, Mechanism of inhibition (Immobilization of enzymes, isoenzymes.	9	Lecture
	Mechanism of enzyme action, Lock and key model and induced fit models. Coenzymes, Mechanism of inhibition (Competitive, non & uncompetitive and allosteric).	6	ICT

Course	Pro	gramr	ne Ou	tcome	es (PC	Ds)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean
Outco															scores
mes															
(COs)															
	Р	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	0	2	3	4	5	6	7	01	O2	O3	O4	05	06	O7	
	1														
CO1	4	5	4	3	4	4	4	4	4	3.93					
CO2	4	5	4	3	4	4	4	4	5	3	3	4	4	3	3.86
CO3	4	4	5	3	4	4	4	4	5	3	4	4	4	3	3.93
CO4	4	5	4	3	4	4	4	4	5	3	3	4	4	3	3.86
CO5	4 4 5 4 4 4 4 4 5 3 4 4 4 3													3	4.00
							Me	ean Ov	erall S	core					3.92

Result: The Score for this Course is 3.92 (High Relationship)

Course Designer: Dr. N. MANONMANI Dr. K. ANURADHA 67

Programme : B.Sc Chemistry Semester : V Sub. Code : EC52 Part III: Elective Paper II Hours : 5 / W, 75 / S Credits : 5

TITLE OF THE PAPER: ELECTIVE-2 FOOD CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library session is conducted after the class hours).				
	5	3	1	1			
PREAMBLE : The objectives of the course is to understand the nutritive value of food stuffs and nutraceuticals, detection of food adulteration, food additives and its restriction, food poisoning and dairy chemistry							
COURSE OUTCOME: At the end of the Semester, the students will be able to Unit							
UNIT 1 CO1 : demonstrate the nutritive value of food stuffs and nutraceuticals							
UNIT 2 CO2: explain the detection of food adulteration2					15		
UNIT 3 CO3: discuss on food additives and its restriction3					15		
UNIT 4 CO4 : demonstrate in detail about different Food Poisons 4							
UNIT 5 CO5: display an in depth knowledge of Dairy chemistry5					15		

Unit – I FOOD AND NUTRITION (15 hrs)

Food and nutrition – role of nutrients – nutritive value of food stuffs – cereals and millets, rice, wheat, pulses, nuts and oil seeds, vegetables, fruits, animal foods – meat, egg, fish. Nutraceuticals - flavour and aroma of food – cooking processes – chemistry of cooking – Principles of microwave cooking

Unit – II FOOD ADULTERATION (15 hrs)

Food adulteration – contamination – list of food items and their contaminants – detection of adulteration – by simple techniques – prevention of food adulteration.

Unit – III FOOD ADDITIVES (15hrs)

Food additives – reasons for adding additives – examples – artificial sweeteners – saccharin, cyclamate and aspartane. Food flavours – taste sensation – chemical composition of flavourings – common characteristics of flavourings- classification – synthetic flavourings – formulation of flavourings – artificial colours – restrictions in the usage of additives – emulsifying agents – leavening agents – baking powder – yeast – taste makers – MSG and vinegar.

Unit – IV FOOD POISONS (15 hrs)

Food Poisons - Sources of chemical poisons in food – Toxins naturally present in food - sources and toxic effects of: toxic minerals and metals, organic toxicants in food, toxins present in fish. Toxins from other sources – metallic toxins, pesticides and pesticide residues – contaminants of fats and oils – microbial toxins.

Unit – V : DAIRY CHEMISTRY (15 hrs)

Milk – definition – general composition of milk – constituents of milk – lipids, proteins, carbohydrates , vitamins and minerals. Physical properties of milk – colour, odour, acidity, specific gravity, viscosity and conductivity. Factors affecting the composition of milk – Pasteurization, homogenization, toning, standardization, reconstitution of milk – adulteration of milk – milk products – cream, butter, ghee, butter milk, yoghurt, curd , icecream.

TEXT BOOKS

- 1. Food Science by Sri Lakshmi; New Age International Publishers; 7th edition.
- 2. Fundamental Concepts of Applied Chemistry by Jayasree Ghosh, S.Chand & Company Ltd.,
- 3. Ancillary Chemistry for Home Science students by Thankamma Jacob.

References:

- 1. Text Book of Dairy Chemistry, D.D. Roy, P. Dinakar for ICAR, M.P. Mathur 2008.
- 2. Text Book of Preventive and Social Medicine by Park and Park; Bhanot; 23rd edition (2015).

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING					
UNIT 1: FOOD AND NUTRITION								
	Nutritive value of food stuffs	8	Discussion					
	Nutraceuticals	4	Demo with charts					
	Principles, advantages and disadvantages of microwave cooking	3	ICT					
UNIT II : I	FOOD ADULTERATION	·						
	Food adulteration	3	Lecture					
	Detection of adulterants by simple methods	10	Lab session, ICT					
	Prevention of adulteration	2	Discussion					
UNIT III :	FOOD ADDITIVES							
	Food additives	2	Discussion					
	Artificial sweeteners	2	Lecture and demo					
	Flavoring	6	ICT & Lecture					
	Restriction in usage of food additives	2	Demonstration					
	Emulsifying agents, leavening agents and taste makers.	3	Lecture					
UNIT IV :	FOOD POISONS							
	Sources of chemical poisons in food	2	Lecture					
	Toxins naturally present in food	2	Lecture, ICT & Lab Class					
	Sources and toxic effects of: toxic minerals and metals	2	Lecture and Tutorial					
	Organic toxicants in food	2	Lecture, ICT & Lab Class					
	Toxins present in Fish	1	Lecture & Video					
	Toxins from other sources- Metallic toxins	2	Lecture and Demonstration					
			Class					
	Pesticides and Pesticide residues	1	Lecture and Demonstration Class					

Contaminants of fats and oils	2	Lecture and Assignment
Microbial toxins	1	Lecture, Seminar
UNIT V : DAIRY CHEMISTRY		
Milk – definition, general composition of milk, constituents of milk, lipids, proteins, carbohydrates, vitamins and minerals.	3	Lecture, ICT & Lab Class
Physical properties of milk – colour, odour, acidity, specific gravity, viscosity and conductivity	3	Lecture, assignment & Demonstration Class
Factors affecting the composition of milk	3	Lecture & Seminar
Pasteurization, homogenization, toning standardization, reconstitution of milk	3	Lecture & Discussion
Adulteration of milk – milk products – cream, butter, ghee, butter milk, yoghurt, curd, ice cream.	3	Lecture

Course	Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)					Mean			
Outco												scores			
mes											of COs				
(COs)	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	O3	O4	05	06	O7	
CO1	4	4	4	4	3	3	5	3	4	2	4	4	4	3	3.64
CO2	5	4	4	4	4	4	3	5	4	4	4	4	4	4	4.21
CO3	4	4	4	4	4	5	5	4	4	5	4	4	3	3	4.07
CO4	4	4	3	4	3	4	4	4	4	4	4	3	3	3	3.64
CO5	4	4	3	4	3	4	4	4	4	4	4	3	4	4	3.78
Mean Overall Score										3.87					

Result: The Score for this Course is 3.87 (High Relationship)

Course Designer: Mrs. B. MARIAMMAL Dr. A. JOSEPHINE VANITHA

Programme : B.Sc Chemistry Semester : V Sub. Code : EC55

Part III: Elective Paper 2 Hours : 5 / W, 75 / S Credits : 5

TITLE OF THE PAPER: POLYMER CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role	ICT				
			play/Discussion/Tutorial/Problem solving					
			session/Quiz/videos/Demonstration class(Library	videos/Demonstration class(Library				
			session is conducted after the class hours).					
	5	3	1	1				
PREAMBL	E: The	objective	of the course is to make the student understand	the d	efinition			
classification	n with s	uitable ex	amples, bonding structure of polymers and variou	us dete	ermining			
methods of	molecu	lar mass (of polymers, kinetics and mechanism of various	polyme	erization			
reactions, di	reactions, different kinds of polymer reactions and degradation, raw material and preparation of							
industrial polymers and different polymer processing techniques								
COURSE OUTCOME : At the end of the Semester, the students will be able to Unit Hrs / S								
UNIT 1 CO	UNIT 1 CO1 : describe the chemistry behind structure and bonding of polymers and 1 15							
various methods of determining the molecular mass of polymers.								
UNIT 2 CO2 : characterize the type of mechanisms and kinetics involved in synthesis 2 15								
of polymers.								
UNIT 3 CO3: exhibit knowledge of various polymer reactions and methods of 3 15								
degradation.								
UNIT 4 CO4: discuss the raw materials and methods of preparing industrially 4 15								
important polymers an elastomers.								

UNIT 5 CO5: analyze the additives involved in processing polymers and various 5 15 processing techniques of polymers.

Unit – I INTRODUCTION TO POLYMERS

Monomers, oligomers, polymers and their characteristics – classification of polymers: natural, synthetic, linear, cross linked, homopolymers and copolymers –bonding in polymers: primary and secondary bond forces – effect of polymer structure on properties – determination of molecular mass of polymers: number average molecular mass, weight average molecular mass – determination by viscosity, light scattering method, osmometry and ultra centrifuging.

Unit – II KINETICS AND MECHANISM OF POLYMERIZATION

Chain growth polymerization: cationic, anionic, free radical polymerization – stereo regular polymers: Ziegler Natta catalyst – polycondensation: non catalysed, acid catalyzed – molecular weight distribution – step growth polymers – degrees of polymerization.

Unit –III POLYMER REACTIONS AND DEGRADATION

Introduction – hydrolysis, acidolysis, aminolysis, hydrogenation – addition and substitution reactions – cyclisation reactions – crosslinking reactions, vulcanization and cure reactions Polymer degradation – types of degradation – degradation by high energy radiation, ultrasonic waves – oxidative degradation – antioxidants.

Unit – IV INDUSTRIAL POLYMERS

Raw material, preparation, fibre- forming polymers, elastomeric material. Thermoplastics: Polyethylene, Polypropylene, polystyrene, Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluoro ethylene, nylon and polyester. Thermosetting Plastics: Phenol formaldehyde and epoxide resin.

Elastomers: Natural rubber and synthetic rubber - Buna - N, Buna-S and neoprene.

Conducting Polymers: poly sulphur nitriles, poly phenylene, poly pyrrole and poly acetylene.

Poly methylmethacrylate, polyimides, polyamides, polyurethanes, polyureas, polyethylene and polypropylene glycols

Unit – V POLYMER PROCESSING

Compounding: Polymer Additives: Fillers, Plasticizers antioxidants and thermal stabilizers fire retardants and colourants.

Processing Techniques: Calendaring, Die casting, Compression moulding, Injection moulding, Blow moulding, Extrusion moulding and Reinforcing, Foaming, Spinning of fibers and Mercerization.

TEXT BOOKS

1.V.R. Gowariker, Polymer Science, Wiley Eastern, 1995.

Reference books

2. F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience, 1971.

3. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and Engineering, Tata McGraw-Hill, 1978

4. B.K.Sharma - Industrial chemistry, Krishnaprakashan Media (P) Ltd (2014) 18thedn

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I: IN	TRODUCTION TO POLYMERS		
	Monomers, oligomers, polymers and their characteristics –	4	Library
	classification of polymers: natural, synthetic, linear, cross		followed by
	linked, homopolymers and copolymers		discussion
	bonding in polymers : primary and secondary bond forces	6	Lecture
	– effect of polymer structure on properties, determination		
	of molecular mass of polymers: number average molecular		
	mass, weight average molecular mass		
	determination of molecular mass of polymers: number	2	Problem
	average molecular mass, weight average molecular mass		solving session
	determination by viscosity, light scattering method,	3	ICT
	osmometry and ultra centrifuging		
UNIT II: K	INETICS AND MECHANISM OF POLYMERIZATION		
	Chain growth polymerization: cationic, anionic, free	11	Lecture
	radical polymerization, stereo regular polymers: Ziegler		
	Natta catalyst, molecular weight distribution, step growth		
	polymers, degrees of polymerization		
	polycondensation: non catalysed, acid catalyzed		
	stereo regular polymers: Ziegler Natta catalyst, molecular	3	ICT
	weight distribution		
	polycondensation: non catalysed, acid catalyzed	1	Seminar /peer
			teaching
UNIT III: I	POLYMER REACTIONS AND DEGRADATION	1	
	Introduction – hydrolysis, acidolysis, aminolysis,	8	Lecture
	hydrogenation, addition and substitution reaction, Polymer		
	degradation – types of degradation, oxidative degradation,		
antioxidants			
---	---	--	
cyclisation reactions – crosslinking reactions, vulcanization	4	ICT	
and cure reactions			
degradation by high energy radiation, ultrasonic waves	3	Seminar	
UNIT IV: INDUSTRIAL POLYMERS	1	1	
Raw material, preparation, fibreforming polymers, elastomeric material. Thermoplastics : Polyethylene, Polypropylene, polystyrene, Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluoro ethylene, nylon and polyester.	7	Lecture	
Thermosetting Plastics : Phenol formaldehyde and epoxide resin. Elastomers : Natural rubber and synthetic rubber - Buna - N, Buna-S and neoprene.	4	ICT	
Conducting Polymers : poly sulphur nitriles, poly phenylene, poly pyrrole and poly acetylene.	2	Lecture followed by discussion	
Poly methylmethacrylate, polyimides, polyamides, polyurethanes, polyureas, polyethylene and polypropylene glycols	2	Role play/ tutorial	
UNIT V: POLYMER PROCESSING			
Polymer Additives: Fillers, Plasticizers antioxidants and thermal stabilizers fire retardants and colourants.	5	Lecture	
Processing Techniques: Calendaring, Die casting, , Foaming, Spinning of fibers and Mercerization	5	Lecture followed by Seminar / peer teaching	
Compression moulding, Injection moulding, Blow moulding, Extrusion moulding and Reinforcing	5	ICT	

Course	Prog	ramm	e Out	comes	(Pos)		Programme Specific Outcomes (PSOs)					5)	Mean	
Outcomes															scores of
(COs)															COs
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	03	O4	05	06	07	
CO1	4	5	4	4	3	4	3	3	5	4	3	4	4	4	3.64
CO2	4	4	5	4	4	3	3	3	4	4	3	4	3	4	3.71
CO3	4	4	3	4	5	4	4	4	4	4	3	4	4	3	3.85
CO4	4	4	4	4	5	4	3	4	4	5	3	4	4	4	4.0
CO5	5	4	3	4	5	5	4	4	5	5	4	4	5	4	4.3
	Mean Overall Score 3											3.90			

Result: The Score for this Course is 3.90 (High Relationship)

Course Designer: Dr. J. ARULMOLI Mrs. D. RENUGA Programme : B.Sc Chemistry Semester : VI Sub. Code : EC63

Part III: Elective 3

Hours : 5 / W, 75 / S Credits: 5

TITLE OF THE PAPER: PHARMACEUTICAL CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Pro solving session/Quiz/videos/Demonstration class(Library s	blem session	ICT		
			is conducted after the class hours).				
	5	3	1		1		
PREAMBL	E: The	objectiv	es of the course is to understand the effects,	mechani	ism and		
metabolism	of dru	gs, medic	ally important compounds of Mg, Al, P, As, Hg,	, Fe, occ	urrence,		
isolation, a	bsorptic	on, storag	e, physiological functions and deficiency functi	ons of v	vitamins,		
metabolism	of P, M	g, Na, K,	Fe, I2 and Cl ⁻ and metallic poisons and their treatme	ent.			
COURSE	OUTCO	DME : At	the end of the Semester, the Students will be able to	Unit	Hrs / S		
UNIT 1 CO	1: discu	ss the effect	cts, mechanism and metabolism of drugs	1	15		
UNIT 2 CO	2:explai	n the medi	cally important compounds of Mg, Al, P, As, Hg, Fe	2	15		
UNIT 3	CO3: 1	recognize	the occurrence, isolation, absorption, storage,	3	15		
physiologica	al function	ons and de	ficiency of vitamins				
UNIT 4 CO	4: descr	ibe the me	etabolism of P, Mg, Na, K, Fe, I_2 and Cl^2	4	15		
UNIT 5 CO5: explain the metallic poisons of As, Pb, Hg, Cu, nitrites, and their 5							
symptoms, a	actions, c	chemical te	est ant treatment.				

Unit – I (15hrs)

Drugs: Definition – Effects of drugs (additive, synergistic, antagonistic) – mechanism of drug action – absorption of drugs – metabolism of drugs – factors influencing metabolism of drugs – Drug stability – medication (encapsulation, tablet medication, types of capsules)

Unit – II (15hrs)

Medically important compounds of Mg, Al, P, As, Hg and Fe:

Importance of Mg – Epsom, milk of magnesia - Aluminium hydroxide gel - Compounds of phosphorous – compounds of arsenic – compounds of mercury – mechanism of bactericidal action of compounds of mercury

Unit – III (15hrs)

Vitamins – Definition – Classification – provitamins – Occurrence, isolation absortion, storage, excretion and physiological functions of vitamin A, vitamin D, Vitamin E, Thiamine, pantothenic acid, nictonic acid, pyridoxine, cobalamine and ascorbic acid. Vitamin deficiency.

Unit – IV: (15hrs)

Mineral metabolism: Calcium - source, daily requirement, blood calcium, hypocalcemia,

Phosphorus – functions of phosphate, requirement, source, serum level.

Magnesium - requirement, source, normal serum level, functions

Sodium – normal level of sodium , excretion of sodium, restriction of sodium in diet, hypernatremia.

Potassium – requirement, source, function.

Chloride -importance of chloride ion, serum level, hypochloremia

Iron - Total iron content - requirement - source - iron deficiency

Iodine – daily requirement – goitrogens – biological role.

Unit – **V**: (15hrs)

Metallic poisons and their treatments: Arsenic – poisonous compound- action, signs and symptoms, treatment, chemical test. Mercury – poisonous compounds – symptoms – treatment – chemical test. Lead – poisonous compounds – action – treatment – plumbism – signs and symptoms – treatment – chemical test. Copper – poisonous compounds – signs and symptoms – treatment – chemical test. Nitrites – source – action – symptoms, treatment – methanemoglobinaemia – causes – treatment.

TEXT BOOKS

- 1. Pharmaceutical chemistry by Dr.S.Lakshmi,
- 2. Industrial Chemistry by B.K.Sharma; Krishna Prakashan Media(p) Ltd 2011

References:

1. Text Book of biochemistry for medical students by D.M.Vasudeva and S.Sreekumari; Jaypee Brothers Medical Publishers ; 8^{th} edition

2. The essentials of Forensic Medicine and toxicology by Dr.K.S. Narayan Reddy; Jaypee Brothers Medical Publishers ; 3rd edition

UNITS	TOPIC	LECTURE	MODE OF TEACHING		
		HOURS			
UNIT 1 to de	escribe the physiological effects of drugs	and its interaction	1		
	Effects of drugs,	3	Lecture		
	mechanism of drugs	3	ICT and Demonstration		
	Absorption of drugs	3	Lecture		
	Metabolism of drugs	3	Lecture		
	Factors influencing metabolism of	3	Lecture and Group		
	drugs		Discussion		
UNIT II Inp	out on Medically important compounds				
	Role of Compounds of Mg	3	Practical demo and Lecture		
	Role of Compounds of Al	3	ICT and Lecture		
	Role of Compounds of P	3	Lecture and Assignment		
	Role of Compounds of As	3	Lecture and Peer Teaching		
	Compounds of Hg	3	ICT and Lecture		
UNIT III En	rich the knowledge on Vitamins and Phy	siological actions			
	Vitamins, classification, provitamins	1	Discussion		
	Vitamin B & C	3	Lecture		
	Vitamins A ,D, E, K	5	Lecture		
	Deficiency diseases of vitamins	3	ICT and Quiz		
	Physiological functions	3	Peer teaching and Lecture		
UNIT IV gra	sping the fundamentals of mineral metal	oolism			
-	Metabolism of Ca and P	3	ICT and Lecture		
	Metabolism of Iron	3	ICT and Lecture		
	Metabolism of Na and K	3	ICT and Lecture		
	Metabolism of Mg	3	Lecture and Group		

			Discussion			
	Metabolism of Chloride and Iodine	3	Lecture			
UNIT V Awa	areness and indepth knowledge in Metall	ic poison				
	Arsenic poisoning- actions, signs and	3	ICT and Lecture			
	symptoms, chemical tests and					
	treatment					
	Lead poisoning- actions, signs and	3	ICT and Lecture			
	symptoms, chemical tests and					
	treatment					
	Mercury poisoning- actions, signs	3	ICT and Lecture			
	and symptoms, chemical tests and					
	treatment					
	Copper poisoning- actions, signs and	3	Peer teaching and Lecture			
	symptoms, chemical tests and					
	treatment					
	Nitrites poisoning- actions, signs and	3	Assignment and Lecture			
	symptoms, chemical tests and					
	treatment					

Course	Prog	ramm	e Out	come	s (PO	s)		Programme Specific Outcomes (PSOs)					5)	Mean	
Outcomes															scores
(COs)															of
															COs
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	O2	O3	O4	05	06	O7	
CO1	4	4	5	3	3	4	4	4	4	3	4	4	4	4	3.85
CO2	4	4	3	3	4	4	4	4	3	4	4	4	4	4	3.78
CO3	4	5	3	3	4	3	5	3	4	4	4	4	3	3	3.71
CO4	4	4	3	4	5	4	3	3	4	4	4	4	3	4	3.78
CO5	4	4	3	4	4	4	4	3	3	4	4	3	4	3	3.64
						Ν	Iean (Overal	l Score						3.75

Result: The Score for this Course is 3.75 (High Relationship)

Course Designer: Mrs. B. MARIAMAL Dr. A. JOSEPHINE VANITHA

Semester: VI

Part III: Elective 3

Hours : 5 / W, 75 / S

Code : EC66

TITLE OF THE PAPER: AGRICULTURAL CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library session is conducted after the class hours).	ICT
	5	3	1	1

Credits: 5

PREAMBLE: The objective of the course is to make the student understand the properties and components of soil, principles and types of organic manures, inculcate the chemistry of fertilizers, pesticides and various soil sampling and methods of analysis.

COURSE OUTCOME	Unit	Hrs / S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: demonstrate the skills in assessing soil suitability for various	1	15
agricultural and non-agricultural uses by means of understanding various physical,		
chemical and biological properties and their impact on plant growth.		
UNIT 2 CO2: explore the types of manures and analyze the importance of using	2	15
various ecological farming techniques to preserve soil's natural composition		
UNIT 3 CO3: assess the need and effects of using artificial fertilizers, describe the	3	15
preparation and properties of some industrially important artificial fertilizers		
UNIT 4 CO4: describe various chemical materials developed to assist in the	4	15
production of food such as insecticides fungicides and herbicides		
UNIT 5 CO5: apply analytical procedures and methods in the analysis of soil and	5	15
plants and recommend soil remediation based on the analysis.		

Unit –I SOIL CHEMISTRY

Components of soil – physical and chemical properties of soil – factors controlling soil pH and influence of soil reaction on availability of nutrients – soil colloids – soil organic matter – soil air – soil water – retention, soil moisture constant – macro and micro plant nutrients

Unit – II ORGANIC MANURES AND ORGANIC FARMING

General principles of manuring – special and general manures– action of manures on chemical and physical properties of soil – advantages of using manures in farming – Natural manures – Farm yard and liquid manures – composition and application – properties and composition of vegetable and animal manures with examples –ecological farming – biofertilizers, vermicompost – organic farming – advantages of organic farming

Unit –III FERTILIZERS

Need for fertilizers – essential requirements –classification of fertilizers – preparation and importance of artificial fertilizers – urea, ammonium nitrate, calcium cyanamide, phosphate rock, superphosphate, triple superphosphate – potassium fertilizers – NPK fertilizers – mixed fertilizers – compound fertilizers – effects of fertilizers

Unit –IV **PESTICIDES**

Insecticides – natural insecticides – organic insecticides – DDT, Alderin&dieldrin, endrin and p – DCB – fumigants –rodenticides

Fungicides – inorganic (Bordeaux mixture) organic (dithiocarbamate) – industrial fungicides Herbicides and weedicides – 2,4-D and 2,4,5 –T (structure and function), treflan

Unit – V SOIL TESTING

Soil sample collection and preparation – dry and moist soil – soil pH determination – lime requirement determination – procedure for determining nitrogen – PPNT and PSNT test – phosphorus – potassium – micronutrients – measuring cation exchange capacity of soil – soil chloride analysis

TEXT BOOKS

- 1. Elements of agriculture chemistry Thomas Anderson, Andesite press (2015)
- 2. Industrial chemistry B.K.Sharma, Krishna prakashan Media(P) Ltd(2014) 18thedn

Reference books

1. Agricultural chemistry – B.A. Yagodin, Mir publishers (Moscow) 1976.

- 2. Soil sampling and methods of analysis M.R.Cartar, Gregorich (2ndedn, 2008) CRC press.
- 3. Soil physical analysis R.A.Singh, kalyani publishers, 1980.
- 4. Environmental chemistry B.K.Sharma, Krishna prakashan Media(P) Ltd, (2014) 14thedn.

5. Principles of inorganic chemistry, Puri, Sharma, Kalia, ShobanLal Naginchand & co., 24thedn, 1990.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I: SOI	L CHEMISTRY		
	Components of soil, physical and chemical properties of	5	Lecture
	soil		
	factors controlling soil pH and influence of soil reaction	4	Discussion /
	on availability of nutrients		peer teaching
	soil colloids, soil organic matter, soil air, soil water,	3	ICT
	retention, soil moisture constant		
	macro and micro plant nutrients	3	Seminar /
			assignment
UNIT II: OR	GANIC MANURES AND ORGANIC FARMING		
	General principles of manuring, special and general	4	Discussion/
	manures, action of manures on chemical and physical		seminar/ peer
	properties of soil, advantages of using manures in		teaching
	farming		
	Natural manures, Farm yard and liquid manures,	4	Lecture
	composition and application		
	properties and composition of vegetable and animal	3	Library session
	manures with examples		followed by
			discussion/
			quiz
	ecological farming – biofertilizers, vermicompost,	4	ICT
	organic farming		
UNIT III: FE	ERTILIZERS	1	1
	Need for fertilizers – essential requirements –	4	Lecture
	classification of fertilizers		
	preparation and importance of artificial fertilizers – urea,	4	Seminar
	ammonium nitrate, calcium cyanamide		/assignment
	phosphate rock, superphosphate, triple superphosphate	3	ICT
	potassium fertilizers – NPK fertilizers – mixed fertilizers	4	Discussion/
	– compound fertilizers – effects of fertilizers		quiz

UNIT IV: PI	ESTICIDES		
	Insecticides, natural insecticides, fumigants, rodenticides	4	Lecture
	organic insecticides – DDT, Alderin & dieldrin, endrin	4	ICT
	and p – DCB		
	Fungicides – inorganic (Bordeaux mixture) organic	4	Peer teaching/
	(dithiocarbamate) – industrial fungicides		assignment
	Herbicides and weedicides – 2,4-D and 2,4,5 –T	3	Library
	(structure and function), treflan		session/ quiz
UNIT V: SO	IL TESTING		·
	Soil sample collection and preparation for dry and moist	4	Peer teaching/
	soil		seminar
	soil pH determination, lime requirement determination	4	Lecture
	procedure for determining nitrogen – PPNT and PSNT	4	ICT
	test, phosphorus, potassium, micronutrients		
	measuring cation exchange capacity of soil – soil	3	Discussion
	chloride analysis		

Course	Progr	amme	e Outo	comes	(POs	5)		Programme Specific Outcomes (PSOs)							Mean
Outco															scores
mes															of
(COs)															
	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	4	4	3	5	5	4	3	4	4	4	3	4	4	4	3.92
CO2	4	4	4	5	5	4	4	3	4	3	3	5	5	4	4.07
CO3	4	4	3	4	4	3	4	3	3	3	3	4	3	3	3.42
CO4	4	3	3	5	5	3	4	4	3	3	3	4	4	4	3.71
CO5	5	4	4	5	5	4	4	5	5	5	4	4	5	5	4.0
							Mea	n Over	all Scor	e					3.82

Result: The Score for this Course is 3.82 (High Relationship)

Course Designer: Dr. J. ARUL MOLI Mrs. D. RENUGA Programme : B.Sc Chemistry Semester : III Sub. Code : SC31

Part IV: Skill based Elective 1 Hours : 2 / W, 30 / S Credits : 2

TITLE OF THE PAPER: SMALL SCALE INDUSTRIES

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role	ICT					
			play/Discussion/Tutorial/Problem solving						
			session/Quiz/videos/Demonstration class(Library						
			session is conducted after the class hours).	1					
	2	1	(1hr if needed)	1					
PREAMBL	E: The	objective o	f the course is to inspire the students of both Chen	istry a	nd Non-				
Chemistry d	Chemistry departments to engage themselves in self-employment schemes. To provide adequate								
information	about the	e foundatio	n they need to develop a business. To provide method	is and	materials				
for the prepa	ration of	a few com	modities which are used in our everyday life.						
		0	COURSE OUTCOME	Unit	Hrs / S				
At the end of	f the Sem	nester, the S	students will be able to						
UNIT 1 CO1 : discuss the Scope of small scale industries, industries that can be 1 6									
stated or dev	reloped	location of	f industries, and describe the steps to be taken before						
constructing	or establ	ishing a fac	ctory, licenses registration.						
UNIT 2 CO	2: discus	s the Indiar	organizations assisting small scale industries.	2	6				
UNIT 3 CO	3: explai	n the prepa	ration of Tooth powder, tooth paste, Talcum powder,	3	6				
shampoo, ha	indkerchi	ief perfume	es, dry perfume sachets, soap powder, dishwashing						
powder, vari	ous soap	s & toilet c	leaning liquids.						
UNIT 4 CO	4: demo	nstrate the	wax products, candles, boot polish, furniture polish	4	6				
paste. descri	be Inks,	blue, red, l	blue black, white board marker, printing inks and ink						
for stamp page	d.								
UNIT 5 CO5 : explain safety matches, agarbathies-naphthalene balls, chalk crayons, 5 6									
insecticio	les such	as lice kill	er, mosquito repellant, cockroach terminator & moth						
repellant	and disc	cuss simple	medicines: Pain balm, digestive tablets, disinfectant						
solutions									

Unit I: (6 hrs)

Scope of small scale industries- definition of small scale industry, cottage industry, village industry- industries that can be stated or developed – location of industries – steps to be taken before constructing or establishing a factory – licenses – registration.

Reference books:

- 1) Reference book and Directory for small industries Malik and Aggarwal, Small Industry Research Institute, New Delhi (1975-1976)
- 2) (Tamil) Siru thozhilhal sila --- oru arimugam, Vasan, New Century Book House Pvt.Ltd., Chennai, 1985.

Unit II: (6 hrs)

Indian organizations assisting small scale industries, agencies promoting industries, such as IDBI, SISI, SIPCOT etc.

References:

- 1) Entreprenueral Development, Dr. L. Rangarajan, Sree Ranga Publications, Rajapalayam.
- 2) <u>www.techno-preneur.net</u>

Unit III: (6 hrs)

Preparation of Tooth powder, tooth paste, Talcum powder, shampoo, Handkerchief perfumes, dry perfume sachets, soap powder, dishwashing powder, various soaps, toilet cleaning liquids.

References:

- 1) Small scale industries, B.S.Sekar, Jaime Publications, Bombay, 1975.
- (Tamil) Neengalum Siru thozhil nadathalam, S. A.Soosairaja, New Century Book House Pvt. Ltd., Chennai, 1983.
- Hand Book of Soap Industries, Malik and Dhingra, Small Industry Research Institute, Delhi (1974-1975)

Unit IV: (6 hrs)

Wax products – candles, boot polish, furniture polish paste.

Inks – blue, red, blue black, white board marker, printing inks, ink for stamp pad.

References:

Small Scale industries by B.S.Sekar, Jaime Publications, Bombay, 1975.

Unit V: (6 hrs)

Safety matches- agarbathies-naphthalene balls- chalk crayons

Insecticides such as lice killer, mosquito repellant, cockroach terminator, moth repellant.

Simple medicines: Pain balm, digestive tablets, disinfectant solutions.

References:

- 1) Small Scale industries by B.S.Sekar, Jaime Publications, Bombay, 1975.
- (Tamil) Neengalum Siru thozhil nadathalam, S. A.Soosairaja, New Century Book House Pvt. Ltd., Chennai, 1983.

UNITS	ТОРІС	LECTURE HOURS	MODE OF TEACHING
UNIT 1:			
	Know about Scope of small scale industries	2	Assignment
	Define small scale industry, cottage industry, village		
	industry, Explain industries that can be stated or	3	Lecture
	developed location of industries, Describe steps to be	1	ICT
	taken before constructing or establishing a factory.		
UNIT 11			
	Know about the Indian organizations assisting small	3	ICT
	scale industries, Describe agencies promoting industries,	3	Group discussion
	such as IDBI, SISI, SIPCOT etc.		& Lecture
UNIT III			

	Explain Preparation of Tooth powder, tooth paste,	2	ICT
	Demonstrate Talcum powder, shampoo, Handkerchief	2	Lecture
	perfumes, dry perfume sachets,		
	Describe soap powder, dishwashing powder, various	2	Assignment
	soaps and toilet cleaning liquids.		
UNIT IV		•	
		Γ	
	Demonsrtate wax products, candles, boot polish,	3	ICT
	furniture polish paste. Describe Inks, blue, red, blue		
	black, white board marker, printing inks, ink for stamp	3	Assignment
	pad.		
UNIT- V			
	Safety matches, agarbathies-naphthalene balls- chalk	2	ICT
	crayons, Insecticides such as lice killer, mosquito		
	repellant, cockroach terminator, moth repellant. Simple	2	Lecture and
	medicines: Pain balm, digestive tablets, disinfectant		Discussion
	solutions.	2	

Course	Prog	ramme	Outco	mes (POs)			Programme Specific Outcomes (PSOs)							Mean
Outco															scores
mes															of Cos
(COs)	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	5	4	4	3	5	5	4	4	4	4	3	3	3	5	4.0
CO2	4	4	3	4	5	5	4	4	3	4	4	4	3	5	4.0
CO3	5	4	4	3	5	5	4	4	4	4	3	3	4	4	4.0
CO4	4	4	3	4	5	5	4	4	3	4	4	4	3	4	3.93
CO5 4 4 3 5 5 4 4 4 3 3 4 4 3.											3.93				
							Mean	Overal	l Score						3.97

Result: The Score for this Course is 3.97 (High Relationship)

Course Designer: Dr. P. SHANTHY

Part IV: Skill Based Elective 2 Hours : 1 / W, 15 / S Credits : 2

TITLE OF THE PAPER: ANALYTICAL CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library session	ICT						
			is conducted after the class hours).							
	1	1	(1hr if needed)	1						
PREAMBLE: The objective of the course is to make the student understand analytical chemistry and its										
importance	•									
COURSE OUTCOME : At the end of the Semester, the Students will be able to Unit Hrs/S										
UNIT 1 CO1 : demonstrate the methods to handle the corrosive and carcinogenic 1 3										
chemicals,	various	methods to	o store chemicals							
UNIT 2 C	02 : disc	uss some f	irst aid procedures for accidents due to chemicals such as	8 2	3					
acid, alkali,	poisonc	ous chemic	als and heat burns							
UNIT 3 CO	D3 : expla	ain the sep	paration of solid mixture and miscible liquids	3	3					
UNIT 4 CO	D4 : ident	tify the ty	bes of error and causes of their occurrence in our analysis	4	3					
UNIT 5 C	O5 : des	scribe the	theory, principle and instrumentation of thermo analytical	l 5	3					
methods										

Unit I: (6 hrs)

Laboratory hygiene and safety: Storage and handling of corrosive, flammable, explosive, toxic, carcinogenic and poisonous chemicals.

Simple first aid procedure for accidents: acid in eye, alkali in eye, acid burns, alkali burns, bromine burns, poisoning, inhalation of gases, cut by glasses and heat burns.

Unit II: (6 hrs)

Separation and purification techniques: Solvent extraction, desiccant, vacuum drying, distillation, reduced pressure distillation, fractional distillation, steam distillation, azeotropic distillation, crystallization and sublimation – principles and techniques.

Unit III: (6 hrs)

Error Analysis: Definitions – terms –absolute and relative error – precision and accuracy . Classification of errors – confidence limit – students' "t" test- rejection of experimental data – Q test – sources and elimination of errors – significant figures and computation.

Analysis of experimental results: Graphical methods – curve fitting – method of least squares

Unit – IV: (6 hrs)

Principle of gravimetric analysis – Formation of precipitate – coprecipitation - post precipitation – adsorption – precipitation from homogeneous solution.

Unit – **V:** (6 hrs)

Thermoanalytical methods – principles involved in thermogravimetric analysis and differential thermal analysis – characteristics of thermogravimetric and differential thermal analysis curves. Factors affecting TGA and DTA curves – applications of TGA. and DTA.

Textbooks:

- 1. Elements of analytical chemistry by Gopalan et al; Sultan Chand & Sons.
- **2.** Instrumental methods of Chemical Analysis by B.K.Sharma; Krishna Prakashan Media ; 2011.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1	: Laboratory hygiene and safety: Simple first aid procedure for	accidents:	
	Storage and handling of corrosive, flammable, explosive, toxic,	4	Lecture
	First aid procedure for accidents acid in eye, alkali in eye, acid	3	Discussion
	burns, alkali burns		
	carcinogenic and poisonous chemicals.	3	ICT
	bromine burns, poisoning, inhalation of gases, cut by glasses and heat burns	2	Assignment
UNIT II	Separation and purification techniques		
	principles and techniques: Solvent extraction, desiccant, vacuum	5	Lecture
	drying, distillation, reduced pressure distillation		
	fractional distillation and steam distillation	3	Seminar
	azeotropic distillation,	2	ICT
	crystallization and sublimation	2	Assignment
UNIT II	I : Error Analysis, Analysis of experimental results	-	
	<i>Error Analysis</i> Definitions – terms –absolute and relative error – precision and accuracy-	4	Lecture
	Classification of errors – confidence limit – students' "t" test-	5	Group
	rejection of experimental data, significant figures and	C	discussion
	computation.		Discussion,
	Q test sources elimination of errors Graphical methods – curve	3	ICT
	fitting – method of least squares		
UNIT I	V : Principle of gravimetric analysis		
	Formation of precipitate, co-precipitation, post precipitation,	12	Lecture,
	Adsorption- Precipitation from homogeneous solution		Assignment/Se
			minar
UNIT V	Principle of gravimetric analysis		
	Principles involved in thermo gravimetric analysis and	5	Lecture
	differential thermal analysis		
	characteristics of thermo gravimetric and differential thermal	3	ICT
	analysis curves		
	Factors affecting TGA and DTA curves	2	Discussion
	Applications of TGA and DTA.	2	Peer teaching

Course	Progr	ramme	e Outo	comes	(POs)		Programme Specific Outcomes (PSOs)							Mean scores
Outco														of COs	
mes	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
(COs)	1	2	3	4	5	6	7	01	O2	O3	O4	05	06	O7	
CO1	4	5	4	3	4	4	4	4	5	3	4	4	4	3	3.93
CO2	4	5	4	3	4	4	4	4	5	3	4	4	4	3	3.93
CO3	4	5	4	3	4	4	4	4	5	3	4	4	4	3	3.93
CO4	5	5	4	3	4	4	4	4	5	3	2	4	4	3	3.86
CO5	4	5	4	3	4	4	4	4	5	3	4	4	4	3	3.93
							Mea	n Ove	erall Sc	ore					3.92

Result: The Score for this Course is 3.92 (High Relationship) Course Designer: **Dr. K. ELANGOVAN**

Part IV: Skill Based Elective 3 Hours : 2 / W, 30 / S Credits : 2

TITLE OF THE PAPER: CHEMISTRY FOR COMPETITIVE EXAMINATIONS

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem solving session/Ouiz/videos/Library session.	ICT							
	2	1	1 (if needed)	1							
PREAMB	LE: Th	e objecti iaha an	ve of the course is to train the students face any	compe	etitive						
develop th	develop the skill to answer multiple choice questions.										
COUR	SE OUI	FCOME :	At the end of the Semester, the Students will be able to	Unit	Hrs P/S						
UNIT I stereochem	CO I;	discuss	General characteristics of alkanes, alkenes, alkynes, pohydrates, hybridization, polar effects.	1	6						
UNIT 2 (UNIT 2 CO 2; describe the periodic properties, metallurgical processes, types of 2 6										
chemical b	onding a	nd Nuclea	r chemistry.								
UNIT 3 C	UNIT 3 CO3: explain Colligative properties, Phase rule, Catalysis, chemical kinetics 3 6										
and electrochemistry.											
UNIT 4 CO4 : apply the concepts of volumetric analysis, thermo gravimetric analysis. 4 6											
UNIT 5 (C O5;	discuss the	e properties of Paints, varnishes cement, fuels soaps and	5	6						
detergents,	insectici	ides.									
Unit I: (01 Multiple ek		octions in c	argania abamistry								
Unit II: (6	hrs)		ngame enemistry								
Multiple ch	noice que	estions in I	norganic chemistry								
Unit III(6	hrs)		5								
Multiple ch	noice que	estions in F	Physical Chemistry								
Unit IV: (6	6 hrs)										
Multiple ch	noice que	estions in A	Analytical Chemistry								
Unit V: (6	hrs)										
Multiple ch	ioice que	estions in A	Applied Chemistry								
Internal : 2	5 marks										
External : 1	5 questi	ons in eac	h unit (1mark each) – no choice.								
LINUTS	TOPI	C			F						

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT 1: 0	Organic chemistry		
	General characteristics of alkanes, alkenes, alkynes.	4	Lecture
	Stereochemistry.	1	ICT
	Carbohydrates, hybridization, polar effects.	1	Quiz
UNIT II:	Inorganic chemistry		
	periodic properties, metallurgical processes	3	Lecture

ty	ypes of chemical bonding	2	Quiz	
1	Nuclear chemistry	1	ICT	
UNIT III : P	Physical Chemistry			
	Colligative properties	1	Lecture	
	Phase rule	1	ICT	
	Catalysis	1	Lecture	
	chemical kinetics	1	Lecture	
	electrochemistry	2 ICT and Quiz		
UNIT IV : A	Analytical Chemistry			
	concepts of volumetric analysis.	3	Demo	
	thermogravimetric analysis	3	ICT, Lecture, & Assignment.	
UNIT V : A	pplied Chemistry			
	properties of Paints, varnishes, cement, fuels, soaps and detergents, insecticides.	3	Lecture & Group Discussion	

Course	Pro	gramr	ne Ou	tcom	es (Po	os)		Programme Specific Outcomes (PSOs)						5)	Mean
mes															of Cos
(COs)	Р	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	Ο	2	3	4	5	6	7	O1	O2	O3	O4	O5	06	O7	
	1														
CO1	3	3	3	4	5	5	4	5	4	3	4	5	5	3	4
CO2	4	5	4	4	4	4	3	5	4	3	4	4	5	3	3.9
CO3	3	3	3	4	5	5	4	5	4	3	4	5	5	3	4
CO4	4	4	3	4	5	5	3	4	3	3	3	5	4	4	3.85
CO5	4	5	4	4	4	4	3	5	4	3	4	4	5	3	3.9
							Me	ean Ov	verall S	core					3.93

Result: The Score for this Course is 3.93 (High Relationship)

Course Designer: Dr. P. SHANTHY

Programme : B.Sc ChemistryPart IV: Skill Based Elective 5Semester : V & VIHours : 2 / W, 30 / SSub. Code : SC65Credits : 2TITLE OF THE PAPER: COMPUTER APPLICATIONS IN CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library	ICT
			session is conducted after the class hours).	
	1	1	1hr(if needed)	-

PREAMBLE: The objective of the course is to make the student understand basics of structures, variables, constants, operators, expressions, keywords and control structures of C programming, construct and solve the simple chemistry problems using C programming and applications of MS office and Internet

COURSE OUTCOME : At the end of the Semester, the Students will be able to	Unit	Hrs /
· ·		S
UNIT 1 CO1: demonstrate the fundamentals of structure data types, variables,	1	3
constants, key words, operators, identifiers and instructions in C programming.		
UNIT 2 CO2: explain control structures like if, if-else, goto, if-then, if-then-else,	2	3
for Next loop, while and do while loop in C programming.		
UNIT 3 CO3: construct the simple C programs of Conversion of Celsius temperature	3	3
to Kelvin temperature, Conversion of Celsius to Fahrenheit, Beer-Lambert's law		
Molecular weights from atomic weights, Bohr radius, Average, RMS, and most		
probable velocities of gas molecules.		
UNIT 4 CO4: solve the chemistry problems like Rydberg equations, Energy of	4	3
electromagnetic radiations, Clapeyron - Clausius equation, Rate constant for a first		
order reaction and Henderson equations using C programming language.		
UNIT 5 CO5: gather extensive knowledge of MS Office like MS word, MS power	5	3
point presentation, MS excel and Applications of Internet.		

Unit: I (6 hrs)

Elementary features of C programming – Character set of C Language, Key words, Constants, Identifiers, Variables, Data types, Operators and Instructions.

Unit II: (6 hrs)

Decision Control in C Program-if, if-else, go to, Forwhile loop, do While loop

Unit III: (6 hrs)

Examples of +simple Chemistry programs in C Language: 1) Conversion of Celsius temperature to Kelvin temperature . Conversion of Celsius to Fahrenheit and vice- versa 2) Application of Beer-Lamber's law 3) Molecular weights from atomic weights, 4) Bohr radius, 5) Average, RMS, and most probable velocities of gas molecules

Unit IV: (6 hrs)

Chemistry programs in C Language – ΔE for atomic spectral transitions using Rydberg equations, 7) Energy of electromagnetic radiations, 8) Enthalpy change using Clapeyron – Clausius equation, 9) Rate constant for a first order reaction, 10) pH of a buffer solution using Henderson equations.

Unit V: (6 hrs)

MS Office(Microsoft word, excel, powerpoint, access) and browsing internet.

88

Textbooks:

- Computers in Chemistry by K.V.Raman; Tata McGraw Hill Education Pvt Ltd; 2004
 C Programming by E.Balagurusamy McGraw Companies; 3rd edition

UNITS	ТОРІС	LECTURE HOURS	MODE OF TEACHING
UNIT I:	BASIC AND C PROGRAMMING		
	Elementary features of C programming	2	Lecture
	Structure data types in C programming	1	Lecture
	Variables and Constants in C programming	1	Lecture
	Key Words and Operators in C programming	1	Seminar/peer teaching
	Identifiers and Instructions in C programming	1	ICT
UNIT II:	CONTROL STRUCTURES IN BASIC AND C PRO	OGRAMMI	ING
	Decision Control in C Program-if, if-else, go to	2	Lecture
	Control structures in C – if-then and if-then-else,	2	Discussion/ peer teaching
	Control structures in C – for Next loop	1	Lecture
	Control structures in C – while, do while loop	1	ICT
UNIT III	: SIMPLE CHEMISTRY PROGRAMS I		
	Conversion of Celsius temperature to Kelvin	2	
	temperature and vice- versa, Conversion of Celsius		Lecture
	to Fahrenheit and vice- versa		
	Application of Beer-Lamber's law and Molecular	2	Lecture,
	weights from atomic weights, Bohr radius		Discussion/Assignment
	Average, RMS, and most probable velocities of gas	2	Seminar/Peer teaching
	molecules		
UNIT IV	: SIMPLE CHEMISTRY PROGRAMS II		
	ΔE for atomic spectral transitions using Rydberg	2	Lecture
	equations		
	Energy of electromagnetic radiations and Enthalpy	2	Lecture
	change using Clapeyron – Clausius equation,		
	Rate constant for a first order reaction	1	Library / assignment
	pH of a buffer solution using Henderson equations	1	ICT
UNIT V:	MS OFFICE AND BROWSING INTERNET		1
	MS word	2	Lecture
	MS power point presentation	2	ICT, Seminar
	MS excel, Applications of Internet	2	Group Discussion

Course	Prog	ramme	e Out	comes	(POs	5)		Programme Specific Outcomes (PSOs)							Mean scores
Outcom	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	of COs
es	1	2	3	4	5	6	7	01	O2	O3	O4	05	06	O7	
(COs)															
CO1	4	4	3	3	4	4	4	4	3	4	3	4	4	3	3.64
CO2	3	3	4	4	4	4	4	4	3	4	3	4	4	3	3.64
CO3	4	3	3	4	3	3	4	3	3	4	4	4	4	3	3.50
CO4	3	4	4	4	4	4	4	4	3	4	4	4	4	3	3.79
CO5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4.00
							Mean	Overa	Ill Scor	re					3.71

Result: The Score for this Course is 3.71 (High Relationship)

Course Designer: Dr. N. MANONMANI and Dr. T. UMAMATHI

89

Programme : B.Sc Chemistry Semester : III & IV Sub. Code : SC66

ChemistryPart IV: Skill Based Elective 6IVHours : 2 / W, 30 / SCredits : 2TITLE OF THE PAPER: WATER TREATMENT

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem	ICT								
			solving session/Quiz/videos/Demonstration class(Library session is									
			conducted after the class hours).									
	2	1	_	1								

PREAMBLE: The objective of the course is to inculcate student the importance of purity of water and the methods used in purifying the water in large and small scale for human consumption.

COURSE OUTCOME: At the end of the Semester VI, the Students will be able to	Unit	Hrs /S					
UNIT 1 CO1:explain uses of water, hydrological cycle, acid rain, artificial rain, rain water	1	6					
harvesting, sources of water, water borne diseases and substances affecting potability of water							
UNIT 2 CO2: discuss colour, taste, odour, turbidity, sediment and micro organisms in water,	2	6					
concept of hardness-types-EDTA method of estimation, softening methods-lime addition, sodium							
carbonate addition and ion exchange method.							
UNIT 3 CO3: describe the methods of clarification of water, electro chemical coagulation of water,							
chemical and physical methods of sterilization of water.							
UNIT 4 CO4: analyse BOD and COD of water by chemical methods and discuss various methods	4	6					
of demineralization and desalination of water.							
UNIT 5 CO5: explain various methods of removing colour, odour, taste, iron, manganese, fluorine,	5	6					
slime, algae and excess oxygen							
		1					

Unit – I: (6 hrs)

Uses of water- safe and wholesome water – sources of water supply : Rain: hydrological cycle, acid rain, artificial rain, rain water harvesting. – surface water: impounding reservoir, river and tanks – their characteristics and impurities. Ground water: wells and springs. Water borne diseases. Substances affecting the potability of water.

Unit – II (6 hrs)

Effects of impurities in natural waters: colour, taste and odour, turbidity and sediment and micro organism. Dissolved mineral matter- hardness – types – Estimation (EDTA method) – methods of softening – boiling, addition of lime – addition of sodium carbonate – ion exchange method.

Unit – III (6 hrs)

Clarification of water: sedimentation and filtration. Coagulation of water – electrochemical coagulation – flocculants – sterilization and disinfection of water : Chemical methods and physical methods.

Unit IV: (6 hrs)

Demineralization of water – ion exchange process - Desalination of sea water: electrodialysis method, reverse osmosis methods.

Water analysis: physical examination – Chemical examination – bacteriological examination – BOD, COD.

Unit – V: (6 hrs)

Miscellaneous methods of water treatment: Colour, odour and taste removal- iron and manganese removal – fluoridation – deflouridation – prevention of plumbosolvency – removal of slime and algae from water - deoxygenation of water.

Textbooks:

1. Industrial Chemistry by B.K.Sharma Krishna Prakashan Media Pvt Ltd 2011

2. Text Book of Preventive and Social Medicine by Park and Park; Bhanot 23rd edition 2013

UNITS	TOPICS	LECTURE HOURS	MODE OF TEACHING
UNIT I:		noeks	
	Sources of water-rain, river, tank, ground, wells and springs ,hydrological cycle, rainwater harvesting, water-borne diseases	2	ICT
	Uses of water, sources of water supply, acid rain, artificial rain, rain water harvesting characteristics and impurities of surface water-water borne diseases, substances affecting potability of water.	4	Lecture
Unit II			I
	Estimation of hardness-EDTA method, softening methods and ion exchange method	3	ICT
	Effects of impurities in natural water- colour, taste, odour, turbidity, sediment and micro organism, dissolved mineral matters in water, estimation of hardness-different methods of softening water, ion exchange method	3	Lecture
Unit III:			
	Chemical methods and physical methods of sterilization and disinfection of water, electrochemical coagulation of water	2	ICT
	Clarification of water-sedimentation and filtration, coagulation of water, electro chemical coagulation, flocculants, chemical methods and physical methods of sterilization and disinfection of water, electro chemical coagulation of water	4	Lecture
Unit IV:			
	Water analysis-BOD,COD –chemical, physical and bacteriological methods,	2	ICT
	demineralization of water-ion exchange process-desalination of sea water-electro dialysis methods, reverse RO method, water analysis – physical, chemical and bacteriological examination-BOD,COD.	4	Lecture
Unit V			
	Water treatment- colour, odour, taste, iron, manganese ,excess fluorine, lead, slime and algae removal	2	ICT
	Miscellaneous methods of removing colour, odour, taste, iron, manganese, lead, slime, algae, excess fluorine and excess oxygen, fluoridation.	4	Lecture

3. Engineering Chemistry by S.S.Dara S Chand & company

Course	Progr	amme	Outco	mes (POs)			Programme Specific Outcomes (PSOs)							Mean scores
Outcome	_														of COs
S	PO1	PO	PO	PO	PO	PO	PO	PS	PSO	PSO	PSO	PSO	PSO	PSO	
(COs)		2	3	4	5	6	7	O1	2	3	4	5	6	7	
CO1	4	4	3	3	4	4	4	4	3	4	3	4	4	3	3.64
CO2	3	3	4	4	4	4	4	4	3	4	3	4	4	3	3.64
CO3	4	3	3	4	3	3	4	3	3	4	4	4	4	3	3.50
CO4	3	4	4	4	4	4	4	4	3	4	4	4	4	3	3.79
CO5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4.00
						Mea	n Ove	rall Sc	ore						3.71

Result: The Score for this Course is 3.71 (High Relationship)

Course Designer: Mrs. P. ROOPAKALYANI

Dr. R. MUTHUSELVI

TITLE OF THE PAPER: ANCILLARY CHEMISTRY PAPER - I

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role	ICT								
			play/Discussion/Tutorial/Problem solving									
			session/Quiz/videos/Demonstration class(Library session is									
			conducted after the class hours).									
	4	2	1	1								
PREAMB	LE: Th	e objectiv	e of the course is to make the student understand	the p	rinciples							
behind basic laboratory techniques involved in organic analysis, titrations and clinical chemistry,												
also gains	also gains an idea on metallurgy, adsorption, catalyst and photochemistry.											
COURSE OUTCOME : At the end of the Semester, the Students will be able to Unit Hrs / S												
UNIT 1 C	UNIT 1 CO1 : demonstrate the knowledge on purification of organic compounds and 1 12											
summarize	chemica	al reactions	s involved in organic analysis									
UNIT 2 C	02 : disc	uss the typ	es of oxides, various processes involved in extraction of	2	12							
metals from	m their	ores prep	aration, properties and uses of industrially important									
inorganic c	ompoun	ds										
UNIT 3 C	03: defin	ne the conc	cept and applications of adsorption, explain the types and	3	12							
functions of	of cataly	st and dev	velop a knowledge on broad variety of photo chemical									
systems	-											
UNIT 4 C	O4: disc	uss the pro-	oper procedure and regulation for safe handling and use	4	12							
of chemica	ls, expla	in the theo	oretical principles and perform calculations of analytical									
methods w	ithin titra	ation										
UNIT 5 C	05: exhi	bit knowle	dge of body chemistry levels under healthy or abnormal	5	12							
conditions	and cher	nistry behi	nd various tests performed in clinical chemistry.									

Unit – I (12 Hrs) Organic Chemistry:

Purification of organic compounds: crystallization, fractional crystallization, sublimation, distillation, fractional distillation, distillation under reduced pressure, steam distillation, chromatography, zone refining and chemical methods.

Principles of reactions involved in organic analysis: Reactions of acids, phenols, aldehydes, amines, amides, aliphatic diamide and monosaccharide.

Unit – II (12 Hrs) Inorganic Chemistry:

Oxides: Classification with examples.

Metallurgy: Ore, gangue, flux and slag – definition. Principle and general methods of extraction of metals. **Extraction** of cobalt and nickel.

Preparation, *properties and uses of the following compounds*: a) verdigris, b) blue vitriol, c) Bordeaux mixture, d) Epsom salt, e) gypsum, f) Plaster of Paris, g) Green Vitriol, h) Potassium ferrocyanide, i) Potassium ferricyanide, j) sodium nitroprusside, k) White vitriol, l) Sodium borohydride, m) Lithium aluminium hydride.

Unit – III (12hrs) Physical Chemistry:

Adsorption: Definition of various terms. Adsorption of gases on solids – characteristics of adsorption of gases on solids – physical adsorption and chemisorption- factors influencing adsorption – application of adsorption- adsorption indicators.

Catalysis: Definition – characteristics – theories of catalysis – promoters and poisons – enzyme catalysis – acid-base catalysis – auto catalysis (definitions with suitable examples)

Photochemistry: Definition of Photochemical reactions- Grotthus Draper Law and Einstein's law – quantum efficiency (high and low) – comparison between thermal and photochemical reactions – chemiluminescence, fluorescence, phosphorescence- photosensitization – flash photolysis (elementary treatment)

Unit – IV (12 hours) Analytical Chemistry:

Laboratory hygiene and safety: Storage and handling of chemicals – toxic chemicals - waste and fume disposal – Precautions for avoiding accidents – First aid techniques

Principles of volumetric analysis: Expressions of concentrations – equivalent weights- principle of volumetric analysis – primary and secondary standards – classification according to reactions – various types of indicators.

Unit- V (12 hrs) Applied *Chemistry:*

Clinical Chemistry:

Qualitative and quantitative analysis of cholesterol in serum – standard value of cholesterol – heart attack

Qualitative and quantitative analysis of sugar in serum and urine – standard value of sugar - glucose tolerance test – Benedict's test – hypoglycemia and diabetes (symptoms)

Estimation of hemoglobin – standard value of Hb – anemia.

Diagnostic test for albumin in serum and urine – reasons for albuminuria.

Formation and Analysis of Kidney Stones

References

Course material supplied by the department

UNITS	ТОРІС	LECTU RE HOURS	MODE OF TEACHING
UNIT I:	Organic Chemistry		
	crystallization, fractional crystallization, sublimation, chromatography, zone refining and chemical methods	5	Lecture
	distillation, fractional distillation, distillation under reduced pressure, steam distillation	3	ICT
	Reactions involved in qualitative organic analysis of acids, phenols, aldehydes, amines, amides, aliphatic diamide and monosaccharide.	4	Lecture, lab session & Demonstration
UNIT I	: Inorganic chemistry		
	Classification of oxides with examples	2	Lecture
	Principle and general methods of extraction of metals. Extraction of nickel	3	ICT
	Extraction of cobalt.	1	Peer teaching / tutorial
	Preparation , properties and uses of verdigris, blue vitriol, Bordeaux mixture, Epsom salt, gypsum, Plaster of Paris, Green Vitriol, White vitriol,	3	Lecture, Tutorial, Assignment & Quiz
	Preparation, properties and uses of Potassium ferrocyanide, Potassium ferricyanide, sodium nitroprusside Sodium borohydride, Lithium aluminium hydride.	3	Lecture & Tutorial
UNIT I	I: Physical chemistry		-
	Definition of various terms in Adsorption, characteristics of adsorption of gases on solids, physical adsorption and chemisorptions catalysts,	8	Lecture

	promotors and poisons theories of catalysts Definition of Photochemical reactions- Grotthus Draper Law and Einstein's law – quantum efficiency (high and low) – comparison between thermal and photochemical reactions		
	Factors influencing adsorption, application of adsorption, adsorption indicators.	2	Lecture, Assignment & quiz
	Chemi-luminescence, fluorescence, phosphorescence- photosensitization – flash photolysis	2	ÎCT
UNIT I	V: Analytical chemistry		
	Storage and handling of chemicals, toxic chemicals, waste and fume disposal,	3	Lecture
	Precautions for avoiding accidents, First aid techniques	2	videos
	Principles of volumetric analysis: Expressions of concentrations, equivalent weights- principle of volumetric analysis	4	Lecture with problem solving and discussion
	Primary and secondary standards, classification according to reactions, various types of indicators.	3	Lecture & peer teaching
UNIT V	7: Applied chemistry	•	
	Qualitative and quantitative analysis of cholesterol in serum, standard value of cholesterol, heart attack	3	Lecture
	Qualitative and quantitative analysis of sugar in serum and urine, standard value of sugar, glucose tolerance test, Benedict's test, hypoglycemia and diabetes (symptoms)	3	ICT
	Estimation of hemoglobin – standard value of Hb – anemia	2	peer teaching/ seminar/ assignment
	Diagnostic test for albumin in serum and urine, reasons for albuminuria, Formation and analysis of kidney stones	4	Discussion / library session

Course	Pro	gram	me Out	comes	(POs)			Programme Specific Outcomes (PSOs)							Mean
Outcomes															scores
(COs)															of COs
	Р	Р	PO3	PO4	PO	PO	PO7	PSO	PS	PSO	PSO	PS	PS	PSO	
	0	0			5	6		1	O2	3	4	05	06	7	
	1	2													
CO1	4	5	4	4	3	3	3	3	4	5	4	4	3	3	3.71
CO2	4	4	3	5	3	4	4	4	4	4	4	3	3	3	3.71
CO3	4	5	3	4	4	4	4	3	4	4	4	4	4	3	3.85
CO4	4	5	4	5	4	4	3	4	4	5	5	4	4	4	4.14
CO5	4	5	4	5	5	4	4	4	4	5	5	4	3	4	4.21
						Mea	an Over	all Sco	re						3.92

Result: The Score for this Course is 3.92 (High Relationship)

Course designers : Mrs.G. LALITHAVENKATESWARI, Mrs.P. ROOPAKALYANI Mrs.D.RENUGA, Dr.Mrs.R.PARIMALAM & Dr.Mrs.T.UMAMATHI.

Part III: Allied I Hours : 4 / W, 60 / S Credits : 4

TITLE OF THE PAPER: ANCILLARY CHEMISTRY PAPER - II

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem	ICT				
			solving session/Quiz/videos/Demonstration class(Library					
			session is conducted after the class hours).					
	4	2	1	1				
PREAME	BLE: Th	e objecti	ve of the course is to make the student understand the f	undam	ental			
concept o	f nature	e and bon	ding in organic compounds, chemistry behind hydrogen	peroxi	de &			
ozone, create awareness on ways of using nuclear energy, principle behind chromatography								
and provide knowledge on industrial preparation of day to day products in our life.								
COURSE OUTCOME: At the end of the Semester, the Students will be able to								
,								
UNIT 1	CO1: 1	recognize	the concept of hybridization and gain knowledge about	1	12			
reaction ty	pes and	stability of	of reaction intermediates.					
UNIT 2	CO2: 0	describe	the chemistry of preparation, properties, structure and	2	12			
application	n of hydi	rogen per	oxide and ozone.					
UNIT 3 C	2 03 : disc	cuss artific	cial radioactivity, nuclear fission and fusion.	3	12			
UNIT 4 C	2 04 : exp	lain the p	rinciples of chromatography.	4	12			
UNIT 5	С О5 : ар	praise the	e importance of chemical industry such as cement, glass,	5	12			
ceramics, petrochemicals, paper and recognize the method of converting raw materials								
into desire	d produ	cts.						

Unit- I (12 hours) Organic Chemistry(12 hours) Fundamental Concepts:

Tetrahedral arrangement of valencies of carbon atom, Concept of hybridization in organic molecules.

Cleavage of bonds: Homolytic and heterolytic cleavage of carbon bond

Reaction intermediates: Free radicals, carbones, carbonium ion and carbanion – their generation and stability

Nucleophilic and electrophilic reagents.

Types of reactions: Substitution, addition, elimination, rearrangement and polymerisation with suitable examples [no mechanism needed]. Isomerism – geometric and stereoisomerism.

Unit – II (12 hours) Inorganic Chemistry(12 hours)

Hydrogen peroxide: Preparation, manufacture, purification, properties and uses. Structure – estimation by permanganometric and iodometric methods. Methods of expressing the strengths of hydrogen peroxide and their interconversion.

Ozone: Preparation, manufacture, properties, composition, structure and uses. Estimation by iodometric method. Distinction between hydrogen peroxide and ozone.

Unit – III (12 hours) Physical Chemistry (12 hours)

Artificial radioactivity: Definition – projectiles – examples – radioactive transformations *Nuclear fission:* Definition – chain reaction – energy released during fission – principle of atom bomb and nuclear reactors.

Nuclear fusion – Definition – energy released during fusion – stellar energy – hydrogen bomb – comparison of nuclear fission and fusion

Isotopes and isobars: Definitions and consequences of isotopy

Applications of radioactivity – radioactive isotopes as tracer elements in medicine, agriculture and industry, in the elucidation of structure and in the investigation of reaction mechanism – carbon dating.

Unit – IV (12 hours) Analytical Chemistry (12 hours)

Chromatography – Definition of chromatography, mobile phase and stationary phase, Classification of chromatography, Principles of adsorption and partition chromatography.

Paper and Column Chromatography, Thin Layer chromatography, Rf value, general applications of chromatography.

Gas chromatography – Principles, instrumentation (brief description) – applications

Unit – V (12 hours) Applied Chemistry (12 hours)

Silicate industry: Cement, glass and ceramics, raw materials and manufacture of cement, glass and ceramics.

Petrochemicals : An elementary study, Definition – origin – composition – chemicals from natural gas, petroleum, light naphtha and kerosene – synthetic gasoline.

Paper industry: Raw materials and manufacture- types of papers.

References

Course material supplied by the department

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I:	Organic Chemistry		
	Tetrahedral arrangement of valencies of carbon atom,Concept	3	ICT, Model
	of hybridization in organic molecules.		demonstration with
	Cleavage of bonds: Homolytic and heterolytic cleavage of carbon bond. Reaction intermediates: Free radicals, carbenes, carbonium ion and carbanion, their generation and stability, Nucleophilic and electrophilic reagents.	3	Lecture
	Types of reactions: Substitution, addition, elimination, rearrangement and polymerisation with suitable examples	3	Lecture, peer teaching & assignment
	Isomerism–stereoisomerism, definition, classification with suitable examples	3	ICT
UNIT I	: Inorganic chemistry		
	Preparation, manufacture, purification, properties and uses of hydrogen peroxide and ozone.	5	Lecture
	estimation of H_2O_2 by permanganometric and iodometric methods. Methods of expressing the strengths of hydrogen peroxide. Estimation of ozone by iodometric method	5	Lecture with problem solving session
	Structure of ozone and hydrogen peroxide, Distinction between hydrogen peroxide and ozone.	2	ICT & Quiz
UNIT I	II: Physical chemistry	•	
	<i>Artificial radioactivity:</i> Definition – projectiles, examples, radioactive transformations, Definition, energy released during	6	Lecture

3	ICT
1	Peer teaching
2	Seminar, discussion
	& assignment
	_
7	Lecture
3	Peer discussion,
	seminar &
	assignment
2	ICT
4	Lecture
4	Discussion / peer
	teaching/seminar/quiz
4	ICT
	$\begin{array}{c} 3 \\ 1 \\ 2 \\ \hline 7 \\ \hline 7 \\ \hline 3 \\ \hline 2 \\ \hline 4 \\ 4 \\ \hline 4 \\ 4 \\ \hline 4 \\ \hline 4 \\ \hline \end{array}$

Course	Progr	amme	Outco	mes (POs)			Programme Specific Outcomes (PSOs)							Mean
Outco										scores					
mes															of COs
(COs)	PO1	PO	PO	PO	PO	PO	PO	PS	PSO	PSO	PSO	PSO	PSO	PSO	
		2	3	4	5	6	7	O1	2	3	4	5	6	7	
CO1	4	4	4	3	3	3	3	3	3	3	3	3	4	4	3.35
CO2	3	4	3	3	3	3	3	3	3	4	3	3	4	3	3.21
CO3	4	4	3	4	4	3	3	3	4	3	3	4	4	4	3.57
CO4	4	3	3	4	4	3	2	3	4	4	4	4	4	3	3.5
CO5	4	4	3	3	4	4	3	4	4	3	3	5	4	5	3.28
						М	ean O	verall S	Score						3.38

Result: The Score for this Course is 3.38 (High Relationship)

Course designers : Mrs.G. LALITHAVENKATESWARI Mrs.P. ROOPAKALYANI Mrs.D. RENUGA Dr.R. PARIMALAM Dr.T.UMAMATHI

96

Programme : B.Sc Chemistry Semester : III & IV Sub. Code : CPA Part III: Allied Hours : 3 / W, 45 / S Credits : 3

TITLE OF THE PAPER: ANCILLARY CHEMISTRY - PRACTICALS

Pedagogy	Hours	Lab session//Demonstration class									
	3	3									
PREAMBLE: The objective of the course is to make the student to estimate the solution of											
unknown strength and analyse the given organic compound.											
		COURSE OUTCOME	Unit	Hrs / S							
At the end of	the Sem	ester, the Students will be able to									
UNIT 1 CC	D1: analy	vse and find out the given organic compound and report the	1	45							
functional gr	oup pres	ent in it.									
UNIT 2 CO2	2 : find	out the strength of given solution and the weight.	2	45							

Unit I: QUALITATIVE ANALYSIS

Qualitative analysis of an organic compound containing one or two functional groups and confirmation by the preparation of a solid derivative / colour reactions – acids, phenols, aldehydes, primary amines, amides, aliphatic diamide and monosaccharide.

Scheme of valuation: Internal: Analysis = 20 marks

Unit – II VOLUMETRIC ANALYSIS

A double titration involving making up of the solution to be estimated.

I. Acidimetry and alkalimetry:

- a) Titration between a strong acid against NaOH
- b) Titration between a strong acid against Na₂CO₃
- c) Titration between sodium hydroxide against oxalic acid.

II . Permanganometry:

- a) Titrations between KMnO₄ against oxalic acid
- b) Titrations between KMnO₄ against ferrous sulphate
- c) Titrations between KMnO₄ against Mohr's salt (Ferrous ammonium sulphate)

III. Iodometry:

- a) Titrations between sodium thiosulphate and potassium permanganate
- b) Titrations between sodium thiosulphate and potassium dichromate
- c) Titrations between sodium thiosulphate and copper sulphate

Internal: Volumetric Analysis 20

Total internal = 40 marks **External :** 60 marks

Record -5 Marks

Organic analysis -25 (Preliminary reactions with correct procedure -10 marks, aromatic/aliphatic -5 marks, saturated/unsaturated -5 marks, functional group -5 marks,)

Volumetric analysis -30 (Procedure -10 marks, upto 2% - 20 marks, 3% - 15 marks, 4% and above 10 marks)

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
UNIT 1: Qua	alitative analysis		
		1	
	Analysis of organic compound	40	Lab session
	Analysis of organic compound	5	Demonstration
UNIT II: Vo	lumetric analysis		
		ſ	I
	Volumetric analysis	40	Lab session
	Volumetric analysis	5	Demonstration

Course Outco mes	Pro	gramr	ne Ou	itcom	es (PC	Ds)		Programme Specific Outcomes (PSOs)							Mean scores of COs
(COs)	P PO I <thi< th=""> I <thi< th=""> I I</thi<></thi<>								PSPSPSPSPSPSPSO1O2O3O4O5O6O7						
CO1	5	5	4	4	4	4	4	3	4	4	4	3	4	3	3.92
CO2	5	5	4	4	4	4	4	3	4	4	4	3	4	3	3.92
							Me	ean Ov	verall S	core					3.92

Result: The Score for this Course is 3.92 (High Relationship)

Course designers :

Mrs. G. LALITHAVENKATESWARI Mrs. P. ROOPAKALYANI

Mrs. D. RENUGA Dr. R. PARIMALAM Dr. T. UMAMATHI Programme : BSc/BCom/BA/BBA/BCA

Semester : V Code: NMC1

Part IV: Non Major Elective Hours -2 / W, 30 / S Credit: 2

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library session is conducted after the class hours).	ICT								
	2	1	1 hr(if needed)	1								
PREAMBL	PREAMBLE: The objective of the course is to make the student understand the chemistry of											
fuels, know the commodity values of oils, fats and waxes, importance of food additives,												
preservative	preservatives and adulterants and gain knowledge on basic principles behind corrosion and its											
prevention methods like electroplating												
		(COURSE OUTCOME	Unit	Hrs / S							
At the end of	the Sem	nester, the S	Students will be able to									
UNIT 1 CO	1: acquii	re knowled	ge on characteristics of fuels.	1	6							
UNIT 2 CO	2: identif	y the differ	ences between oils, fats and waxes and their	2	6							
classification	IS.											
UNIT 3 CO	3: discus	s on variou	s food additives, preservatives and adulterants and	3	6							
demonstrate various tests to find adulteration.												
UNIT 4 CO4: describe the effects and consequences of corrosion. 4 6												
UNIT 5 CO	UNIT 5 CO5 : explain the various applications of electroplating for prevention of 5 6											
corrosion.	-											

TITLE OF THE PAPER- CHEMISTRY IN LIFE

Unit – I FUELS (6Hrs)

Fuels: Definition, requirements of a good fuel, classification, ignition temperature, calorific value, units of heat, liquid fuels (petrol, kerosene), gaseous fuels(LPG, Gobar gas)

Unit – II OILS, FATS AND WAXES (6 hrs)

Oils, fats and waxes: Definition, distinction between oils and fats, properties, classification, vegetable oils, hydrogenation of oil, manufacture of candle.

Unit – III (6 hrs)

Food chemistry: Flavour and aroma of food, food additives, flavourings, food preservatives, food adulterants, some simple tests to find adulteration.

Unit IV CORROSION (6 hrs):

Corrosion: Definition – Consequences of corrosion, corrosion reaction, atmospheric corrosion, factors influencing corrosion, types of corrosion, Protection from corrosion.

Unit - V ELECTROPLATING (6 hrs)

Electroplating: Applications of electroplating, Preparation of base material, Electroplating equipment and Operating Conditions, electroplating Baths.

References

Course material supplied by the Department

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I: FUI	ELS		
	Definition, requirements of a good fuel,	4	Lecture
	classification of fuels		
	ignition temperature, calorific value, units of heat.		
	Liquid fuels and gaseous fuels	2	ICT & Seminar
UNIT II: OI	LS, FATS AND WAXES:		
	Definition, distinction between oils and fats, properties, classification,	3	Lecture
	vegetable oils, hydrogenation of oil,	2	Group discussion
	Manufacture of candle.	1	ICT
UNIT III: FO	OOD CHEMISTRY:		
	Flavour and aroma of food, food additives,	3	Lecture
	flavourings, food preservatives, food adulterants.		
	food preservatives, food adulterants	1	assignment
	some simple tests to find adulteration.	2	ICT
UNIT IV: C	ORROSION:		1
	Definition – Consequences of corrosion, corrosion		
	reaction, atmospheric corrosion	3	Lecture
	factors influencing corrosion, types of corrosion	2	ICT
	Protection from corrosion.	1	Peer teaching
UNIT V: EL	ECTROPLATING:		
	Applications of electroplating, Preparation of base material.	3	Lecture
	Electroplating equipment and operating conditions electroplating baths.	3	ICT

Course	Progr	amme	e Outc	comes	(POs)		Prog	ramme	Speci	fic Out	tcomes	(PSOs	5)	Mean
Outcomes															scores
(COs)															of
															COs
	PO1	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
		2	3	4	5	6	7	01	O2	03	O4	O5	06	O7	
CO1	4	5	4	4	3	3	3	3	4	5	4	4	3	3	3.71
CO2	4	4	3	5	3	4	4	4	4	4	4	3	3	3	3.71
CO3	4	5	3	4	4	4	4	3	4	4	4	4	4	3	3.85
CO4	4	5	4	5	4	4	3	4	4	5	5	4	4	4	4.14
CO5	4	5	4	5	5	4	4	4	4	5	5	4	3	4	4.21
						Μ	verall	Score						3.92	

Result: The Score for this Course is 3.92 (High Relationship)

Course Designer: Dr. T. UMAMATHI & Dr. K. ANURADHA

Part IV: Non Major Elective Hours -2 / W, 30 / S Credit: 2

Peer Teaching/Seminar/Role ICT Pedagogy Hours Lecture play/Discussion/Tutorial/Problem solving session/Quiz/videos/Demonstration class(Library session is conducted after the class hours). 2 1 1 PREAMBLE: The objective of the course is to make the student understand the principles behind extraction techniques of essential oils, gain knowledge about the food toxins, also gain an idea on fire extinguishing methods, manufacture of match sticks, explosives and water treatment methods. **COURSE OUTCOME** Unit Hrs/S At the end of the Semester, the students will be able to **UNIT 1 CO1**: broaden their knowledge on essential oils and their production in India 1 6 UNIT 2 CO2: analyze the chemical poisons in food along with their sources and 2 6 create awareness on microbial toxins. UNIT 3 CO3: describe the various fire extinguishing methods and the chemistry 3 6 behind the extinguishers UNIT 4 CO4: discuss the chemistry behind match sticks, their manufacture and also 4 6 give a logical idea on explosives UNIT 5 CO5: describe the importance of water management and impart ideas on 5 6 various water treatment methods

TITLE OF THE PAPER– Day to day chemistry

UNIT – I ESSENTIAL OILS AND PERFUMES (6 Hrs)

Essential oils and Perfumes: Essential oils – occurrence and methods of production of any five essential oils of India . Requirement of a good perfume, classification.

Unit – II CHEMICAL POISONS IN FOOD (6 Hrs)

Chemical poisons in food : Sources of chemical poisons in food – Toxins naturally present in food - sources and toxic effects of: toxic minerals and metals, organic toxicants in food, toxins present in fish. Toxins from other sources – metallic toxins, pesticides and pesticide residues – contaminants of fats and oils – microbial toxins.

Unit –III FIRE EXTINGUISHING (6 hrs)

Fire extinguishing:

Methods of extinguishing fire – simple extinguishing agents: water, sand and earth – chemical fire extinguishers: Dry powder extinguisher, carbon dioxide extinguishers, extinguishers using halogen derivatives of hydrocarbons – foam type extinguishers.

Unit –IV (6Hrs):

MATCH INDUSTRY, PYROTECHNY AND EXPLOSIVES : manufacture of match boxes and match sticks, chemistry of burning a match stick, colour crackers, definition of explosives, classification, preparation and uses of the following explosives-gun powder, gun cotton, nitroglycerin, dynamite, TNT and picric acid.

Unit – V DRINKING WATER (6 Hrs):

Drinking water: Availability and portability, sources-artificial rain, rain water harvesting, potable water quality, water treatment(methods of softening) – boiling, addition of lime, addition of sodium carbonate, ion exchange method, desalination of sea water- reverse osmosis and electrodialysis.

References

Course material supplied by the department

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I: Es	ssential oils and Perfumes	110 0115	
	Essential oils & Perfumes.	4	Lecture
	Requirement of a good perfume, classification	2	ICT
UNIT II: C	Chemical poisons in food		
	Sources of chemical poisons in food – Toxins naturally present in food	2	Lecture
	sources and toxic effects of: toxic minerals and metals, organic toxicants in food, toxins present in fish.	3	ICT
	Toxins from other sources – metallic toxins, pesticides and pesticide residues – contaminants of fats and oils – microbial toxins.	1	Peer teaching / tutorial
UNIT III: I	Fire Extinguishing	• •	
	Methods of extinguishing fire – simple extinguishing agents, chemical fire extinguishers, Dry powder extinguisher, carbon dioxide extinguishers, extinguishers using halogen derivatives of hydrocarbons – foam type extinguishers.	4	Lecture
	Methods of extinguishing fire	2	ICT
UNIT IV:	Match industry, pyrotechny and explosives		
	manufacture of match boxes and match sticks, chemistry of burning a match stick, colour crackers	3	Lecture
	Definition of explosives, classification, preparation and uses of the following explosives-gun powder, gun cotton, nitroglycerin, dynamite, TNT and picric acid.	3	Discussion
UNIT V: I	Drinking water	• •	
	Availability and portability, sources-artificial rain, rain water harvesting, potable water quality.	3	Lecture
	water treatment(methods of softening), ion exchange method, desalination of sea water- reverse osmosis and electrodialysis.	3	ICT

Course	Prog	gramn	ne Ou	tcome	s (PO	s)		Prog	ramme	e Speci	fic Out	tcomes	(PSOs	s)	Mean	
Outcom										scores						
es																
(COs)															COs	
	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS		
	1	2	3	4	5	6	7	01	O2	O3	O4	O5	06	07		
CO1	4	5	4	4	3	3	3	3	4	5	4	4	3	3	3.71	
CO2	4	4	3	5	3	4	4	4	4	4	4	3	3	3	3.71	
CO3	4	5	3	4	4	4	4	3	4	4	4	4	4	3	3.85	
CO4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4.0	
CO5	4	5	4	5	5	4	4	4	4	5	5	4	3	4	4.21	
	•	•	•	•			Mea	n Ove	erall Sc	ore	•	•	•		3.90	

Result: The Score for this Course is 3.90 (High Relationship)

Course Designer: Dr. T. UMAMATHI Dr. K. ANURADHA