Sri Meenakshi Government Arts College for Women (Autonomous), Madurai-2

B.Sc., PHYSICS SYLLABUS FOR THE ACADEMIC YEAR (2021 – 2022)

Reaccredited with "A" by NAAC

DEPARTMENT OF PHYSICS

CHOICE BASED CREDIT SYSTEM

S e m es te r	Code	Title of the paper	D u r at io n H rs / w ee k	N o f C r e d i t s	Int. Ma rks	Ext. mar ks	T ot al	Credit per semest er
I	P11	Mechanics, Fluid dynamics and sound	4	4	25	75	100	
	PP1	Major practical-paper I	2	-	-	-	-	
	P22	Electricity	2	-	-	-	-	
	SP11	Alternative Energy Sources	2	2	25	75	100	
	AVI	Value education	1	-	-	-	-	I: 6
II	P21	Heat and Thermodynamics	4	4	25	75	100	
	PP1	Major practical-paper I	2	2	40	60	100	
	P22	Electricity	2	4	25	75	100	
	SP22	Physics in every day life	2	2	25	75	100	II: 12
	AV1	Value education	1	2	25	75	100	
III	P31	Electromagnetism	4	4	25	75	100	
	P32	Programming with C	4	4	25	75	100	
	PP2	Major practical-paper II	2	-	-	-	-	
	SP43	Astrophysics and cosmos	1	-	-	-	-	
	EXA	PED / NSS / NCC / Major related Extension activity (Not within curriculum)	2	1	100	-	100	III : 9
IV	P41	Mathematical Physics	4	4	25	75	100	
	P42	Physical and Laser optics	4	4	25	75	100	
	PP2	Major practical-paper II	2	2	40	60	100	
	SP43	Astrophysics and cosmos	1	2	25	75	100	IV:14
V	P51	Basic electronics	4	4	25	75	100	
	P52	Atomic physics	5	5	25	75	100	
	PP3	Major practical-paper III	3	-	-	-	-	
	PP4	Major practical-paper IV	2	-	-	-	-	
	EP51	Biomedical instrumentation	5	5	25	75	100	
	EP52	Optoelectronics and fiber optic	5	5	25	75	100	
		communication						
	SGK4	General knowledge	2	2	25	75	100	
	SP55	Spectroscopy	2	2	25	75	100	V:23
VI	P61	Digital electronics	5	5	25	75	100	

DEPARTMENT OF PHYSICS Details of Theory/ Practical Papers- Semester wise

P62	Materials science	5	5	25	75	100	
P63	Classical ,Statistical, Quantum	4	4	25	75	100	
	Mechanics and Relativity						
PP3	Major practical-paper III	3	3	40	60	100	
PP4	Major practical-paper-IV	2	2	40	60	100	
EP63	Nuclear physics	5	5	25	75	100	
SP66	Physics for competitive	2	2	25	75	100	
	Examinations						
ENS6	Environmental Studies	2	2	25	75	100	VI : 28
	Total Credits						92

Semester	Code	Title of the paper	Duration of hrs/week	Int. marks	Ext. Marks	Total	No. of Credits
Ι	AMI	Allied Mathematics Paper –I	7	25	75	100	5
II	AM2	Allied Mathematics Paper –II	7	25	75	100	5
III	AC1	Allied Chemistry –Paper –I	4	25	75	100	3
	СРА	Allied Chemistry Practical paper -II	3	-	-	-	-
IV	AC2	Allied Chemistry –Paper –III	4	25	75	100	4
	СРА	Allied Chemistry –Practical Paper -II	3	40	60	100	3

ALLIED SUBJECTS (MATHS AND CHEMISTRY) FOR PHYSICS STUDENTS :

ALLIED PHYSICS FOR CHEMISTRY STUDENTS (I & II SEMESTER) AND FOR MATHS STUDENTS (III & IV SEMESTER):

Semester	Code	Title of the paper	Duration of hrs/week	Int. marks	Ext. Marks	Total	No. of Credits
I OR III	AP1	Allied physics paper-1	4	25	75	100	3
	PPA	Allied physics practical paper- I	3	-	-	-	-
II OR IV	AP2	Allied physics paper-II	4	25	75	100	4
	РРА	Allied physics practical paper-I	3	40	60	100	3

NON – MAJOR ELECTIVE PAPERS FOR SEMESTER V & SEMESTER VI

Code	Title of the paper	Duration of hrs/week	Int. Marks	Ext. Marks	Total	No. of Credits
NMP1	Physics of home appliances	2	25	75	100	2
NMP2	Solar Energy and its Applications	2	25	75	100	2

CREDIT DETAILS

Total Credits : 140

	CREDIT DISTRIBUTION											
Se me ste r	Cor e Th eor y	C or e Pr ac tic al	S ki ll B as ed Pa rt I V	E le ct iv e	Non Major electiv e	P a r t I V	T a m i l	E n g	A l l i e d I	A l l i e d I I I	All ied II pra ctic al	T o t a l
Ι	1x4		1x2				1x3	1x3	1x5			17
II	2x4	2	1x2			1x2	1x3	1x3	1x5			25
III	2x4					1x1	1x3	1x3		1x3		18
IV	2x4	2	1x2				1x3	1x3		1x4	1x3	25
V	1x4 1x5		2x2	2x5	1x2							25
VI	2x5 1x4	3+2	1x2	1x5	1x2	1x2						30
Total	51	9	12	15	4	5	12	12	10	7	3	140

Part III : Core Theory & Practical, Allied Theory & Practical Part IV : Skill based & NME

Programme : B.Sc Semester : I Sub. Code : P11 Part III: Core Hours :4 P/W 60Hrs P/S Credits : 4

TITLE OF THE PAPER: MECHANICS, FLUID DYNAMICS AND SOUND

Pedagogy	Hours	Lecture	Peer Teaching	GD/ Vedos/Tutorial	ICT
	4	3	-	-	1

PREAMBLE: To provide guidelines for the students covering all areas of Mechanics.

COURSE OUTCOME At the end of the Semester, the Students will be able to	Unit	Hrs P/S
CO 1: identify the concepts of dynamics of rigid bodies	1	12
CO 2: discuss about types of collision and able to derive the expression for final velocities and loss of kinetic energy	2	12
CO 3:to collect primary idea of gravitation and rocket motion	3	12
CO 4: impart the knowledge of properties of fluid, hydrostatics and kinematics of fluid flow	4	12
CO 5: analyze about Ultrasonic and its applications.	5	12

SYLLABUS

Unit – I : MECHANICS

Dynamics of rigid bodie s - Rigid body - Translational and rotational motion – Torque - Angular momentum – Angular impulse – Compound pendulum theory – Determination of g by compound pendulum.

Unit – II : COLLISION

Centre of mass - Motion of the center of mass - Impulse and impact – Collision - Elastic and inelastic collision – Newton's law of impact - Coefficient of restitution - Calculation of final velocities after impact – Direct and oblique collision - Loss of energy (direct and oblique impact).

Unit – III : GRAVITATION

Kepler's laws of planetary motion- Law of gravitation –Variation of g with latitude, altitude and depth– Artificial Satellites – Orbital velocity – Stationery satellite - Escape velocity - Rocket motion - Expression for thrust and velocity - Rocket propulsion system - Specific impulse - Multistage rocket.

Unit - IV : FLUID DYNAMICS

Viscosity - Steady or stream lined flow - Critical velocity -Reynold's number - Significance - Equation of continuity of flow - Energy of the fluid – Bernoullie's theorem – Statement and proof – Torricelle's theorem -Venturimeter - Pitot's tube.

Unit – V : SOUND

Sound – Transverse vibrations of stretched strings - Expressions for velocity and frequency – Melde's experiment - Acoustics of buildings - Ultrasonics – Production - Properties and applications .

TEXT BOOKS :

1. Properties of Matter	- R. Murugeshan, S. Chand and company Pvt. Ltd							
	Revised Edition 2014.							
2. Mechanics properties of matter and sound	- R. Murugeshan, S.Chand and company Pvt. Ltd							
Unit I : 10.7,10.8,10.9,6.10 (Prope	Unit I : 10.7, 10.8, 10.9, 6.10 (Properties of Matter)							
Unit II : 19.2,8.1,8.2,8.3,8.4,8.5,8.6 (Properties of Matter)								

Unit III : 6.1,6.2,6.7,6.8,6.9 (Properties of Matter), 2.1,2.3,2.4,2.6 (Mechanics properties of matter and sound)

Unit IV : 2.1,2.2,4.1,4.2,4.4, (Properties of Matter)

Unit V : 6.1,6.2,6.3,6.4,6.5,6.6,6.7 (Properties of Matter)

BOOKS FOR REFERENCE :

1. Mechanics

- D.S.Mathur, S.Chand& Co.,

First Edition, 2004 Reprint. HallidayResnick, Walker – Sixth Edition,

- 2. Fundamental of Physics
- Replika Press Pvt. Ltd.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
	Dynamics of rigid bodie s - Rigid body - Translational and rotational motion	4	Lecture & ICT
UNIT I	Torque - Angular momentum – Angular impulse	4	Lecture & ICT
	Compound pendulum theory – Determination of g by compound pendulum	4	Lecture & ICT
UNIT II	Centre of mass - Motion of the center of mass - Impulse and impact – Collision - Elastic and inelastic collision.	5	Lecture & ICT

	Newton's law of impact - Coefficient of restitution - Calculation of final velocities after impact – Direct and oblique collision - Loss of energy (direct and oblique impact)	7	Lecture & ICT
	Kepler's laws of planetary motion- Law of gravitation –Variation of g with latitude, altitude and depth.	5	Lecture & ICT
UNIT III	Artificial Satellites – Orbital velocity – Stationery satellite - Escape velocity	3	Lecture & ICT
	Rocket motion - Expression for thrust and velocity - Rocket propulsion system - Specific impulse – Multistage rocket.	4	Lecture & ICT
	Viscosity - Steady or stream lined flow - Critical velocity -Reynold's number - Significance - Equation of continuity of flow - Energy of the fluid .	6	Lecture & ICT
UNIT IV	Framing of HypothBernoullie's theorem – Statement and proof – Torricelle's theorem -Venturimeter - Pitot'stube.esis.	6	Lecture & ICT
UNIT	Sound – Transverse vibrations of stretched strings - Expressions for velocity and frequency – Melde's experiment	6	Lecture & ICT
V	Acoustics of buildings - Ultrasonics – Production - Properties and applications	6	Lecture & ICT

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean scores of Cos
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	2	3	4	4	3	3	2	4	3.3
CO2	4	4	2	2	4	4	3	3	2	4	3.2
CO3	4	4	3	3	3	4	3	3	3	3	3.3
CO4	4	3	2	3	4	4	4	2	3	3	3.2
CO5	4	4	3	3	4	4	3	3	2	4	3.4
Mean Overall Score											3.3
Result: The Score for this Course is 3.3 (High Relationship)											

iterationship	·)			
Mapping 1-20%	21-40%	41-60%	61-80%	81-100%

Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Total of Value Mean Score of (Total No. of Po	COs = s & PSOs		Total of Mean Sco Mean Overall Score Total No. of COs	ore e of COs =	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	40%	40%
UNDERSTANDING	40%	40%
APPLY	20%	20%

Course Designer:Mrs. K.Lilly Mary Eucharista Department of Physics

Programme : B.Sc., Physics Semester : I &II Sub. Code : P22

Part III : Core Course 3 Hours : 02 P/W 60 Hrs/I&II SEM Credits : 04

TITLE OF THE PAPER : ELECTRICITY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/Tutorial	ICT
	2	2	-	-	-

Preamble:

The scope of this course is to impart the basic knowledge in the elemental concepts and enhance the intellectual, experimental, analytical and Mathematical skills of the students in Electricity which has the key role in the development of modern technological world.

COURSE OUTCOME	Unit	Hrs P/I&IIS
On the successful completion of the course students will able to		
UNIT 1 CO1 : Understand the basic concepts of Electric field, Electric potential	1	14
and various types of capacitors		
UNIT 2 CO2 : Develop thorough knowledge in mechanical force and electrical	2	12
images and their applications in different systems		
UNIT 3 CO3 : Enhance the application skills by relating the phenomenon of	3	12
electricity like Quadrant electrometer, Absolute electrometer etc.,		
UNIT 4 CO4 : To understand the relationship between current and voltage in a	4	12
circuit by Kirchhoff's rules. Able to analyze a complex circuit using junction		
rules. It address the understanding the transfer of energy through an electric		
circuit		
UNIT 5 CO5 : Get a clear idea about thermoelectricity and its uses which	5	10
provide a pathway for the new scientific invention.		

UNIT I : ELECTROSTATICS

Coulomb's law - Electric field - Electric potential - Potential at a point due to a point charge -Potential at a point due to a Uniformly charged conducting sphere – Capacitors – Capacitance of a spherical capacitor (outer sphere earthed & inner sphere earthed) – Capacitance of a Parallel plate capacitor – Capacitance of a Parallel plate capacitor partially filled with a dielectric slab – Energy stored in a charged capacitor – Loss of energy on sharing of charges between two capacitors. UNIT II : GAUSS'S LAW AND ITS APPLICATIONS

Gauss's Law – Applications – Electric Field due to a Uniformly charged sphere – Electric Filed due to an infinite plane sheet of charge – Coulomb's theorem – Mechanical force experienced by unit area of a charged conductor - Charged soap bubble - Electrical images - Applications (i). Surface density of charge at a point on a conducting plane (ii). Force of attraction between the charge and the conducting plane.

UNIT III : ELECTROSTATIC INSTRUMENTS

Kelvin's the attracted Disc or Absolute Electrometer – Measurement of Potential difference between two given points – Determination of Relative permittivity of a material (in the form of a parallel slab) – The Quadrant electrometer – Measurement of ionization current.

UNIT IV : ELECTRICAL MEASUREMENTS

Kirchoff's laws – Wheatstone's network – Condition for balance – Carey Foster's Bridge – Potentiometer – Calibration of Ammeter – Calibration of voltmeter (Low range & High Range) – Comparison of capacitance of two capacitors.

UNIT V : THERMO ELECTRICITY

Seebeck Effect – Measurement of thermo EMF using potentiometer – Peltier Effect – Thomson Effect – Thermodynamics of thermocouple (Expressions for Peltier & Thomson Coefficients) – Thermoelectric diagram and its uses.

TEXT BOOKS

Electricity and Magnetism - R. Murugeshan - Ninth Revised edition, 2011, S.Chand & Co. Ltd.

Unit – I – Section : 1.2, 1.4, 3.1, 3.3, 3.5, 4.1, 4.2, 4.3, 4.5, 4.7, 4.9, 4.11

Unit – II – Section : 2.2, 2.5, 2.9, 2.11, 2.12, 3.9 (ii & iii only)

Unit – III – Section : 5.1, 5.2

Unit – IV – Section : 6.6, 7.1, 7.2, 7.4

Unit - V - Section : 8.1, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

REFERENCES

- 1. The Text Book of Electricity and Magnetism Brijlal and Subramanian, Twentieth Revised Edition, 1995, Ratan Prakashan Mandir - Educational and University Publishers.
- 2. Electricity and Magnetism Narayanamurthi, N.Nagaratnam and N.Lakshmi Narayan, First edition, the national Publishing Company. (1992)
- 3. Electricity and Magnetism K.K.Tiwari, 1993, S.Chand & Co.,

UNITS	ΤΟΡΙϹ	LECTURE HOURS	MODE OF TEACHING
UNIT 1 ELE	CTROSTATICS		

Coulomb's law, Electric field, Electric potential	2	2 hours Lecture and Discussion
Potential at a point due to a point charge, Potential at a point due to a Uniformly charged conducting sphere	4	3 hours Lecture and 1 hour Discussion and Quiz
Capacitors, Capacitance of a spherical capacitor (outer sphere earthed & inner sphere earthed)	3	2 hours Lecture 1 hour PPT and Discussion
Capacitance of a Parallel plate capacitor, Capacitance of a Parallel plate capacitor partially filled with a dielectric slab	3	2 hours Lecture 1 hour PPT and Discussion
Energy stored in a charged capacitor, Loss of energy on sharing of charges between two capacitors.	2	2 hours Lecture and Discussion
UNIT II GAUSS'S LAW AND ITS APPLICAT	IONS	

Gauss's Law, Electric Field due to a Uniformly charged sphere, Electric Filed due to an infinite plane sheet of charge	4	3 hours lecture 1 hour Discussion and Quiz
Coulomb's theorem, Mechanical force experienced by unit area of a charged conductor, Charged soap bubble	4	3 hours lecture 1 hour Discussion and Quiz
Electrical images – Applications (i). Surface density of charge at a point on a conducting plane (ii). Force of attraction between the charge and the conducting plane.	4	3 hours lecture 1 hour Discussion and Quiz

UNIT III ELECTROSTATIC INSTRUMENTS

Kelvin's the attracted Disc or Absolute	4	2 hours lecture
Electrometer		1 hour Discussion and Quiz
Measurement of Potential difference between	4	2 hours lecture
two given points, Determination of Relative		1 hour Discussion and Quiz
permittivity of a material (in the form of a		
parallel slab)		
The Ouadrant electrometer. Measurement of	4	2 hours lecture
ionization current.		1 hour Discussion and Quiz
UNIT IV ELECTRICAL MEASUREMENTS		
Kirchoff's laws, Wheatstone's network,	4	3 hours lecture
Condition for balance		1 hour Discussion and PPT
Carey Foster's Bridge – Potentiometer,	4	3 hours lecture
Calibration of Ammeter		1 hour Discussion and PPT
Calibration of voltmeter (Low range & High	4	3 hours lecture
Range), Comparison of capacitance of two		1 hour Discussion and PPT
capacitors.		
UNIT V THERMO ELECTRICITY		
Seebeck Effect, Measurement of thermo EMF	4	2 hours lecture
using potentiometer		1 hour Discussion and PPT
Peltier Effect, Thomson Effect	2	1 hours lecture
		1 hour Discussion and PPT
Thermodynamics of thermocouple (Expressions	4	3 hours lecture
for Peltier & Thomson Coefficients),		1 hour Discussion and PPT
Thermoelectric diagram and its uses.		

Course Programme Outcomes (POs) Outcomes					Programme Specific Outcomes (PSOs)				es	Mean scores of	
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Cos
CO1	4	3	3	3	3	4	3	4	4	3	3.4
CO2	4	3	3	3	3	4	3	4	3	3	3.3
CO3	3	4	3	3	4	3	4	4	3	4	3.5

CO4	4	3	3	3	4	4	3	3	3	3	3.3
CO5	3	4	4	3	4	3	3	4	3	3	3.4
Mean Overall Score									3.38		

Result: The Score for this Course is 3.38 (High

Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of	COs = <u>Total o</u> Total No. of Po	<u>f Values</u> s & PSOs	Mea	n Overall Score	of COs = <u>Total o</u> Total	<u>f Mean scores</u> No. of COs

ASSESSMENT RUBRICS

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer: Dr. P. INDRA DEVI, Assistant Professor, Department of Physics.

SEMESTER-I SKILL BASED PAPER- I ALTERNATIVE ENERGY SOURCES

CODE: SP11

2 hrs/week Credit: 2

UNIT- I: GLOBAL SCENARIO

Global warming - Green house effect - Effects of global warming - Control measures - Ways to reduce global warming - Ozone depletion control measures.

UNIT-II: SOLAR ENERGY

Sun –the fundamental source of energy - Solar water heater - Solar cooker - Solar cells - solar mobile chargers – solar torches – solar lanterns – solar street lights – solar traffic signals - solar pumps.

UNIT-III : OTHER ALTERNATIVE ENERGY SOURCES

Hydro electric power plant- Tidal energy - Wind energy - Geothermal energy - benefits - drawback - energy transformation. - Nuclear energy - Precaution.

UNIT-IV: BIOMASS ENERGY

Energy from biomass - Anaerobic fermentation - Bio gas plant (KVIC Plant) working - benefits- drawback - Renewable and Non renewable energy source - Bio fuels.

UNIT- V: ENERGY AUDIT

Energy management - Energy audit - Energy audit in home and schools - Energy conservation – Energy conservation measures in house hold appliances

TEXT BOOK:

Study material prepared by the Department

REFERENCES:

1. Non conventional energy sources - G.D. Rai – IV Edition,

2.Modern Physics -

IX Print, 2001, Khanna publishers, Delhi
R. Murugeshan, Kiruthiga Sivaprasath, S.Chand & Co. Pvt. Ltd., 2016, 18th Edition.

Programme:	B.Sc	Part III: Co	ore
Semester :]	Π	Hours : 4 Hrs/W	60 Hrs /S
Sub. Code :]	P21	Credits: 4	
TITLE	E OF THE PAPER: Heat and The	rmodynamics	

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	4	1	1	1	1

PREAMBLE: Understand the basics of Thermodynamics. Acquire knowledge in low temperature physics. Understand the transmission of heat and quantum theory of radiation.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1 : Understand the behavior of real gases.	1	12
UNIT 2 CO2 : State and explain the laws of thermodynamics. Apply the laws to explain carnot engine. Understand the concept of entropy and derive Maxwell's equations.	2	12
UNIT 3 CO3 : Understand the methods of liquefaction of air. Explain the properties of Helium I and II. Describe the process of Adiabatic demagnetization.	3	12
UNIT 4 CO4 : Understand the different methods of transmission of heat. State and explain an experiment to verify Stefan's law. Explain Angstrom Pyrheliometer.	4	12
UNIT 5 CO5 : Understand quantum theory of radiation and explain Einstein's and Debye's theory of specific heat.	5	12

SYLLABUS

UNIT I: STUDY OF REAL GASES

Real and ideal gases - Gas laws - Vander Waal's equation – Critical constants - Porous plug experiment - Theory and results - Joule Kelvin effect for a real gas – Relation between Boyle temperature, inversion temperature and critical temperature.

UNIT II: THERMODYNAMICS

Zeroth, I, II and III Laws - (statements alone) – Carnot's Heat Engine, Carnot's cycle-Concept of entropy - entropy change in reversible Carnot's cycle and irreversible processes - Entropy of a perfect gas – Clausius-Claypeyron latent heat equation - Maxwell's equations.

UNIT III: LOW TEMPERATURE PHYSICS

Liquefaction of air - Linde's process – Liquefaction of Helium – K-Onne's method – Helium I and II – Adiabatic demagnetisation.

UNIT IV: TRANSMISSION OF HEAT

Coefficient of thermal conductivity, Rectilinear flow of heat along a bar - Forbes method to find K - Cylindrical flow - k of rubber - Practical application of conduction and convection of heat – Radiation - Stefan's law - Experimental verification - Solar constant – Temperature of sun – Angstrom's Pyrheliometer .

UNIT V: QUANTUM THEORY OF RADIATION AND SPECIFIC HEAT

Distribution of energy spectrum of a black body – Wien's Law – Rayleigh Jean's Law – Planck's Radiation law – Theories of specific capacities of solid – Dulong Petit's law, Einstein's and Debye's theories.

TEXT BOOKS: Heat & Thermodynamics and statistical Physics - Brijlal, Dr. N. Subrahmanian,

P.S.Hemne, Revised Edition (2010) S.Chand & Co.,

Unit 1. 1.2, 2.1, 1.9, 2.8, 2.10, 2.21, 2.24, 2.25. Unit 2. 4.2, 4.7, 4.28, 5.15 (only statements), 4.23, 4.24, 5.1, 5.2, 5.4, 5.6, 5.9, 6.3, 6.11. Unit 3. 7.8, 7.11, 7.12, 7.16. Unit 4. 15.1, 15.2, 15.9, 15.14, 15.15, 15.20, 15.22, 8.12, 8.22, 8.26, 8.27, 8.28. Unit 5. 8.6, 8.9, 8.13, 8.14, 8.15, 8.17, 14.17, 14.19, 14.20.

REFERENCES:

1. Heat and Thermodynamics - Brijlal & Subramanian, Sixteenth edition

2. Heat and Thermodynamics - Singhal & Agarwal & Prakash, Eighth Revised Edition. Prakashan (Unit

3. Heat and Thermodynamics - D.S.Mathur, Sultan Chand & Sons

4. Thermodynamics and Statistical Mechanics - S.LKakani .

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I			
	Real and ideal gases - Gas laws - Vander Waal's equation – Critical constants	4	Lecture, GD, ICT and Teaching
	Porous plug experiment - Theory and results - Joule Kelvin effect for a real gas	4	Lecture, Video, ICT and Teaching
	Relation between Boyle temperature, inversion temperature and critical temperature.	4	Lecture, GD, ICT and Teaching
UNIT II			
	Zeroth, I, II and III Laws - (statements alone) – Carnot's Heat Engine, Carnot's cycle	4	Teaching
	Concept of entropy - entropy change in reversible Carnot's cycle and irreversible processes	4	Lecture, Video, ICT and Teaching
	Entropy of a perfect gas – Clausius-Claypeyron latent heat equation - Maxwell's equations	4	Lecture, GD, ICT and Teaching
UNIT III	1		
	Liquefaction of air - Linde's process	4	Lecture, GD, ICT and Teaching
	Liquefaction of Helium – K-Onne's method	4	Lecture, GD, ICT and Teaching
	Helium I and II – Adiabatic demagnetisation.	4	Lecture, GD, ICT and Teaching

Coefficient of thermal conductivity, Rectilinear flow of heat along a bar - Forbes method to find K	4	Lecture, GD, ICT and Teaching
Cylindrical flow - k of rubber - Practical application of conduction and convection of heat – Radiation - Stefan's law	4	Lecture, GD, ICT and Teaching
Experimental verification - Solar constant – Temperature of sun – Angstrom's Pyrheliometer .	4	Lecture, GD, ICT and Teaching
UNIT V		
Distribution of energy spectrum of a black body – Wien's Law – Rayleigh Jean's Law	4	Lecture, GD, ICT and Teaching
Planck's Radiation law – Theories of specific capacities of solid – Dulong Petit's law,	4	Lecture, GD, ICT and Teaching
Einstein's and Debye's theories.	4	Lecture, GD, ICT and Teaching

Course Outco	Prog	Programme Outcomes (Pos)				ramme Outcomes (Pos) Programme Specific Outcomes (PSOs)					Mean scores	
mes												of Cos
(Cos)	PO	РО	PO	PO	РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
	1	2	3	4	5							
CO1	4	2	4	4	3	4	2	4	3	4	4	3.45
CO2	4	2	4	4	3	4	2	4	3	4	4	3.45
CO3	4	2	4	4	3	4	2	4	3	4	4	3.45
CO4	4	2	4	4	3	4	2	4	3	4	4	3.45
CO5	4	2	4	4	3	4	2	4	3	4	4	3.45
						Mea	an Overa	Ill Score				3.45

Result: The Score for this Course is 3.45 (High Relationship)

	Relations	mp)			
Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5

Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = $\frac{\text{Total of Value}}{\text{Total No. of Pos & PSOs}}$			Mean Overall Sco	ore of COs	= <u>Total of Mean Score</u> Total No. of COs
BLOOM'S TAXANOMY	INTER	NAL	EXTERNAL		

IAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Programme : B.Sc., Physics Semester : I &II Sub. Code : PP1

Part III : Core Practical Hours : 02 P/W 60 Hrs/I&II SEM Credits : 02

TITLE OF THE PAPER: MAJOR PRACTICAL PAPER -I

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	2	1	-	1	-		
PREAMBLE	: This cou	rse offers op	portunity to hand	le the laboratory equipments	s and develop skills to		
determine elas	stic proper	ties, thermal	properties, surfac	e tension which are relevant	nt to the theory learnt		
in core course	s.						
COURSE OU	JTCOME						
	1 0	(1 C) 1					
At the end of	the Semest	er, the Stude	ents will be able to)			
CO1 · he far	niliar with	elasticity ar	nd various moduli	of elasticity			
CO 2 : calibrate the low range voltmeter							
CO3 : constr	uct differe	ent types of y	vaveforms				
	co b : construct anterent types of waveforms						

CO 4 : be familiar with spectroscopic techniques

CO 5 : experiment with semiconductor devices to understand their properties

LIST OF PRACTICALS

1. Thermal conductivity - Lee's method.

- 2. Joule's calorimeter specific heat capacity of liquid.
- 3. Compound pendulum.
- 4. Torsional pendulum.
- 5. Young's modulus uniform bending microscope
- 6. Young's modulus non uniform bending telescope
- 7. Young's modulus Cantilever depression.
- 8. Viscosity Stoke's method.
- 9. Surface tension by capillary rise.
- 10. Potentiometer calibration of low range voltmeter
- 11. Potentiometer calibration of ammeter
- 12. Desauty's bridge
- 13. Spectrometer Refractive index of prism
- 14. Newton's law of cooling
- 15. Young's modulus uniform bending telescope
- 16. Young's modulus non uniform bending microscope
- 17. L Owen's bridge
- 18. Diode characteristics
- 19. Study of multimeter
- 20. Series Resonance

TEXT BOOKS

- 1. M.N.Srinivasan, S. Balasubramanian and R.Ranganathan, 2013 "A Text book of Practical Physics" (Sultan Chand & Sons)
- 2. Ouseph C.C., Rao U.J. and Vijayendran V., 2008, "Practical Physics and Electronics", S. Viswanathan (Printers and Publishers), Private Ltd., New Delhi.

REFERENCE BOOKS

- 1. Arora C.L., 2012, "B.Sc. Practical Physics", Twentieth Edition, S. Chand & Company Ltd., New Delhi.
- 2. Kakani S.L. and Shubhra K., 2015, "Applied Physics Theory and Practicals", Viva Books Private Ltd., New Delhi.
- 3. Kakani S.L. and Shubhra K., 2011, "Engineering Practical Physics", CBS Private Ltd., New Delhi.
- 4. Manjeet S. and Anita D., 2011, "Applied Physics Theory and Experiments", Vavu Education of India, New Delhi.
- 5. Srivasta A. and Shukla R.K., 2006, "Practical Physics", New Age International Private Ltd., New Delhi.

Physics		Part III : Skill Based Paper 3
Semester	: II	Hours : 02 P/W 30 Hrs/II SEM
Sub. Code	: SP22	Credit : 02

PHYSICS IN EVERYDAY LIFE

		11110100	III BI BIII		
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/Tutorial	ICT
	2	2	-	-	-
Proomblo			_	-	

Preamble:

The scope of this course is to describe and discuss the physical principles that are behind the household appliances and the scientific issues in daily life. This is self-contained and comprehensive, starting from fundamental knowledge and progressing to their daily applications.

COURSE OUTCOME	Unit	Hrs P/IIS
On the successful completion of the course students will able to		
UNIT I CO1 : Understand the basic working concepts of pressure cooker,	1	6
microwave oven, refrigerator and toaster.		
UNIT 2 CO2 : Develop thorough knowledge about construction and working	2	6
principle of Geyser, Vacuum cleaner, Water purifier and Washing machine.		
UNIT 3 CO3: Understand the classification of air conditioner, mechanism of	3	6
DVD player, remote control and fluorescent tube.		
UNIT 4 CO4 : Understand how the fax machine, printer and photocopier works	4	6
UNIT 5 CO5: Get a clear idea about transformer, relay, telephone and its uses	5	6
which provide a pathway for the new scientific invention.		
	-	
UNIT-I: KITCHEN		
Pressure cooker- Microwave oven-Refrigerator and toaster.		

UNIT-II : BATHROOM

Geyser-Vacuum cleaner-Water purifier and washing machine.

UNIT-III: HALL AND STUDY ROOM

Air conditioner (Any two type) - DVD player - Remote control and fluorescent tube.

UNIT – IV: OFFICE

Fax machine- Printer- Photocopier

UNIT –V: GENERAL

Transformer – Relay- Telephone - Fuse and lightning arrestor.

TEXT BOOK :

Study Material Prepared by the Department.

REFERENCES:

1. How things work volume1 & volume 2 relevant pages.

1. How things work volume 1 & volume 2 relevant pages.						
2. www.How	stuffs work.com					
UNITS	TOPIC	LECTURE	MODE OF TEACHING			
		HOURS				
UNIT 1 KIT	CHEN					
Introduction to	physics appliances in everyday life	2	2 hours Lecture			
around us, wo	rking and principles of pressure cooker		and Discussion			
Introduction	and, working principles of	2	1 hours Lecture			
microwave o	ven		and 1 hour Discussion			
Brief knowled	ge about refrigerator and toaster.	2	2 hours Lecture			
			and Discussion			
UNIT II BA	ГНКООМ					
		•				
Meaning of C	Beyser and how it is working,	2	2 hours lecture			
vacuum clear	ner					
Principle of w	vater purifier, working mechanism	2	2 hours lecture			
and its applic	ations					
Clear explana	ation about washing machine	2	1 hours lecture			
			1 hour Discussion			
UNIT III H	ALL AND STUDY ROOM					
		1	P			
Air condition	er and its various types	2	1 hours lecture			
			1 hour Discussion			
Introduction	to DVD player and its working	2	1 hours lecture			
methods			1 hour Discussion			
Basic princi	ples applied in the remote control	2	1 hours lecture			
system and fl	uorescent tube		1 hour Discussion			
UNIT IV O	FFICE					
		-				
Working med	chanism of fax machine and its	2	2 hours lecture			
applications.						

		1 hour Discussion
UNIT V GENERAL		
	1	1
Transformer basic principle, working conditions	2	1 hours lecture
and its applications.		1 hour Discussion
Relay and telephone	2	1 hours lecture
		1 hour Discussion
Fuse and lightning arrestor	2	1 hours lecture
		1 hour Discussion

Course Outcomes	Programme Outcomes (POs)					Program (PSOs)	Programme Specific Outcomes PSOs)				Mean scores of
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Cos
CO1	4	4	3	3	4	4	3	4	4	3	3.6
CO2	4	4	3	3	4	4	3	4	3	3	3.5
CO3	4	4	3	3	4	3	4	4	3	4	3.6
CO4	4	4	3	3	4	4	4	3	3	3	3.5
CO5	4	4	3	3	4	3	3	4	3	3	3.4
Mean Overall Score						3.52					

Mean Overall Score Result: The Score for this Course is 3.38 (High

Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of COs = Total of Values Mean Overall Score of COs = Total of Mean s Total No. of Pos & PSOs Total No. of Pos & PSOs Total No. of Pos & PSOs					<u>f Mean scores</u> No. of COs	

ASSESSMENT RUBRICS

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer: Dr. P. INDRA DEVI,

Assistant Professor, Department of Physics.

Programme : Physics Semester :III Sub. Code : P31

Part III: Core Hours : 4 P/W 60Hrs P/S Credits :4

	111		LINI LIGI <u>LEL</u>			
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	4	1	1	1	1	
PREAMBLE:						
 Explain 	is the prir	nciple of elec	ctromagnetic indu	iction		
 Explain 	the princ	ciple and ope	eration of electror	nagnetic devices		
 Explain 	hysteres	is and magn	etic materials			
		COUR	SE OUTCOME		Unit	Hrs
At the end of the	ne Semes	ter, the Stud	ents will be able t	0		P/S
UNIT 1 CO1					1	13
Recall	basic law	s of self ind	uction and mutua	al induction be familiar with		-
self ind	uction an	d mutual inc	luction	······································		
	uotion un					
UNIT 2 CO2 :					2	13
Discuss	the bas	ic principl	e, working and	applications of devices like		
Galvan	ometer	1 1	, 0	11		
UNIT 3 CO3:					3	13
• underst	and cor	ncisely and	effectively co	mplete information about		
alternat	ing curre	nt and their o	concerned circuits	s		
UNIT 4 CO4					4	13
• Categor	rize the	types of m	naonetic material	ls on basis of and their		15
corresp	onding th	leories		is on ousis of and mon		
concsp	unung ti	1001105.				

TITLE OF THE PAPER: <u>ELECTROMAGNETISM</u>

UNIT 5 CO5:	5	8
• Discuss the basic Maxwell's equations and electromagnetic waves		

SYLLABUS

Unit I: ELECTRO MAGNETIC INDUCTION

Faraday's laws of electromagnetic induction - Self induction - Self inductance of a long solenoid - Determination of self inductance by Anderson's Bridge method - Mutual induction – Mutual inductance between two coaxial solenoids - Experimental determination of mutual Inductance - Coefficient of coupling.

Unit II: MAGNETIC EFFECT OF ELECTRIC CURRENT

Moving Coil Ballistic Galvanometer - Correction for Damping in Ballistic Galvanometer - Dead beat and Ballistic Galvanometers – Current and voltage sensitiveness of a moving coil galvanometer - Measurement of charge sensitiveness - Absolute capacitance of a capacitor -Comparison of capacitances using B.G.

Unit III: TRANSIENT PHENOMENA AND ALTERNATING CURRENT

Growth of current in a circuit containing a resistance and inductance- decay of current in an inductive circuit containing L and R - Charge and discharge of a capacitor through a resistor – Measurement of high resistance by leakage.

Mean Value of alternating current - R.M.S Value of an alternating current - LCR series resonance circuit , Acceptor circuit - Q factor - LCR Parallel resonance circuit , Rejector circuit

Unit IV: MAGNET1C PROPERTIES OF MATERIALS

Definitions of magnetic induction B, magnetization M, magnetic susceptibility and Magnetic permeability – Properties of Dia, Para and Ferro magnetic materials - Langevin's theory of Dia, Para magnetism – Weiss's theory of ferro magnetism - Hysterisis (only explanation)– Energy loss due to hysteresis (only explanation) – Importance of hysteresis curves.

Unit V :MAXWELL'S EQUATIONS AND ELECTROMAGNETIC WAVES

Fundamental laws of electromagnetism – Modified Ampere's law – Displacement current - Maxwell's equations in material media – Plane electromagnetic waves in free space – Poynting vector.

TEXT BOOKS:Electricity and Magnetism –R.Murugeshan, Ninth revised Edition, 2011; S.Chand& Co.,

REFERENCES:

- Electricity and Magnetism Brijlal and Subramanian, Twentieth revised edn.
- Electricity Magnetism Narayanamurti, Nagaratnam and Lakshminarayanan, Second revised edn.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			-
	Introduction to electromagnetic induction	2	Peer teaching
	Faraday's laws of electromagnetic induction	1	Tutorials

	Self induction	1	ICT
	Self inductance of a long solenoid	1	Lecture
	Determination of self inductance by Anderson's Bridge method	1	Lecture
	Mutual induction	2	ICT
	Mutual inductance between two coaxial solenoids	1	Lecture
	Experimental determination of mutual Inductance	1	Lecture
	Coefficient of coupling	1	Lecture
	Revision	2	Tutorials
UNIT 11			
	Introduction	2	ICT
	Moving Coil Ballistic Galvanometer	2	Peer Teaching
	Correction for Damping in Ballistic Galvanometer	1	Peer Teaching
	Dead beat and Ballistic Galvanometers	1	Tutorials
	Current and voltage sensitiveness of a moving coil galvanometer	1	Lecture
	Measurement of charge sensitiveness	2	Lecture
	Absolute capacitance of a capacitor	1	Lecture
	Comparison of capacitances using B.G	1	Lecture
	Revision	2	Tutorials
UNIT III			-
	Introduction to alternating current	2	ICT
	Growth of current in a circuit containing a resistance and inductance	1	Lecture
	decay of current in an inductive circuit containing L and R	1	Lecture
	Charge of a capacitor through a resistor	1	Lecture
	discharge of a capacitor through a resistor	1	Lecture
	Measurement of high resistance by leakage.	1	ICT
	Mean Value of alternating current and R.M.S Value of an alternating current	1	Peer teaching
	LCR series resonance circuit	1	Lecture
	Acceptor circuit , Rejector circuit and Q factor	1	Peer teaching
	LCR Parallel resonance circuit	1	Lecture
	Revision	2	Tutorials
UNIT IV			1
	Introduction	2	Peer teaching
	Definitions of magnetic induction B, magnetization M, magnetic susceptibility and Magnetic permeability	1	Tutorials
	Properties of Dia, Para and Ferro magnetic materials	2	Peer teaching
	Langevin's theory of Para magnetism	1	Lecture

	Langevin's theory of Dia magnetism	1	Lecture
	Weiss's theory of ferro magnetism	1	Lecture
	Hysterisis (only explanation).	1	ICT
	Energy loss due to hysteresis (only explanation)	1	ICT
	Importance of hysteresis curves.	1	ICT
	Revision	2	Tutorials
UNIT V			
	Introduction	1	Peer teaching
	Fundamental laws of electromagnetism	1	Peer teaching
	Modified Ampere's law	1	Tutorials
	Displacement current	1	Lecture
	Maxwell's equations in material media	1	Lecture
	Plane electromagnetic waves in free space	1	Lecture
	Poynting vector	1	Lecture
	Revision	1	Tutorials

Course	Programme Outcomes (Pos)					Programme Specific Outcomes (PSOs) Mean									
Outco															scores
mes															of Cos
(Cos)	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1								3	3	3	3	3	1	3	2.7
CO2								3	3	2	2	2	1	2	2.1
CO3								3	3	3	3	1	1	2	2.3
CO4								3	3	2	1	3	1	2	2.1
CO5								3	3	2	1	3	2	3	2.4
						-	Mea	an Ov	verall S	core	-	-	-	-	2.3
	Result: The Score for this Course is 2.3 (High														
_				Rela	tions	hip)									
Mappin	ıg		1-20	%		21-4	0%		41-60%	6	61-	80%		81-100)%
Scale				1			2		3			4		5	;
Relation	n		0.0-1	.0		1.1-2	2.0		2.1-3.0		3.1-	4.0		4.1-5.0)
Quality			Very	Poor		Poor			Moder	ate	Hig	h		Very E	ligh
Mean S	core	of CC) _S =	To	tal of	Value	<u>)</u>	Me	ean Ov	erall So	core of	COs =	= <u>Tota</u>	l of Me	ean Score
	Total No. of Pos& PSOs Total No. of COs						of COs								
BLO	OM'	S		IN	JTER	NAL			EXTE	RNAL					
TAX	ANO	MY													

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Programme : B.Sc.Part III: CoreSemester : IHours : 4 P/W 60 Hrs P/SSub. Code : P32Credits : 4TITLE OF THE PAPED: PROCE AMMING WITH C

IIILE OF THE FAFEK; FROGRAMMMING WITH C										
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT					
	4	2	1	1	-					

PREAMBLE: To understand the basics and concepts involved in programming language. To emphasize logical thinking and to develop programming skill.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the semester, the students will be able to		
CO1: define the basics of programming language	1	12
CO2: understand the concept of loops	2	12
CO3: describe arrays and strings	3	12
CO4: discuss the use of function and its classification	4	12
CO5: classify structure and union	5	12

SYLLABUS

UNIT I: INTRODUCTION

Basic structure of C Program - Character Set – C tokens-Keywords and identifiers, Constants, Variables, Data types - Declaration of Variables - Assigning values to variables -Defining Symbolic Constants. Arithmetic Operators - Relational, Logical, Assignment, Increment and Decrement, Conditional Operators- Arithmetic Expressions - Evaluation of expressions - Precedence of Arithmetic

operators - Managing input and output Operations- Reading a character-Writing a character- Formatted input- formatted output.

UNIT II: LOOPS

Decision making and branching - Simple IF, IF-ELSE, Statements - ELSE - IF Ladder - Switch statement - Conditional Operator - GOTO Statement - Decision making and looping. WHILE, DO and FOR Statements - Jumps in Loops.

UNIT III: ARRAYS AND STRINGS

Arrays - One dimension & Two dimensions - Declaration and initialization of one and two dimensional arrays.

Declaring and initializing string variables - String handling functions.

UNIT IV: FUNCTION

Need for user defined functions – Elements of user defined functions-Definition of C functions – Return Values and their types – Function calls- Function declaration - Category of functions - No arguments and No return values - Arguments but No return values - Arguments with return values - Nesting of functions – Recursion – Passing arrays to functions.

UNIT V: STRUCTURE AND UNION

Defining a structure - Declaring structure variables - Accessing Structure members - Structure initialization - Arrays of Structures - Arrays within structure - Structures within structures – Unions. **LIST OF PROGRAMS FOR PROGRAMMING WITH C :**

- 1. Program for temperature conversion From °c to °F or °F to °c or to use any scientific formula Simple type.
- 2. To reverse the digits of the given number.
- 3. To find the solution of a quadratic equation (Else-if ladder).
- 4. To find the largest of given three numbers (Nested if else)
- 5. To find the grade of the students (Switch statement)
- 6. To find the sum of digits of a given number (While)
- 7. To find the multiplication table (Do While)
- 8. To find the factorial of a given number (For)
- 9. To sort the given numbers in ascending or descending order (1D Array)
- 10. To find the transpose of matrix (2D- Array)
- 11. To find addition and subtraction of matrices (2D Array)
- 12. To multiply the given two matrices (2D Array)
- 13. To arrange a list of names in alphabetical order (String)
- 14. To find nCr = n! / r!(n-r)! (Function call)
- 15. To find the factorial of the given number (Recursion)

TEXT BOOK:

Programming in ANSI C - E.Balagurusamy, 6th Edition -

Tata Mc GrawHill Education Pvt. Ltd.

Unit – I : Ch. 1 – 1.8. Ch. 2 – 2.2. – 2.8., 2.10.,2.11. Ch. 3 – 3.1. – 3.7., 3.10. – 3.12. Ch. 4 – 4.2. – 4.5. Unit – II : Ch.5 – 5.1. – 5.4., 5.6. – 5.9. $\begin{array}{c} Ch.6-6.1.-6.5.\\ Unit-III: Ch.7-7.1.-7.6.\\ Ch. 8-8.2.,8.8.\\ Unit-IV: Ch.9-9.1.,9.2.,9.4.-9.12., 9.15.-9.17.\\ Unit-V: Ch.10-10.2.-10.5., 10.8.-10.10., 10.12.\\ \end{array}$

REFERENCE BOOKS:

1. Programming Language C with Practicals - Ananthi Sheshasaayee &

G.Sheshasaayee, Edition - 2001 (2nd Print)

2. Programming in C

- P. Radha Ganesan & S.Ramasamy – Edition - 2004, Scitech Publications

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I		110 0110	
	Basic structure of C Program - Character Set – C tokens-Keywords and identifiers, Constants, Variables, Data types - Declaration of Variables - Assigning values to variables -Defining Symbolic Constants	4	Lecture , peer teaching & GD
	Arithmetic Operators - Relational, Logical, Assignment, Increment and Decrement, Conditional Operators- Arithmetic Expressions - Evaluation of expressions - Precedence of Arithmetic operators element - Memory map and Addresses	4	Lecture , peer teaching & GD
	Managing input and output Operations- Reading a character-Writing a character- Formatted input- formatted output.	4	Lecture , peer teaching & GD
UNIT II		-	
	Decision making and branching - Simple IF, IF-ELSE, Statements - ELSE - IF Ladder	4	Lecture , peer teaching & GD
	Switch statement - Conditional Operator - GOTO Statement - Decision making and looping	4	Lecture , peer teaching & GD
	WHILE, DO and FOR Statements - Jumps in Loops	4	Lecture , peer teaching & GD
UNIT III			

	Arrays - One dimension & Two dimensions	4	Lecture , peer teaching & GD
	Declaration and initialization of one and two dimensional arrays.	4	Lecture , peer teaching & GD
	Declaring and initializing string variables - String handling functions.	4	Lecture , peer teaching & GD
UNIT IV			
	Need for user defined functions – Elements of user defined functions-Definition of C functions – Return Values and their types –	4	Lecture , peer teaching & GD
	Function calls- Function declaration - Category of functions - No arguments and No return values	4	Lecture , peer teaching & GD
	Arguments but No return values - Arguments with return values - Nesting of functions – Recursion – Passing arrays to functions	4	Lecture , peer teaching & GD
UNIT V		-	
	Defining a structure - Declaring structure variables	4	Lecture , peer teaching & GD
	Accessing Structure members -Structure initialization - Arrays of Structures	4	Lecture , peer teaching & GD
	Arrays within structure - Structures within structures –Unions	4	Lecture , peer teaching & GD

Course	Course Programme Outcomes (POs) Programme Specific Outcomes						Mean				
Outcomes						(PSOs	5)				scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of
<u>,</u>											Cos
CO1	3	3	3	3	4	4	3	3	3	4	3.3
CO2	3	4	3	3	3	4	3	3	3	4	3.3
CO3	3	3	4	3	4	4	3	3	3	4	3.4
CO4	3	3	3	3	3	4	3	3	3	4	3.2
CO5	3	3	3	3	3	4	3	3	3	4	3.2
	Mean Overall Score										

Result: The Score for this Course is 3.28 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of	f COs =		Mean Overall Score of COs =			
Total of V	<u>alue</u>		Total of Mean Score			
Total No. of H	Pos & PSOs		Total No. of COs			

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	30%	30%
UNDERSTANDING	30%	30%
APPLY	40%	40%
Course Designer: G	.Selvarani Departn	nent of Physics

Programme : B.Sc Semester : IV

Part III: Core paper Hours : 4 P/W 60Hrs P/S

Sub. Code :P41 TITLE OF THE PAPER: Mathematical Physics

Credits : 4

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT						
	4	3	-	1	-						
PREAMBLE: <i>physics</i> and to	PREAMBLE: The purpose of the <i>course</i> is to introduce students to <i>methods</i> of <i>mathematical physics</i> and to develop required <i>mathematical</i> skills to solve problems in <i>physics</i> .										
		COUR	SE OUTCOME		Unit	Hrs P/S					
At the end of the	ne Semes	ter, the Stud	ents will be able t	0							

UNIT 1 CO1: define the Vector analysis (KR)	1	18
UNIT 2 CO2: solve the problems using Matrices (PI)	2	18
UNIT 3 CO3: interpret the Beta, Gamma and Dirac delta function (UI)	3	18
UNIT 4 CO4 : explain about Laplace transform and its related problems (EI)	4	18
UNIT 5 CO5: solve the problems using Numerical methods (PI)	5	18
	-	

SYLLABUS Unit – I: VECTOR ALGEBRA Vectors- Addition of vectors- Rectangular resolution of a vector- Unit vector- position vector of a point-ratio formula-product of two vectors-Scalar, or dot product-Useful results-Work done as a scalar product-Vector product or cross product-Vector product expressed as determinant- Area of parallelogram-Moment of a force-Angular velocity- Vector function- Differentiation of vectors-Gradient of a scalar function- Geometrical meaning of gradient and normal- Divergence of a vector function-Green's theorem.

Unit - II: MATRIX

Introduction– Special Types of Matrices - Transpose of a Matrix – The Conjugate of a Matrix –Symmetric and Antisymmetric Matrices – Determinant of a Matrix – Adjoint of a Matrix – Invertible Matrices - Inverse of a matrix

Unit -III : GAMMA, BETA FUNCTION

Gamma function- Proof-Transformation of gamma function-Beta function- Evaluation of beta function – A property of beta function- Transformation of beta function- Relation between Beta and Gamma function- Proof

Unit – IV : LAPLACE TRANSFORM

Introduction – Laplace transform- Important formulae – Properties of Laplace transform- change of scale property (problem related to Laplace transform), Laplace transform of the derivative of f(t), Laplace transform of the derivative of order n.

Unit – V: NUMERICAL ANALYSIS

Introduction – Numerical Differentiation – Numerical Integration General quadrature formula for equidistant values of argument x, The trapezoidal rule, Simpson's one – third rule, Simpson's three – eighth rule - Euler's rule,

Text Book:

1. Mathematical Physics – H.K.DASS, Dr. RAMA VERMA (Sixth Revised Edition, 2013)

Unit : I – 1.12, 1.5, 2.1,2.2,2.5,2.6,2.8,3.4 (theorem only) Unit : III – 9.1-9.9 Unit : IV – 46.1-46.4,46.5 (Linear property), 46.8,46.9(Problem related to Laplace transform)

2. Mathematical Physics with Classical Mechanics – Sathya Prakash (SULTAN CHAND & SONS Sixth Revised edition 2012)

Unit :II – 2.1,2.5,2.6,2.7,2.9,2.11,2.15,2.16 Unit:V – 14, 14.4,14.5

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING

	Vectors- Addition of vectors- Rectangular resolution of a vector- Unit vector- position vector of a point-ratio formula-product of	4	Lecture & Tutorial
UNIT I	two vectors-Scalar, or dot product-Useful results		
	Work done as a scalar product-Vector product or cross product-Vector product expressed as determinant- Area of parallelogram-Momen t of a force-Angular velocity	4	Lecture & Tutorial
	Vector function- Differentiation of vectors-Gradient of a scalar function- Geometrical meaning of gradient and normal- Divergence of a vector function- Green's theorem.	4	Lecture & Tutorial
UNIT II	Introduction– Special Types of Matrices - Transpose of a Matrix	4	Lecture & Tutorial
	The Conjugate of a Matrix –Symmetric and Antisymmetric Matrices	3	Lecture & Tutorial
	Determinant of a Matrix – Adjoint of a Matrix – Invertible Matrices - Inverse of a matrix	5	Lecture & Tutorial

	Gamma function- Proof-Transformation of gamma function	4	Lecture & Tutorial
UNIT III	Beta function– Evaluation of beta function – A property of beta function	4	Lecture & Tutorial
	Transformation of beta function– Relation between Beta and Gamma function– Proof	4	Lecture & Tutorial
	Introduction – Laplace transform- Important formulae – Properties of Laplace transform	4	Lecture & Tutorial
UNIT IV	change of scale property (problem related to Laplace transform),	3	Lecture & Tutorial
	Laplace transform of the derivative of f(t), Laplace transform of the derivative of order n	5	Lecture & Tutorial
		·	
UNIT V	Introduction – Numerical Differentiation – Numerical Integration,	4	Lecture & Tutorial
	General quadrature formula for equidistant values of argument x, The trapezoidal rule, Simpson's one – third rule	5	Lecture & Tutorial
	Simpson's three – eighth rule - Euler's rule	3	Lecture & Tutorial

Course Outcomes (COs)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean Scores of COs			
	PO	1 PO2	PO3	PO4	PO5	PSO1	PSO2	PS	03	PSO4	PS	05		
CO1	3	4	3	4	3	3	4	3		3	5		3.5	
CO2	5	3	4	3	4	3	3	4		3	4		3.6	1
CO3	3	3	3	4	3	3	5	4		3	3		3.4	
CO4	3	3	4	3	3	3	4	4		3	4		3.4	
CO5	4	3	3	4	4	3	3	4		4	3		3.5	
					Mean Overal				score					
Result: The Score for this Course is 3.48 (High Relationship)														
Mapping 1-20%				21-40%		4	41-60%		61-80%		81-100%			
Scale				2			3		4		5			
Relation 0.0-1		0.0-1.0		1.1-2.0		2.	2.1-3.0		3.1-4.0		4.1	4.1-5.0		
Quality Very		Very Pe	oor	Poor		M	Moderate		High		Ver	Very High		
Mean Score of COs = $\frac{\text{Total of Value}}{\text{Total No. of Pos & PSOs}}$					Mea	Mean Overall Score of COs = <u>Total of Mean Score</u> Total No. of COs								
BLOOM'S INTERNAL			EXTERNAL											
TAXANOMY														
KNOWLEDGE 30%				30	30%									
UNDERSTANDING 40%					40%									
APPLY			30%			30	30%							

Course Designer: M.Mahalakshmi

Department of Physics.

Programme : UG Physics Semester : VIII Sub. Code : P42

Part III: Core Hours : 4 P/W 60Hrs P/S Credits : 4

TITLE OF THE PAPER: PHYSICAL AND LASER OPTICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDO	<u>-S/TUTORIAL</u>			
	4	1	2	1				
PREAMBLE: Knowing characteristics of light and laser, measuring various spectral properties of light by different apparatus and describing applications of laser								
At the end of the	Unit	Hrs P/S						
UNIT 1 CO1 wavelength of	1	14						
UNIT 2 CO2:	2	15						
UNIT 3 CO3: light	3	14						
UNIT 4 CO4 : Describe the principle, properties and types of laser optics	4	9						
--	---	---						
UNIT 5 CO5: Apply laser principle into various fields	5	8						

SYLLABUS

Unit – I : INTERFERENCE

Interference of light waves - Interferometry –Determination of refractive index of a light by Newton's rings - Michelson interferometer - determination of wavelength of monochromatic light – Determination of difference between two doublets – Jamin's interferometer – Rayleigh's refractometer -measurement of refractive index of gas

Unit – II: DIFFRACTION

Diffraction of light waves – Fresnel's half period zones - Explanation of approximate rectilinear propagation of light – Zone plate – Explanation for diffraction at a straight edge - Fraunhofer diffraction at a single slit - Double slit – Diffraction grating - Absent spectra - Dispersive power of grating - Overlapping of spectral lines - Determination of wavelength of spectral lines using grating - Resolving power of a diffraction grating

Unit – III : POLARISATION

Polarisation of light - Double refraction - Nicol prism - Dichroism - QWP -HWP - Theory of plane polarized light, elliptically polarized light and circularly polarised light - Production and analysis of plane polarised light, circularly polarised light and elliptically polarised light -Babinet's compensator

Unit – IV: LASER OPTICS

Salient features of laser - Principles of laser, Population inversion, pumping - Einstein's A and B coefficients -Stimulated emission, population inversion –properties of laser- resonators – Ruby laser – He-Ne laser

Unit – V : APPLICATIONS OF LASER

General & meditional applications of laser, lidar, Holography, Principle - Recording of the hologram and viewing of the image from a hologram – Applications of holography

TEXT BOOK :

Optics and spectroscopy – R.Murugesan, Kiruthiga Sivaprasath, 8 th revised edition, 2012, S.Chand

UNIT-I: CHAPTER -2.1, 2.2, 2.10 - 2.14 UNIT-II : CHAPTER -3.1- 3.3, 3.7, 3.10- 3.15, 3.17, 3.24 UNIT-III : CHAPTER -4.1, 4.5, 4.8, 4.10, 4.12 -4.14, 16.8, 31.3 UNIT-IV: CHAPTER -5.13 - 5.15, 5.17, 12.1, 12.2 UNIT-V : CHAPTER -9.1, 9.3, 39.2(4), 39.4, 39.5

Reference:

1. Optics and Spectroscopy –Brijlal & Subramanian, 2006 edition, S.Chand &Co.

2. A Text book of Physics- R.Murugesan, 2006 edition, S.Chand &Co.

UNITS TOPIC	LECTURE HOURS	MODE OF TEACHING
-------------	---------------	------------------

	UNIT 1	
Interference of light	2	Lecture, GD
Determination of refractive index of a light by Newton's rings	2	Peer Teaching
Michelson interferometer	2	Peer Teaching
determination of wavelength of monochromatic light	2	Peer Teaching
Determination of difference between two doublets	2	Peer Teaching
Jamin's interferometer	1	Peer Teaching
Rayleigh's refractometer -measurement of refractive index of gas	3	Peer Teaching, Tutorial
	UNIT 11	•
Diffraction of light waves, Fresnel's half period zones	2	Lecture
Explanation of approximate rectilinear propagation of light	2	Peer Teaching
Zone plate	2	Peer Teaching, Tutorial
Explanation for diffraction at a straight edge	1	Peer Teaching
Fraunhofer diffraction at a single slit	1	Peer Teaching
Double slit	1	Peer Teaching
Diffraction grating	1	Peer Teaching
Absent spectra	1	Lecture
Dispersive power of grating	1	Lecture
Overlapping of spectral lines	1	Lecture
Determination of wavelength of spectral lines using grating	1	Lecture
Resolving power of a diffraction grating	1	Lecture

	UNIT III	
Polarisation of light - Double refraction	1	Lecture
Nicol prism	1	Peer Teaching
Dichroism , QWP ,HWP	2	Peer Teaching
Theory of plane polarized light, elliptically polarized light and circularly polarised light	4	Peer Teaching
Production and analysis of plane polarised light, circularly polarised light and elliptically polarised light	3	Peer Teaching
Babinet's compensator	3	Peer Teaching, Tutorial
	UNIT IV	
Salient features of laser, properties of laser	1	Lecture,GD
Principles of laser, Population inversion, pumping	2	Peer Teaching, Tutorial
Einstein's A and B coefficients	2	Peer Teaching
Stimulated emission, population inversion	1	Peer Teaching
Resonators	1	Peer Teaching
Ruby laser	1	Peer Teaching
He-Ne laser	1	Peer Teaching
	UNIT V	
General & meditional applications of laser,	1	Lecture, GD
lidar,	2	Peer Teaching, Tutorial
Holography, Principle -Recording of the hologram and viewing of the image from a hologram	3	Peer Teaching
Applications of holography	2	Lecture, GD

Course	Programme Outcomes					rse Programme Outcomes Programme Specific Outcomes					Mean	
Outco	(Pos)							(PS	Os)			scores
mes							-	_	_	_		of Cos
(Cos)	Р	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	-
	0	2	3	4	5	01	02	O3	04	05	06	
	1											
CO1	3	4	4	3	3	4	4	4	3	3	3	3.46
CO2	3	4	4	3	3	4	4	4	3	3	3	3.46
CO3	3	3	4	3	3	4	3	4	3	3	3	3.27
CO4	3	3	4	4	4	4	3	4	4	4	4	3.73
CO5	3	4	4	4	4	4	3	3	4	4	4	3.73
Mean Overall Score							3.53					

Result. The secre for this course is 5.55 (fingh Relationship)
--

Programme : B.Sc., Physics Semester : III & IV Sub. Code : SP43 Part III : Skill Based Paper- 3 Hours : 01 P/W 30 Hrs/III&IV SEM Credits : 02

ASTROPHYSICS AND COSMOS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/Tutorial	ICT			
	1	1	-	-	-			
Preamble:								
The course is d	The course is designed to provide students of physics their first pedagogical introduction to the							
Universe. Thou	Universe. Though discussions of the physics underlying diverse astrophysical processes and							
phenomena, the	cales, an	d provide						
them with the b		-						
COURSE OU	Unit	Hrs						
On the success		P/III&IVSem						
	1	6						
UNIT I COI:		6						
ot similarities	s and c	litterences	between these	objects. Understand the				
fundamental co	oncepts of	f the sky, the	e stars and motion	of planets.				

UNIT 2 CO2: understand the presently accepted formation theories of the solar	2	6
system based upon the observational and physical constrains.		
UNIT 3 CO3 : understanding the basic properties of the Sun and other Stars	3	6
UNIT 4 CO4 : understand the concept of stellar distance and magnitude of	4	6
star light. Also students extend their understanding of physical concepts that		
apply to the study of block hole		
UNIT 5 CO5 : explain the evolution of expanding universe using concepts of	5	6
Big Bang and observational evidence.		

UNIT – I: EXPLORING THE SKY

The sky: The Stars-The celestial sphere – The cycles of the sun – The motion of the planets (Kepler's). The cycles of the moon: The phases of the moon – The tide – Lunar eclipses – Solar eclipses.

UNIT – II : OBSERVATIONAL ASTRONOMY

Astronomical observations – Radio telescope - Classes of galaxies

UNIT – III : THE STARS

The sun – Our star – The solar activity – The solar atmosphere – Nuclear fusion in the sun.

UNIT – IV : STELLAR OBJECTS

Stellar distance – Magnitude of star light – Evolutionary stages of stars – Fate of stars, Black holes in space.

UNIT – V : ORIGIN OF COSMOS

Cosmological principle – The Bigbang – Hubble's law expanding Universe – Steady state Universe.

TEXT BOOK:

Study Material Prepared by the Department.

REFERENCE BOOKS

1. Astrophysics-Stars and galaxies - K.D.Abhyankar, 1992

2.	Foundation of astronomy	Tata McGraw Hill Publishing,New Delhi. - Michael A. Seeds - 6 th Edition.
3.	Universe	– William J. Kaufmann- 4th Edition,1994.
4.	New horizons in astronomy	- John C. Brandt and Stephen P. Maran.
5.	Exploration of the Universe	Books/Wle 1972. -George O.Abell, 1986, Saundus College

D1.1	liahima.	
PUD.	nsning.	
	\mathcal{O}	

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
UNIT 1: EX	PLORING THE SKY	-	
The sky, The s	stars, celestial sphere	2	2 hours Lecture
			and Discussion
Cycles of the S	Sun, Motion of the planets	2	1 hours Lecture
			and 1 hour Discussion
The cycles and	d Phases of Moon	1	1 hours Lecture
Lunar eclipses	and Solar eclipses	1	1 hours Lecture
UNIT II : O	BSERVATIONAL ASTRONOMY	•	

Astronomical observations	2	1 hours lecture
		1 hour Discussion
Radio telescope	2	1 hours lecture
1		1 hour Discussion
Classes of Galaxies	2	1 hours lecture
		1 hour Discussion
LINUT HL - THE STADS		
UNIT III: THE STARS	2	1 hours losture
The sun, star, solar activity	2	1 hours lecture
The Color star carbons		2 hours lootuus
The Solar atmosphere		2 nours lecture
Nuclear fusion in the sky	2	1 hours lecture
-		1 hour Discussion
UNIT IV : STELLAR OBJECTS		
Stellar distances, Magnitude of star light	2	1 hours lecture
		1 hour Discussion
Evolutionary stages of stars, Fate of stars	2	1 hours lecture
		1 hour Discussion
Black holes in Space	2	1 hours lecture
		1 hour Discussion
UNIT V : ORIGIN OF COSMOS	•	
Cosmological principle	2	1 hours lecture
		1 hour Discussion
The Bigbang theory	2	1 hours lecture
		1 hour Discussion
Hubble's law expanding universe, Steady state	2	1 hours lecture
Universe		1 hour Discussion

Course Outcomes	Progr	amme	Outco	mes (P	Os)	Programme Specific Outcomes (PSOs)				Mean scores of	
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Cos
CO1	4	3	3	3	3	4	3	3	4	4	3.4
CO2	4	3	3	3	3	4	3	3	4	3	3.3
CO3	4	3	3	4	3	4	3	4	3	4	3.5
CO4	4	3	3	4	3	4	3	3	3	3	3.3
CO5	4	3	3	4	3	3	3	3	4	4	3.4
Mean Overall Score											3.38

Result: The Score for this Course is 3.38 (High

Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of	COs = <u>Total o</u> Total No. of Po	<u>f Values</u> s & PSOs	Mea	n Overall Score	of COs = <u>Total o</u> Total	<u>f Mean scores</u> No. of COs

ASSESSMENT RUBRICS

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer: Dr. P. N,NIRMALA, Assistant Professor, Department of Physics.

Programme : B.Sc. Semester : III & IV Sub. Code : PP2 Part III: Practical Hours :2 P/W 30Hrs P/S Credits : 2

TITLE OF THE PAPER: MAJOR PRACTICAL – PAPER – II

Pedagogy	Hours	Lecture	Peer Teaching	GD/ Vedos/Tutorial	Р
	2		_		2

PREAMBLE:This course is able to develop practical knowledge by applying the experimental methods to correlate with the Physics theory. 2. To learn the usage of electrical and optical systems for various measurements. 3. Apply the analytical techniques and graphical analysis to the experimental data. 4. To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

COURSE OUTCOME	
At the end of the Semester, the Students will be able to	
CO1 : apply the procedures and techniques for the experiments.	
CO2: use the different measuring devices and meters to record the data	
with precision .	
CO3: show the basic working condition of the experiment.	

CO3: apply the mathematical concepts/equations to obtain quantitative results. CO4: understand the standard value of the results and the applications. CO5:communicate scientific information in oral, written and graphical formats. CO6: develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results CO7: identify the basic concepts needed to develop a program		
CO4: understand the standard value of the results and the applications. CO5: communicate scientific information in oral, written and graphical formats. CO6: develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results CO7: identify the basic concepts needed to develop a program	CO3 : apply the mathematical concepts/equations to obtain quantitative results.	
CO5:communicate scientific information in oral, written and graphical formats. CO6: develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results CO7: identify the basic concepts needed to develop a program	CO4 : understand the standard value of the results and the applications.	
CO6: develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results CO7: identify the basic concepts needed to develop a program	CO5 :communicate scientific information in oral, written and graphical formats.	
performing the laboratory experiments and by interpreting the results CO7: identify the basic concepts needed to develop a program	CO6: develop basic communication skills through working in groups in	
the laboratory experiments and by interpreting the results CO7: identify the basic concepts needed to develop a program	performing	
CO7: identify the basic concepts needed to develop a program	the laboratory experiments and by interpreting the results	
	CO7: identify the basic concepts needed to develop a program	

LIST OF PRACTICALS

- 1. LCR Parallel resonance
- 2. BH determination field coil
- 3. AC frequency Sonometer
- 4. MG figure of merit
- 5. B.G figure of merit
- 6. BG comparison of capacitances
- 7. Air wedge Thickness of thin wire
- 8. Dispersive power of prism spectrometer
- 9. Grating normal incidence spectrometer
- 10. Grating minimum deviation spectrometer
- 11. Boltzmann's constant
- 12. a) Program for temperature conversion -from °c to °F or °Fto °cb) To find the solution of a quadratic equation (else-if ladder).
- 13. a) To find the largest of given three numbers (nested if else)b) To find the sum of digits of a given number (while)
- 14. a) To find the factorial of a given number (for)b) To sort the given numbers in ascending or descending order (1D array)
- 15. a) To find the multiplication table (Do-While)b)To arrange a list of names in an Alphabetical order (string)
- 16. To reverse the digits of the given number
- 17. To find the grade of the students
- 18. To generate a electric bill

Books

- 1. C.L. Arora, Practical physics, S. Chand Publication
- 2. B.L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House
- 3. A Textbook of Practical Physics, M.N.Srinivasan, S.Balasubramanian, R.Ranganathan S.Chand&Sons Publications
- 4. Programming in ANSI C E.Balagurusamy, 6th Edition Tata McGrawHill Education Pvt. Ltd.

Course designer: R.	Vijayalakshmi	Department of physics
U	55	1 1 2

Programme : B.ScSemester: IIISub. Code: P51

r

Part III: Core Hours : 4 P/W 60Hrs P/S Credits: 4

	Hours	Lecture	Peer Teaching	GD/ Videos/Tutori	al	ICT	
Pedagogy	4	3				1	
PREAMBLE: To enable the students to acquire a thorough knowledge of important network theorems involved in electronic circuits and fundamentals of Basic Electronic components and their applications. To explain the students the different types of transistor amplifiers, oscillators and multivibrators. To provide the students a thorough knowledge of modulation in communication.							
COURSE OUTCOMEUnitHrs P/SAt the end of the Semester, the Students will be able toUnitHrs P/S							
CO 1:understand	1	12					

TITLE OF THE PAPER: BASIC ELECTRONICS

CO 2: describe the function of various diodes and their applications	2	12
CO 3: distinguish between BJT and FET and able to explain the working of amplifiers	3	12
CO 4: explain the working of oscillators and multivibrators	4	12
CO 5: describe the principle and types of modulation	5	12

SYLLABUS

UNIT – I : KIRCHHOFF'S LAWS AND NET WORK THEOREMS

Kirchhoff's Laws - Kirchhoff's Current Laws - Kirchhoff's Voltage Laws - Thevenin's Theorem - Procedure for Appling the Thevenin's Theorem - Norton's Theorem - Procedure for Appling the Norton's Theorem - Superposition Theorem.

UNIT – II : PN JUNCTION DIODE AND SPECIAL PURPOSE DIODES

V-I Characteristic of a PN Junction Diode - Forward and Reverse Characteristics - Diode Current Equation - Zener Diode - Reverse Characteristic of a Zener Diode - Applications - Schottky Diode -Applications - PIN Diode - Applications - Light Emitting Diode - Applications.

UNIT – III : TRANSISTORS AND AMPLIFIERS

Transistor in common Emitter Configuration - Characteristic of a Transistor in Common-Emitter Configurations - Field-Effect Transistor - Characteristic of JFET - Common-Emitter Transistor amplifier- RC Coupled Amplifier – Calculation of Voltage Gain of RC Coupled Amplifier- frequency response of RC Coupled Amplifier

UNIT - IV : OSCILLATORS AND MULTIVIBRATORS

Principle of feedback - Advantages and Disadvantages of negative feedback - Sinusoidal Oscillators -Comparison Between an Amplifier and an Oscillators - Classification of Oscillators -The Barkhausen Criterion - Hartley Oscillator- Colpitts Oscillators - Phase shift Oscillators -Multivibrators - types-Astable Multivibrators.

UNIT – V : MODULATION AND DEMODULATION

Modulation – Types – Amplitude Modulation – Modulated power output – Frequency Modulation – Expression for frequency modulated voltage – FM Receiver – Transmission of Radio waves – AM Receiver – Characteristic of a receiver – Demodulation – FM Transmitter.

TEXT BOOKS :

1. A Text Book of Applied Electronics- Dr.R.S.SEDHA- S.CHAND & Company Pvt . Ltd. Reprint 2015.

UNIT-I: Chapter 5: 5.1 – 5.9

UNIT-II: Chapter 12 & 13 :12.1–12.5, 13.2, 13.3, 13.6, 13.15, 13.16, 13.19 – 13.21,13.23 UNIT-III: Chapter 15, 16, 24 & 26: 15.6-15.8,16.1-16.3,16.6,16.7, 24.1-24.4, 26.4-26.6. UNIT-IV: Chapter 29,31&32: 29.1-29.3,31.1-31.3,31.9,31.14,31.15,31.26,32.6-32.8.

 ANALOG ELECTRONICS AND DIGITAL ELECTRONICS – G.JOSE ROBIN & A.UBALDRAJ, Indira Publication First Edition: May 2008.
 UNIT-V : Chapter 5 : Page No : 249-262, 264-275, 279-280

BOOKS FOR REFERENCE :

- 1. Basic Electronics Solid State
- B.L. Theraja, IV Edition S. Chand & Co., 1989
- 2. Principles of Electronics
- 3. Electronics II
- V.K. Mehta, S.Chand & Co., Ltd., Reprint, 1993.
 G. Jose Robin & Ubald Raj, Indira Publication, Eirst Edition: May 2008
- First Edition: May 2008

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
	Kirchhoff's Laws - Kirchhoff's Current Laws - Kirchhoff's Voltage Laws.	4	Lecture & ICT
	Thevenin's Theorem - Procedure for Appling the Thevenin's Theorem.	4	Lecture & ICT
UNITI	Norton's Theorem- Procedure for Appling the Norton's Theorem - Superposition Theorem.	4	Lecture & ICT
	V-I Characteristic of a PN Junction Diode - Forward and Reverse Characteristics - Diode Current Equation.	4	Lecture & ICT
UNIT II	Zener Diode - Reverse Characteristic of a Zener Diode- Applications.	3	Lecture & ICT
	Schottky Diode - Applications - PIN Diode – Applications - Light Emitting Diode - Applications.	5	Lecture & ICT
	Transistor in common Emitter Configuration - Characteristic of a Transistor in Common-Emitter Configurations-Field-Effect Transistor - Characteristic of JFET.	6	Lecture & ICT
UNIT III	Common-Emitter Transistor amplifier- RC Coupled Amplifier – Calculation of Voltage Gain of RC Coupled Amplifier- frequency response of RC Coupled Amplifier.	6	Lecture & ICT
	Principle of feedback - Advantages and Disadvantages of negative feedback – Sinusoidal Oscillators- Comparison Between an Amplifier and an Oscillators.	4	Lecture & ICT
UNIT IV	Classification of Oscillators - The Barkhausen Criterion - Hartley Oscillator- Colpitts Oscillators – Phase shift Oscillators.	5	Lecture & ICT

	Multivibrators–types-Astable Multivibrators.	3	Lecture & ICT
UNIT	Modulation – Types – Amplitude Modulation – Modulated power output – Frequency Modulation – Expression for frequency modulated voltage.	6	Lecture & ICT
V	FM Receiver – Transmission of Radio waves – AM Receiver – Characteristic of a receiver – Demodulation – FM Transmitter.	6	Lecture & ICT

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	4	3	3	4	4	3	2	3	3.4
CO2	4	4	3	2	3	4	4	3	2	3	3.2
CO3	4	4	3	3	3	4	4	3	3	4	3.5
CO4	4	3	3	3	4	4	4	2	3	4	3.4
CO5	4	4	3	3	3	4	4	2	2	4	3.3
Mean Overall Score										3.36	

Result: The Score for this Course is 3.36 (High

81-100%

Relationsh	ip)		
1-20%	21-40%	41-60%	61-80%

Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Total of Value Mean Score of C Total No. of Po	COs = s& PSOs		Total of Mean Sco Mean Overall Score Fotal No. of COs	ore e of COs =	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	40%	40%
UNDERSTANDING	40%	40%
APPLY	20%	20%

Course Designer: Dr. Mrs. N.NAGARANI, Department of Physics

Mapping

Programme : B.Sc., PHYSICSPart III: MAJOR Core/Allied/Elective : coreSemester: VHoursSub. Code: P52Credits : 5

TITLE OF THE PAPER: ATOMIC PHYSICS

Pedagogy/unit	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	15	9	3	1	2

PREAMBLE:

Understand and apply the principles of crystallography in research studies and the photo electric devices with their performance. Acquire knowledge on design a plane in a crystal by Miller Indices.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: VECTOR ATOM MODEL	1	15
To summarize the characteristics of Vector atomic model, to explain the		
structure and spectra of simplest atoms using the quantum hypothesis.		
UNIT 2 CO2: ATOMIC SPECTRA	2	16
To demonstrate and solve how the energy absorbed by atoms in discrete quanta		
and to discuss the effect of normal and anomalous Zeeman effect.		

UNIT 3 CO3: X – RAYS.	3	15
To study the characteristics of X-rays spectra and to solve problems using		
Moseley's law .		
To examine and understand the process of scattering of X-rays by light elements		
(Compton effect).		
UNIT 4 CO4: CRYSTALLOGRAPHY	4	15
To analyze the various types of imperfections that occur in crystals and to apply		
the principles of crystallography in research studies.		
UNIT 5 CO5: PHOTO ELECTRIC EFFECT	5	14
To demonstrate and describe the photoelectric effect and to list the performance		
and applications of photoelectric devices.		
To formulate the Einstein's light quanta hypothesis.		

SYLLABUS : ATOMIC PHYSICS

UNIT I: VECTOR ATOM MODEL

The Vector atom model - Quantum numbers associated with the Vector Atom Model - coupling schemes – The Pauli's exclusion principle –Some Examples of Electronic configuration with their Modern Symbolic Representations - Magnetic dipole Moment Due to orbital motion of the Electron - The Stern and Gerlach Experiment.

UNIT II: ATOMIC SPECTRA

Optical spectra (Fine structure of sodium D line) - Zeeman effect- Larmor's Theorem -Quantum mechanical explanation of Normal Zeeman effect- Anomalous Zeeman Effect -Paschen-Back effect - Stark effect (qualitative only).

UNIT III: X RAYS

Production of X-rays - Absorption of X-rays - Bragg's law – The Bragg X-ray Spectrometer – X-Ray spectra - Characteristic X-Rays Spectrum – Moseley's law – Compton's Scattering(Experimental Verification).

UNIT IV: CRYSTALLOGRAPHY

Types of solids – Bravais Lattice – Miller indices – Spacing Between three dimensional lattice plane – Element of symmetry – SC,BCC, FCC structure- Calculation of lattice constant – Point group – Unit cell – Brillouin Zones - Reciprocal lattices to SC,BCC,FCC lattices.

UNIT V: PHOTO ELECTRIC EFFECT

Introduction- Laws of photoelectric emission- Experimental Investigations on the Photo electric Effect- Einstein's Photo Electric equation- Photoelectric Cells

TEXT BOOKS:

 Modern Physics – R. Murugeshan – XVIII (18th) Revised Edition 2016 – S.Chand & Co., Ltd. UNIT-I – (4.12-4.15), 4.17, 4.18, 4.20 UNIT – II – 4.21, (4.23-4.28) UNIT – III – (5.1- 5.6), 5.9, 5.13 UNIT IV – (25.1-25.10), (25.19- 25.23) UNIT-V – 6.1, (6.4-6.6)
 BOOKS FOR REFERENCE:
 Atomic Physics Satyaprakash – Latest revised Edition after 2000 Published by Ratan Prakashan, Mandir.

2.	Nuclear Physics and Particle Physics	Satyaprakash ,2005 Edition – Sultan Chand & Sons.
3	Concept of Modern Physics	Arthur Beiser, II Edition, McGraw Hill Kogakusha Ltd.
4	Modern Physics	Richtmyer, Kennard & Cooper -VI Edition, McGraw Hill Book Company.
5	https://youtu.be/vEwjwUxW	<u>0kQ</u>

UNITSTOPICLECTURE HOURSMODE OF TEACHINGUNIT 1: VECTOR ATOM MODEL

Introduction to structure of the atom – atom model -the Vector atom model	3	Motivation by asking questions – peer group discussion and by lecturing through ICT (power point presentation)
Quantum numbers associated with the Vector Atom Model - coupling schemes	3	Lecturing and by group discussion
The Pauli's exclusion principle –Some Examples of Electronic configuration with their Modern Symbolic Representations	5	Peer group discussion and by framing electronic configuration for some elements using periodic table
Magnetic dipole Moment Due to orbital motion of the Electron - The Stern and Gerlach Experiment.	4	Lecturing with discussion and deriving the expression.
UNIT II : ATOMIC SPECTRA		
Introduction to atomic spectra - Various types of spectra – Origin of spectra - Optical spectra (Fine structure of sodium D line)	5	Lecture
Zeeman effect- Larmor's Theorem	4	Lecturing, deriving the theroem and Solving the problem
mechanical explanation of Normal		

Zeeman effect- Anomalous Zeeman Effect - Paschen-Back effect - Stark effect (qualitative only).	7	Lecturing with ICT
UNIT III : X RAYS	-	
Introduction -Production of X-rays - Absorption of X-rays - Bragg's law – The Bragg X-ray Spectrometer	5	Lecturing with group discussion
X-Ray spectra - Characteristic X-Rays Spectrum – Moseley's law.	5	Seminar and given problem for solving.
Compton's Scattering (Experimental Verification).	5	Lecture
UNIT IV : CRYSTALLOGRAPH	Y	
Types of solids – Bravais Lattice – Miller indices – Spacing Between three dimensional lattice plane Unit cell – Brillouin Zones – Reciprocal lattices to SC,BCC,FCC lattices.	5	ICT
Element of symmetry – SC,BCC, FCC structure- Calculation of lattice constant – Point group	5	ICT
Unit cell – Brillouin Zones - Reciprocal lattices to SC,BCC,FCC lattices.	5	ICT and indexing
UNIT V : PHOTO ELECTRIC E	EXERCT	
Introduction- Laws of photoelectric emission- Experimental.	5	Seminar with ICT

Investigations on the		Seminar with ICT and
Photo electric Effect-		solving the problem.
Einstein's Photo	5	
Electric equation		
Photoelectric Cells	4	Seminar with ICT

Course	Programme Outcomes (Pos)			Programme Specific Outcomes (PSOs)					Mean			
Outcomes	utcomes											scores
(Cos)				_								of Cos
(005)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3	4	3	4	3	3	4	4	3	3	3	3.36
CO2	3	4	4	4	3	3	3	3	3	4	3	3.36
CO3	3	4	3	3	3	4	3	4	3	3	3	3.27
CO4	3	4	3	4	3	4	3	4	3	4	4	3.55
CO5	4	4	4	4	4	4	4	4	4	4	4	4.00
Mean Overall Score									3.51			

Result: The Score for this Course is 3.51 (High

Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of	COs = <u>Total</u> Total No. (of Value of Pos & PSOs	Mean Overall S	Score of $COs = 2$	<u>Fotal of Mean Score</u> Total No. of COs

BLOOM'S	INTERNAL	EXTERNAL		
IAXANOMY				
KNOWLEDGE	40%	40%		
UNDERSTANDING	30%	30%		
APPLY	30%	30%		

Course Designer : Dr. Mrs. SANTHI.

Department of physics

Programme : B.Sc. Part III: Elective Semester : V Hours : 5P/W 75Hrs P/S Sub. Code : EP51 Credits : TITLE OF THE PAPER: BIOMEDICAL INSTRUMENTATION Peer Teaching GD/VIDOES/TUTORIAL ICT Hours Lecture Pedagogy 5 3 1 1 _ PREAMBLE: To know the parts of biomedical instruments. To understand the use of them in the recording system and physiological assist devices.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the students will be able to		
CO1 :list the electrode material and types of electrodes and transducers	1	15
CO2: describe biomedical amplifiers and to analyse biosignal	2	15

CO3 : explain the characteristics of the recording system and the types of physiological assist devices	3	15
CO4: apply diathermy technique	4	15
CO5: discuss about the diagnostic instruments	5	15

SYLLABUS

UNIT I: BIOPOTENTIAL ELECTRODES AND TRANSDUCERS

Transport of ions through cell membranes- Bio electric potentials- Design of medical instruments – Component of biomedical instrument systems- Electrodes-Half cell potential-Electrode paste- Electrode material-Types of electrodes (Micro electrodes, Depth and needle electrodes, Surface electrodes) - transducers-(magnetic induction type, photovoltaic type, thermoelectricity type, strain guage type, pressure transducers only).

UNIT II: BIOSIGNAL ACQUISITION

Biomedical preamplifier- Isolation amplifier- Instrumentation amplifier-Bridge amplifier-(voltage amplifier only)- Line driving amplifier- Current amplifier- Mechanical chopper amplifier- Bio-signal analysis (analog and digital methods-signal to noise improvement- amplitude measurement).

UNIT III: BIO POTENTIAL RECORDERS

Characteristics of the recording systems- Electro Cardio Graphy (ECG) – Introductory ideas about Electro Encephalography, Electromyography, Electroretinography - Accuracy of recorders - Pace makers (external and internal type of stimulation) – Batteries (Lithium cell only) – Artificial heart valves, Heart – Lung machine – Kidney machine (Block diagram only).

UNIT IV: DIATHERMY AND OXYMETERS

Surgical diathermy – Shortwave diathermy – Microwave diathermy – Ultrasonic diathermy – Ventilators (Servo – Controlled with microprocessor based only) – Anaesthesia machine -Vitro oximetry and Vivo oximetry only - Blood cell counter - (laser based blood cell counter only) – Electron Microscope.

UNIT V: DIAGNOSTIC INSTRUMENTS

Blood flow meters (Electromagnetic blood flow meter, ultrasonic blood flow meter, Recording fetal heart movements and blood circulation using Doppler ultrasonic method), Gas analysers: (infra red gas analysers, para magnetic oxygen analyser only).

TEXT BOOKS:

1. Bio Medical Instrumentation

- Dr. M.Arumugam Edition II – 1994 – Mc Graw Hill.

Unit – I : Ch. 1 – 1.4., 1.6., 2.2.-2.4., 2.4.1. -2.4.7., 2.5., 2.5.1, 2.5.2., 2.5.4., 2.5.5., 2.5.9. Unit – II : Ch. 3 – 3.1. – 3.3., 3.3.1., 3.4., 3.5., 3.5.1., 3.6. – 3.8., 3.8.1., 3.9., 3.9.1.-3.9.3. Unit–III:Ch.4. – 4.2., 4.3., 4.3.1.-4.3.5., 4.4., 4.4.2., 4.4.4., 4.4.5., 4.5., 4.5.1., 4.5.2., 4.6., 4.7. Ch.5. – 5.2., 5.2.1., 5.2.2., 5.3.2., 5.4., 5.4.1.-5.4.4., 5.7., 5.7.2., 5.8., 5.8.1., 5.8.2. Unit–IV: Ch. 6. – 6.2. – 6.5., 6.8., 6.9., 6.15., 7.2., 7.3. Unit–V : Ch.6. – 6.10., 6.10.1., 6.10.2.((i), (ii), b), 6.13., 6.13.1., 6.13.2.

REFERENCES: Handbook of Biomedical Instrumentation – R.S.Khandpur – Second Edition, Mc Graw Hill.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I		110 0115	Į
	Transport of ions through cell membranes- Bio electric potentials- Design of medical instruments – Component of biomedical instrument systems	5	Lecture, Video & ICT
	Electrodes-Half cell potential-Electrode paste- Electrode material-Types of electrodes (Micro electrodes, Depth and needle electrodes, Surface electrodes)	5	Lecture, Video & ICT
	transducers-(magnetic induction type, photovoltaic type, thermoelectricity type, strain guage type, pressure transducers only)	5	Lecture, Video & ICT
UNIT II		1	
	Biomedical preamplifier-Isolation amplifier-Instrumentation amplifier	5	Lecture , Video & ICT
	Bridge amplifier-(voltage amplifier only)- Line driving amplifier- Current amplifier	5	Lecture, Video & ICT
	Mechanical chopper amplifier- Bio-signal analysis (analog and digital methods-signal to noise improvement- amplitude measurement)	5	Lecture, Video & ICT
UNIT III		•	
	Characteristics of the recording systems- Electro Cardio Graphy (ECG) – Introductory ideas about Electro Encephalography	5	Lecture, Video & ICT
	Electromyography, Electroretinography - Accuracy of recorders - Pace makers (external and internal type of stimulation) – Batteries (Lithium cell only)	5	Lecture, Video & ICT
	Artificial heart valves, Heart – Lung machine – Kidney machine (Block diagram only).	5	Lecture, Video & ICT
UNIT IV			
	Surgical diathermy – Shortwave diathermy – Microwave diathermy – Ultrasonic diathermy	5	Lecture, Video & ICT

	Ventilators (Servo – Controlled with microprocessor based only) – Anaesthesia machine -Vitro oximetry and Vivo oximetry only	5	Lecture, Video & ICT
	Blood cell counter - (laser based blood cell counter only) – Electron Microscope.	5	Lecture, Video & ICT
UNIT V			
	Blood flow meters -Electromagnetic blood flow meter	5	Lecture, Video & ICT
	ultrasonic blood flow meter, Recording fetal heart movements and blood circulation using Doppler ultrasonic method	5	Lecture, Video & ICT
	Gas analysers: (infra red gas analysers, para magnetic oxygen analyser only)	5	Lecture, Video & ICT

Course	Programme Outcomes (POs)				Programme Specific Outcomes				Mean		
Outcomes						(PSOs	3)				scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of
											COs
CO1	3	3	3	4	4	4	3	3	3	4	3.4
CO2	3	4	3	4	3	4	3	3	3	4	3.4
CO3	3	3	4	4	4	4	3	3	3	4	3.5
CO4	3	3	3	4	3	4	3	3	3	4	3.3
CO5	3	3	3	4	3	4	3	3	3	4	3.3
Mean Overall Score							3.38				

Result: The Score for this Course is 3.38 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of COs =			Mean Overall Score of COs =			
Total of Value			Total of Mean Score			
Total No. of Pos & PSOs			Total No. of COs			

BLOOM'S	INTERNAL	EXTERNAL		
BLOOMB				
TAXANOMY				
KNOWI EDCE	200/	200/		
KNUWLEDUE	5070	50%		
LINDEDSTANDING	400/	400/		
UNDERSTANDING	4070	4070		
	30%	30%		
AIILI	3070	3070		
Course Designer C. Selvergei Deserte est of Physics				

Course Designer: G.Selvarani

Department of Physics

Programme : UG Physics Semester : V Sub. Code : EP52

Part III: Elective Hours : 5 P/W 75Hrs P/S Credits : 5

TITLE OF THE PAPER: OPTOELECTRONICS AND FIBRE OPTIC COMMUNICATION

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL			
	5	2	2	1			
PREAMBLE: Studying the nature and properties of optical fibre, fibre materials, photo detectors and							

optical couplers and applying to the communication systems		
COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		

UNIT 1 CO1: Recognize and classify the structures of Optical fibre and types	1	15
UNIT 2 CO2: Discuss the fibre materials and optical sources	2	15
UNIT 3 CO3: Analyze various detectors and calculate bit rate	3	15
UNIT 4 CO4 : Explain the functioning and types of optical couplers	4	12
UNIT 5 CO5: Integrate several components into communication systems	5	18

SYLLABUS

UNIT I: Optical fibres- Basic structure- Propagation of light wave through it-acceptance angle & acceptance cone - Numerical aperture- Classification of optical fibres- Stepped index fibre- Graded index multimode fibre- Attenuation in optical fibre.

UNIT II: Fibre materials- Glass fibre – Plastic fibre- Light sources of optical fibres-LED- The processes involved in LEDs- Structure of LED- LED materials – Fibre-LED coupling – Semiconductor laser diode.

UNIT-III :

Photo detectors- Characteristics- Photo emissive photo detectors- Photo conductive devices-Photovoltaic devices- p-n junction photo detector- PIN photo diode- Avalanche photodiode-phototransistor- BIT error rate.

UNIT-IV:

Optical couplers - Biconically tappered directional couplers- Beam splitting directional coupler-Splicing of fibre- Steps involved in splicing procedure- Loss comparison.

UNIT –V:

Communication systems- General-transmitter for fibre optic communication- Laser transmitter-Fibre optic receiver- Repeaters- Fibre based modems-Tran receiver- Long haul communication- Special applications: optical fiber system/metallic wire system- Fibre in computer networking – disadvantages of fiber optical systems

TEXT BOOK:

1. Optical fibres and fibre optic communication systems-Dr. Subir kumar sarkar, Revised Fourth edition-2010 – S.Chand& co.

Unit-1 : 2.3-2.5, 3.1, 3.2, 3.5, 3.6,7.1. Unit-II : 4.7, 4.7.1, 4.7.2 (Ref. Book – 1). 9.1, 9.2, 9.2.1, 9.2.2, 9.2,3, 9.2.5. 9.3.3 Unit-III: 10.2-10.10 Unit-IV: 12.2, 12.2.1, 12.2.3, 13.1, 13.4, 13.6 Unit-V : 15.1, 15.2, 15.6, 15.12, 15.15, 15.16, 18.3, 19.10.

BOOKS FOR REFERENCE:

1. Semiconductor physics and opto electronics-P.K.Palanisamy, SCITECH

2. Optical fibre communication

Publications-4 th reprint, 2004. - M.John Senior –PHI-2001 edition.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
	· ·	UNIT I	
	Optical fibres- Basic structure	2	Lecture
	Propagation of light wave through it	1	GD
	-acceptance angle & acceptance cone - Numerical aperture-	3	Peer Teaching
	Classification of optical fibres-Stepped index fibre-	3	Peer Teaching
	Graded index multimode fibre-	3	Peer Teaching
	Attenuation in optical fibre.	3	Peer Teaching
	· ·	UNIT II	·
	Fibre materials- Glass fibre – Plastic fibre	3	Lecture
	Light sources of optical fibres-LED	2	Peer Teaching
	The processes involved in LEDs	2	Peer Teaching
	Structure of LED	2	Lecture
	LED materials	2	GD
	Fibre-LED coupling	2	Peer Teaching
	Semiconductor laser diode.	2	Lecture
		UNIT III	·
	Photo detectors- Characteristics	2	Lecture
	Photo emissive photo detectors	1	Lecture
	Photo conductive devices	1	Lecture
	Photovoltaic devices-	1	GD
	p-n junction photo detector	2	Peer Teaching
	PIN photo diode	2	Peer Teaching

Avalanche photodiode	2	Peer Teaching
Phototransistor	2	Peer Teaching
BIT error rate	2	Peer Teaching
	UNIT IV	•
Optical couplers	1	Lecture
Biconically tappered directional couplers	3	Peer Teaching
Beam splitting directional coupler	3	Peer Teaching
Splicing of fibre	1	Peer Teaching
Steps involved in splicing procedure	3	Peer Teaching
Loss comparison	1	Lecture
	UNIT V	
Communication systems	1	Lecture
General-transmitter for fibre optic communication	1	Peer Teaching
Laser transmitter	2	Peer Teaching
Fibre optic receiver	3	Peer Teaching
Repeaters	2	Peer Teaching
Fibre based modems-Tran receiver	2	Peer Teaching
Long haul communication	2	Peer Teaching
Special applications: optical fiber system/metallic wire system	3	Lecture
Fibre in computer networking	1	Lecture
disadvantages of fiber optical systems	1	GD

Course	Programme Outcomes				Programme Specific Outcomes						Mean	
Outco	(Pos)					(PSOs)						scores
mes											of Cos	
(Cos)	Р	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	
	0	2	3	4	5	01	02	O3	04	O5	06	
	1											
CO1	3	3	3	4	4	4	3	3	4	3	3	3.36
CO2	3	4	3	4	4	4	3	3	4	3	3	3.46
CO3	3	4	3	4	4	4	3	3	3	4	3	3.46

CO4	3	3	3	4	4	4	3	3	4	3	3	3.36
CO5	3	4	3	4	4	4	3	3	5	4	4	3.73
Mean Overall Score									3.47			

Result: The Score for this Course is 3.47 (High Relationship) Course Designer: Department of Physics

Programme : B.Sc Semester : V Sub. Code : SP55 Part III: Skill based Hours : 2 hrs/W 30 Hrs P/S Credit : 2

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT					
	6	2	1	2	1					
PREAMBLE: their higher stu	Acquire dies (Pos	knowledge st graduate).	and understandin	g of the basics of spectroscop	y and apply it in					

TITLE OF THE PAPER: SPECTROSCOPY

COURSE OUTCOME At the end of the Semester, the Students will be able to	Unit	Hrs P/S
UNIT 1 CO1: know the electromagnetic spectrum, their properties and different types of energies of the molecules responsible for the spectrum.	1	6
UNIT 2 CO2 : understand the theory of microwave spectrum with the diatomic molecule as rigid rotator. Discuss the validity of theory with selection rule for microwave spectrum.	2	6
UNIT 3 CO3 : analyze the theory of Infra red spectroscopy with the vibrating diatomic molecule as harmonic and an harmonic oscillator. explain why it is called as IR spectroscopy.	3	6
UNIT 4 CO4 : understand the characteristic properties of Raman lines. explain the theory (both classical and quantum) of Raman effect. Compare IR spectroscopy and Raman spectra. discuss the intensity of Raman peaks.	4	6
UNIT 5 CO5 : describe the construction and working of microwave spectrometer, IR spectrophotometer (Single beam) and Raman spectrophotometer (PERKIN ELMER).	5	6

SYLLABUS

UNIT I:

Introduction - Properties of electro magnetic radiation- Electro magnetic spectrum- Different types of molecular energies.

UNIT II:

Introduction to microwave spectroscopy - What is microwave spectroscopy-theory – Diatomic molecule as a rigid rotator -Frequency of rotational spectral lines -Selection rule for rotational spectra-Validity of the theory.

UNIT III:

Introduction to infrared spectroscopy - Range of infrared radiation- Theory of IR absorption spectroscopy – Vibrating diatomic molecule as harmonic oscillator - Vibrating diatomic molecule as anharmonic oscillator.

UNIT IV:

Introduction to Raman spectroscopy - Characteristic properties of Raman Lines- Differences between Raman spectra and infrared spectra – Mechanism of Raman effect – Classical and quantum theory of Raman effect- Pure rotational Raman spectra- Intensity of Raman peaks.

UNIT V:

Instrumentation for microwave spectroscopy (construction and working of microwave spectrometer) - Instrumentation for infrared spectroscopy - Single beam spectro photometer - Instrumentation for Raman spectroscopy (Perkin-Elmer Raman spectrometer).

TEXT BOOKS: Study Material prepared by the Department.

REFERENCES:

1.	Fundamentals of molecular spectrosco	opy - C.N. Banwell,
		Seventh reprint, 1988,
		TMH Publications.
2.	Spectroscopy (atomic and molecular)	- Gurdeep Chatwal, Sham Anand,
		First edition – 1983,
		Himalaya Pub. House.

UNIT 1: Electromagnetic radiation and spectrum. Lecture, ICT 1. Properties of e.m.radiation 2 2. Electromagnetic spectrum 2 3. Molecular energies 2 UNIT 11: Microwave spectroscopy 1
OWNT 1: Electromagnetic radiation and spectrum. 1. Properties of e.m.radiation 2 Lecture, ICT 2. Electromagnetic spectrum 2 GD, Lecture 3. Molecular energies 2 Teaching (chalk and talk), Videos UNIT 11 : Microwave spectroscopy
1. Properties of e.m.radiation 2 Lecture, ICT 2. Electromagnetic spectrum 2 GD, Lecture 3. Molecular energies 2 Teaching (chalk and talk), Videos UNIT 11 : Microwave spectroscopy
e.m.radiation 2 GD, Lecture 2. Electromagnetic spectrum 2 GD, Lecture 3. Molecular energies 2 Teaching (chalk and talk), Videos UNIT 11 : Microwave spectroscopy
2. Electromagnetic spectrum 2 GD, Lecture 3. Molecular energies 2 Teaching (chalk and talk), Videos UNIT 11 : Microwave spectroscopy
spectrum Teaching (chalk and talk), 3. Molecular energies 2 UNIT 11 : Microwave spectroscopy UNIT 11 : Microwave spectroscopy
3. Molecular energies 2 Teaching (chalk and talk), Videos UNIT 11 : Microwave spectroscopy 1 1
UNIT 11 : Microwave spectroscopy
UNIT 11 : Microwave spectroscopy
1. Introduction I Lecture
(Microwave
spectroscopy)
2. Diatomic molecule as 2 Teaching (chalk and talk),
arigid rotator video
3. Frequency of 2 GD, ICT
rotational spectral
lines and selection
rule
4. Validity of the theory 1 Lecture
UNIT III: Infra red spectroscopy
1. Introduction to IR 1 Lecture
spectroscopy
2. Theory of IR 1 GD
spectroscopy
3. Vibrating diatomic 2 Teaching (chalk and talk), GD
molecule as a
harmonic oscillator
4. Vibrating diatomic 2 Lecture, ICT
molecule as an
harmonic oscillator
UNIT IV : Raman Spectroscopy

1.	Characteristic	2	ICT, GD
	properties of Raman		
	lines, difference		
	between Raman and		
	IR spectra		
2.	Classical and	2	Teaching (chalk and talk),
	Quantum theory of		Lecture
	Raman effect		
3.	Pure rotational spectra	2	Lecture, Video
	and intensity of		
	Raman lines		
UNIT V :	Instrumentation		
1.	Instrumentation for	2	Lecture, ICT
	microwave		
	spectroscopy		
2.	Infrared Spectroscopy	2	Lecture, Teaching (chalk and
			talk)
3.	Raman Spectroscopy	2	GD, Videos
3.	Raman Spectroscopy	2	GD, Videos

Course Outcom	Programme Outcomes (Pos) and Programme Specific Outcomes (PSOs)]	Mean sco	ores of (Cos
es (Cos)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	Mean CO
CO1	3	2	3	4	4	3	2	4	3	3	3	3.09
CO2	4	2	3	4	4	4	2	4	3	4	4	3.45
CO3	4	2	3	4	4	4	2	4	3	4	4	3.45
CO4	4	2	3	4	4	4	2	4	3	4	4	3.45
CO5	3	4	3	4	4	3	4	2	2	4	4	3.36
Mean Overall Score of COs										3.36		

Result: The Score for this Course is 3.36 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC)s = <u>Total of</u> Total No. of I	<u>Value</u> Pos & PSOs	Mean Overall Sco	re of COs = <u>Tota</u> To	al of Mean Score tal No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLICATION	20%	20%

Course Designer:

Department of Physics.

Programme : B.Sc Semester : VI Sub. Code : P61

Part III: Core Hours : 5 P/W 75 Hrs P/S Credits : 5

TITLE OF THE PAPER: DIGITAL ELECTRONICS

Hou	rs I	lecture	Peer Teaching	GD/ Vedos/Tutorial	ICT
Pedagogy 5		3	-	1	1

PREAMBLE To understand the fundamental knowledge of digital principles namely the number systems, basic and universal logic circuits, working of multivibrators and flipflops and application of operational amplifier

COURSE OUTCOME At the end of the Semester, the students will be able to	Unit	Hrs P/S
CO 1: define the different types of number systems and enhance their skills in conversion of number systems	1	15
CO 2: explain the basic and universal logic gates and DeMorgan's law	2	15
CO 3: simplify the logic expressions using Boolean laws and Kmap	3	15
CO 4: understand the working of multivibrators and flipflops	4	15
CO 5: explain the characteristics and application of operational amplifier	5	15

SYLLABUS

UNIT- I: DIGITAL FUNDAMENTALS

Number systems-Binary-Decimal conversion-binary addition- 1's and 2's complement – (subtraction only) double complement -binary multiplication-octal numbers-Decimal to octal-Hexa decimal numbers-Binary coded decimals-Codes-Weighted Binary code-Alpha numeric code-ASCII code.

UNIT- II: LOGIC GATES, BOOLEAN ALGEBRA AND DE MORGAN'S LAWS

Digital circuits-Logic gate-Binary concept-Positive logic and negative logic system-Basic logic gates-AND, OR, NOT gates -Characteristics of logic gate-NOR, NAND, Exclusive OR gate - Boolean algebra-De-Morgan's laws -universal building block.

UNIT- III: KARNAUGH MAP AND BINARY ADDERS

Two variable map-Three variable map-Four Variable map-Minterm-Maxterm-Truth table from Karnaugh map- Don't care conditions- Product -of-sums simplifications - Half adder-Full adder-Encoder-Decimal-to-BCD Encoder-Decoders-BCD-to-decimal decoder.

UNIT- IV: TIMER AND FLIP FLOP

555 Timer-Monostable Multivibrator-Astable multivibrator-Frequency divider-Logic gate flip flop-R-S flip flop-Clocked R-S Flip flop-J-K flip flop-J-K master slave flip flop-D-flip flop-T-Flip flop.

UNIT- V: OPERATIONAL AMPLIFIER

Operational amplifier- Block diagram- Characteristics – slew rate – open loop operation – closed loop operation – virtual ground – inverting Operational amplifier – summing amplifier – subtracting amplifier –Op amp integrator - Op amp differentiator.

 ANALOG ELECTRONICS AND DIGITAL ELECTRONICS – G.JOSE ROBIN & A.UBALDRAJ, Indira Publication First Edition: May 2008. UNIT: I Chapter 6 : Page No – 286-318 UNIT: II Chapter 7A & 7B ; Page No : 324-344, 362-375
 UNIT: III Chapter 7C & 8 : Page No : 389-408 421-425 438-442 UNIT: IV Chapter 9 : Page No: 454-478

UNIT: V Chapter 3: Page No: 168-191

REFERENCE BOOKS:

- 1. Elements of Solid state electronics A. Ambrose & Vincent Devaraj, Mera Publication, IV Edition,1993
- 2. Digital Principles and Applications- Albert Paul Malvino & Donald P. Leach Tata Mc Graw Hill Publishing Ltd., sevenh Edition ,2011

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
	Numbersystems-Binary-Decimalconversion-binary addition-1's and 2'scomplement–(subtractiononly)double complement -	5	Lecture, ICT&Tutorial
UNIT I	binary multiplication-octal numbers-Decimal to octal-Hexa decimal numbers-	5	Lecture, ICT&Tutorial
	Binarycodeddecimals-Codes-WeightedBinarycode-Alpha numeric code-ASCII code.	5	Lecture, ICT&Tutorial
	Digital circuits-Logic gate-Binary concept-Positive logic and negative logic system-	7	Lecture, ICT&Tutorial
UNIT II	Basic logic gates-AND, OR, NOT gates -Characteristics of logic gate-NOR, NAND, Exclusive OR gate - Boolean algebra-De-Morgan's laws -universal building block.	8	Lecture, ICT&Tutorial
	Twovariablemap-Threevariablemap-FourVariablemap-Minterm-Maxterm-TruthtablefromKarnaughmap-Don'tconditions-Product-of-sumssimplifications -	5	Lecture, ICT&Tutorial
UNIT III	Minterm-Maxterm-Truth table from Karnaugh map- Don't care conditions- Product -of-sums simplifications -	5	Lecture, ICT&Tutorial
	Half adder-Full adder- Encoder-Decimal-to-BCD Encoder-Decoders-BCD-to-decimal decoder.	5	Lecture, ICT&Tutorial

	555 Timer-Monostable Multivibrator-Astable multivibrator-Frequency divider-	7	Lecture, ICT&Tutorial
UNIT IV	Logic gate flip flop-R-S flip flop-Clocked R-S Flip flop-J-K flip flop-J-K master slave flip flop-D-flip flop-T-Flip flop.	8	Lecture, ICT&Tutorial
UNIT	Operational amplifier- Block diagram- Characteristics – slew rate – open loop operation – closed loop operation – virtual ground –	7	Lecture, ICT&Tutorial
V	inverting Operational amplifier – summing amplifier – subtracting amplifier –Op amp integrator - Op amp differentiator.	8	Lecture, ICT&Tutorial

Course Outcomes (Cos)	Course utcomes (Cos) Programme Outcomes (POs) Programme Specific Outcomes (PSOs)						e Outcoi	nes	Mean scores of Cos		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	3	4	3	4	4	3	3	3	4	3.5
CO2	4	3	4	3	4	4	3	3	3	3	3.4
CO3	CO3 4 3 3 3 4 3 3 4 4 4 3 4 4						3.3				
CO4	4	3	3	3	4	4	3	4	3	4	3.5
CO5	4	4	3	3	4	4	4	4	3	3	3.6
Mean Overall Score								3.46			

Result: The Score for this Course is 3.46 (High

Relationsh	ip)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality Very Poor Poor			Moderate	High	Very High
Total of Value Mean Score of C Total No. of Po	COs = s& PSOs		Total of Mean Sco Mean Overall Scor Total No. of COs	ore e of COs =	

	BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
--	------------------	----------	----------

KNOWLEDGE	40%	40%
UNDERSTANDING	40%	40%
APPLY	20%	20%

Course Designer: G.KRISHNA BAMA Department of Physics

Semester :V	I	Hours : 5 P/W 75HrsP/S				
Sub. Code :	P62		Credits :5			
TITLE	E OF TH	E PAPER:	<u>Material Science</u>			
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	2	1	1	1	

PREAMBLE:

- To promote an understanding of the basics of crystallography
- To develop an understanding of the unique properties and characteristics of conductivity, superconductivity, magnetic and dielectric based materials.
- To acquaint the student with their types and applications.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
 UNIT 1 CO1: Conceptually explain the classification schemes that are used to categorize 	1	16
greatly affect engineering properties and limit their use in service		
UNIT 2 CO2:	2	16
• understand concisely and effectively resistivity and conductivity using basic relations, gain important conceptual and operational understanding of different types of conduction materials		
 UNIT 3 CO3: Complete understanding about superconductors, their basic theories, types and applications. 	3	16
UNIT 4 CO4:	4	16
• Explain the differences in the behavior of magnetic materials based upon composition and processing and their applications		
UNIT 5 CO5:	5	11
• To acquaint complete knowledge of dielectric materials, with their types and applications.		

SYLLABUS

UNIT I: ELEMENTARY CRYSTALLOGRAPHY

Material Science – Different types of chemical bonds (Ionic, Covalent, Metallic, Dispersion and dipole) – Crystal structure (sc, bcc, fcc) – Crystal imperfections – Point defects – Line defects – Surface defects – Volume defects – Effects of crystal imperfections.

UNIT II: CONDUCTING MATERIALS

Introduction – Atomic interpretation of ohm's law – Relaxation time & electrical conductivity – Derivation of electrical conductivity of a metal – Electrical and thermal conductivity – The heat developed in a current caring conductor – Different types of conduction materials: Low resistivity conducting materials (properties, examples) – High resistivity conducting materials (properties examples)

UNIT-III : SUPER CONDUCTING MATERIALS

Introduction – Explanation of the occurrence of Super conductivity (BCS and RVB theory) – general properties of super conductors – Types of super conductors (Type I & Type II) Applications of superconductor.

UNIT-IV : MAGNETIC MATERIALS

Introduction – Different types of magnetic materials – Hysteresis – Explanation of Hysteresis cure on the basis of domain theory- Hard and soft materials – Applications of Soft magnetic materials-Iron-Silicon (Fe-Si)alloy, Iron-Nickel (Fe-Ni)alloy – ferrites & Garnets – Application of Ferites : Gyrator, Isolator – Garnets.

UNIT – V : DIELECTRIC MATERIALS

Dielectrics – Fundamental definitions in dielectrics – Various polarization mechanisms in dielectrics – Internal field (Clausius – Mosotti relation) Dielectric breakdown – Applications of dielectric materials.

TEXT BOOKS: Dr. M. Arumugam, Anuradha Publications Reprint 2010.

REFERENCES:

1. Material Science : P.K. Palanisamy, I Print,2004, Scitech Publications (India) PvtLtd., Chennai – 6000 017.

2. V. Rajendran, A. marikani II print, 2004. Tata McGraw Hill Publishing com. Ltd., New Delhi

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1	•		•
	Material Science – introduction	2	Peer teaching
	Different types of chemical bonds	1	Tutorials
	Ionic bond	1	Lecture
	Covalent bond	1	Lecture
	Metallic, Dispersion and dipole	1	Lecture
	Crystal structure - sc, bcc, fcc	1	Peer teaching
	sc, bcc, fcc	1	Lecture
	Crystal imperfections – Point defects	1	Lecture
	Line defects – Surface defects	1	Lecture
	Volume defects	1	Lecture
	Effects of crystal imperfections.	3	ICT
	Revision	2	Tutorials
UNIT 11			
	Introduction toconducting materials	2	Peer Teaching
	Atomic interpretation of ohm's law	1	Lecturer
	Relaxation time & electrical conductivity	2	Lecturer
	Derivation of electrical conductivity of a metal	2	Lecturer
	Electrical and thermal conductivity	2	Peer Teaching
	The heat developed in a current caring conductor	1	Lecture
	Different types of conduction materials: Low resistivity conducting materials (properties, examples) –	3	ICT
	High resistivity conducting materials		
----------	--	---	---------------
	(properties examples)		
	Revision	3	Tutorial
UNIT III			
	Introductionto super conducting	3	ICT
	materials		
	Explanation of the occurrence of	2	Peer Teaching
	Super conductivity		
	BCS theory	1	Lecture
	RVB theory	1	Lecture
	general properties of super	2	Peer Teaching
	conductors		
	Types of super conductors (Type I &	2	Lecture
	Type II)		
	Applications of superconductor.	2	Peer Teaching
	Revision	3	Tutorial
UNIT IV	-		
	Introductionto magnetic materials	2	Peer Teaching
	Different types of magnetic materials	2	ICT
	Hysteresis	2	Peer Teaching
	Explanation of Hysteresis cure on the	1	Lecture
	basis of domain theory		
	Hard and soft materials	1	ICT
	Applications of Soft magnetic	2	Lecture
	materials- Iron-Silicon (Fe-Si)allov		
	Iron-Nickel (Fe-Ni)allov		
	ferrites & Garnets – Application of	2	Lecture
	Ferites · Gyrator Isolator		
	Garnets.	1	Lecture
	Revision	3	Tutorial
UNIT V			•
	Introduction to dielectric materials	1	Peer teaching
	Fundamental definitions in dielectrics	2	ICT
	Various polarization mechanisms in	3	Lecture
	dielectrics		
	Internal field (Clausius – Mosotti	1	Lecture
	relation)		
	Dielectric breakdown	1	Lecture
	Applications of dielectric materials.	1	Peer teaching
	Revision	2	Tutorial

Course	Programme Outcomes (POs)				Programme Specific Outcomes				Mean		
Outcomes					(PSOs)				Scores		
(COs)									of		
										COs	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	

CO1	3	4	3	4	3	3	4	3	3	5	3.5
CO2	5	3	4	3	4	3	3	4	3	4	3.6
CO3	3	3	3	4	3	3	5	4	3	3	3.4
CO4	3	3	4	3	3	3	4	4	3	4	3.4
CO5	4	3	3	4	4	3	3	4	4	3	3.5
Mean Overall score 3								3.48			
D 1/ 7	F1 0	C 41	· 0	· .	40 (TT 1	D 1 4	1 •)			

Result: The Score for this Course is 3.48 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	Os = <u>Total of</u> Total No. of I	<u>Value</u> Pos& PSOs	Mean Overall Sco	re of COs = $\frac{\text{Tota}}{\text{Tota}}$	al of Mean Score tal No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Physics

Programme : B.Sc. Semester : VI Sub. Code : P63 Part III: Core Hours :5 P/W 75 HrP/S Credits : 5

TITLE OF THE PAPER: CLASSICAL, STATISTICAL, QUANTUM MECHANICS AND RELATIVITY

Podegogy	Hours	Lecture	Peer Teaching	GD / Vedos/Tutorial	ICT
redagogy	5	3	-	1	1

PREAMBLE: This course is essential to formulate and solve classical mechanics problems using Lagrangian and Hamiltonian methods. To learn statistical interpretation of thermodynamics and the concept of special theory of relativity.

COURSE OUTCOME At the end of the Semester, the Students will be able to	Unit	Hrs P/S
UNIT 1 CO1 : Define the basic concepts in classical mechanics.	1	15
UNIT 2 CO2: differentiate classical and statistical quantum mechanics.	2	15
UNIT 3 CO3 : apply both classical and quantum approach to some of the physical systems.	3	15
UNIT 4 CO4: explain the basics of relativity.	4	
UNIT 5 CO5: describe the laws of statistical mechanics.	5	15

SYLLABUS

UNIT – I: CLASSICIAL MECHANICS

Mechanics of a particle(conservative forces only) – Conservation of energy for a system of particles –Basic concepts – Degrees of freedom – Constraints - Generalised notations – Lagrangian formulation of mechanics – Derivation of Lagrange's equation of motion (from D' Alemberts principle only) – The Hamiltonian function H – Hamilton's canonical equations of motion.

UNIT – II : WAVE MECHANICS – I

Matter waves – The de Broglie wavelength – Expression for de Broglie length – Other expressions for de Broglie wavelength – Phase velocity of de Broglie waves – Group velocity – Expression for group velocity – Heisenbergs uncertainty principle – Illustrations – Energy-Time uncertainty relation – Derivation of time dependant and steady state forms of Schrodinger equation – Eigen values and Eigen functions.

UNIT – III : APPLICATIONS OF EQUATIONS

Applications of Lagrange's equation – The Atwood's Machine – Simple pendulum – Compound pendulum – Linear harmonic oscillator – Applications of Hamilton's equations of motion – Linear harmonic oscillator – Simple pendulum – Compound pendulum – Properties of the wave function – Physical significance of wave function – Applications of Schrodinger's equation – The free particle – The particle in a box.

UNIT – IV : RELATIVITY

Michelson - Morley Experiment – Postulates of special theory of relativity – Lorentz transformation equation – Length contraction – Time dilation – Relativity of simultaneity – Addition of velocities – Variation of with velocity – Mass energy equivalence – Relationship between the total energy, the rest energy and the momentum.

UNIT - V: STATISTICAL MECHANICS

Phase space(definitions only) – Ensembles – Types of ensembles (definition only) – Basic concepts – Microscopic and macroscopic descriptions – Probability – Thermodynamic probability – Boltzmann's theory of Entropy and probability – Fundamental of Statistical Mechanics – Statistical equilibrium –

Maxwell - Boltzmann distribution law - Bose - Einstein's statistics - Fermi - Dirac statistics - Comparison of the three distribution laws.

TEXT BOOKS:

Modern Physics -

R. Murugeshan, KiruthigaSivaprasath, S.Chand& Co. Pvt. Ltd., 2016, 18th Edition.

BOOKS FOR REFERENCE:

1. Principles of Modern Physics

2 Introduction of Modern Physics

- 3 Concepts of Modern physics
- 4 Atomic Physics

Robert – B.Leighton, MC-Graw Hill Book Company VI Edition. F.K.Rchtmyer, E.H.KennerJohn.N.Cooper, IV Edition, Mc-Graw Hill Book Company Arthur Beiser Mc-Graw Hill Book Company, Reprint 2002. J.B.Rajam, S.Chand& Co.,

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
	Mechanics of a particle(conservative forces only) – Conservation of energy for a system of particles.	5	Lecture, G.D & ICT
UNIT I	Basic concepts – Degrees of freedom – Constraints - Generalised notations – Lagrangian formulation of mechanics.	5	Lecture,G.D & ICT
	Derivation of Lagrange's equation of motion (from D' Alemberts principle only) – The Hamiltonian function H – Hamilton's canonical equations of motion.	5	Lecture & ICT
UNIT II	Matter waves – The de Broglie wavelength – Expression for de Broglie length – Other expressions for de Broglie wavelength	4	Lecture,G.D & ICT
	Phase velocity of de Broglie waves – Group velocity – Expression for group velocity – Heisenbergs uncertainty principle – Illustrations – Energy-Time uncertainty relation.	5	Lecture,G.D & ICT
	Derivation of time dependant and steady state forms of Schrodinger equation – Eigen values and Eigen functions.	5	Lecture,G.D & ICT
	Problem discussion	1	Group discussion

	Applications of Lagrange's equation – The Atwood's Machine – Simple pendulum – Compound pendulum.	5	Lecture,G.D & ICT
UNIT III	Linear harmonic oscillator – Applications of Hamilton's equations of motion – Linear harmonic oscillator – Simple pendulum – Compound pendulum .	5	Lecture, G.D & ICT
	Properties of the wave function – Physical significance of wave function – Applications of Schrodinger's equation – The free particle – The particle in a box.	5	Lecture,G.D & ICT
	Michelson - Morley Experiment – Postulates of special theory of relativity – Lorentz transformation equation	5	Lecture, G.D & ICT
	Length contraction – Time dilation – Relativity of simultaneity – Addition of velocities.	4	Lecture, G.D & ICT
UNITIV	Variation of with velocity – Mass energy equivalence – Relationship between the total energy, the rest energy and the momentum.	5	Lecture, G.D & ICT
	Problem discussion	1	Group discussion
	Phase space(definitions only) – Ensembles – Types of ensembles (definition only) – Basic concepts – Microscopic and macroscopic descriptions.	5	Lecture, G.D & ICT
UNIT V	Probability – Thermodynamic probability – Boltzmann's theory of Entropy and probability – Fundamental of Statistical Mechanics – Statistical equilibrium – Maxwell - Boltzmann distribution law	5	Lecture, G.D & ICT
	Bose - Einstein's statistics – Fermi - Dirac statistics – Comparison of the three distribution laws.	5	Lecture, G.D & ICT

Course	Programme Outcomes (POs)			Programme Specific Outcomes					Mean		
Outcomes				(PSOs)) –				Scores		
(COs)									of		
					-	-	-	-	COs		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	4	3	4	3	3	4	3	3	5	3.5
CO2	5	3	4	3	4	3	3	4	3	4	3.6
CO3	3	3	3	4	3	3	5	4	3	3	3.4
CO4	3	3	4	3	3	3	4	4	3	4	3.4
CO5	4 3 3 4 4				4	3 3 4 4 3				3	3.5
				Mean	Overa	ll score					3.48

Result: T	he Score	for this	Course is	3.48	(High
					\ L2

	Relations	hip)			
Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
				-	

Mean Score of COs =Total of ValueMean Overall Score of COs =Total of Mean ScoreTotal No. of Pos& PSOsTotal No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	30%	30%
UNDERSTANDING	30%	30%
APPLY	40%	40%

Course Designer: R. Vijayalakshmi

Department of Physics

Programme :B.Sc PHYSICS Semester : VI Sub code : EP63

PART III : ELECTIVE Hours : 5 P/W, 75Hrs P/S Credits : 5

TITLE OF THE PAPER : NUCLEAR PHYSICS

Pedagogy	Hours	Lecture	Peer teaching	TUTORI AL	ICT
	5	2	1	1	1

PREAMBLE :			
The purpose of this course is to give an introductory details about the basic principles of			
nuclear physics. It presents a detailed introduction to its fundamenta	l principles a	nd	
applications. It gives brief information about structure of nucleus, radiation detectors,			
particle accelerators, radioactivity, nuclear energy, cosmic rays and	elementary p	articles.	
COURSE OUTCOME	UNIT	Hrs P/S	
At the end of the Semester, the students will be able to			
UNIT 1 CO1- NUCLEAR ASPECTS NUCLEAR MODELS	1	15	
PROGRAMME OUTCOME :			
PART – A			
1. acquire knowledge about schematic representation of any			
nuclide.(K)			
2. list the types of nuclei.(K)			
3. define binding energy.(K)			
4. define packing fraction.(K)			
5. understand about magic numbers.(U)			
6. determine nuclear mass and mass defect.(P)			
7. analyse electric quadrapole moment.(A)			
8. interpret semi-empirical formula.(S)			
9. draw and explain stability curve of nuclei.(C)			
10. explain parity of nuclei.(E)			
PART – B			
1. acquire knowledge about characteristics of nuclear			
forces.(K)			
2. understand binding energy of nuclei.(U)			
3. analyse stability of nuclei.(A)			
4. calculate nuclear density.(P)			
5. compare liquid drop model and shell model.(S)			
6. design shell model of any nucleus.(C)			
7. explain meson theory of nuclear forces.(E)			
PART – C			
1. get knowledge about general properties of nucleus.(K)			
2. understand packing fraction.(U)			
3. calculate radius, binding energy, packing fraction and stability of nucleus (P)			
A determine disintegration energy of mirror nuclei (P)			
5 analyse theories of nuclear composition (A)			
6 predict the properties of various puclei and can explain			
why stable nuclei never have more protons (S)			
7 construct nuclear structure of any nuclei (C)			
8 explain liquid dron model of nuclei using semi-empirical			
mass formula (F)			
0 explain sailent features of shell model (E)			
7. explain satisfic reatures of shell model.(E)			
PROGRAMME SPECIFIC OUTCOME			
PART – A			

1.	know the relation between nuclear radius and mass	
	number. $[K(I)]$	
2.	compare the various classes of nuclei.[$E(I)$]	
3.	calculate the binding energy of the given nuclei. $[P(I)]$	
4.	assess the packing fraction of various elements.[P(R)]	
5.	analyse the relation between binding energy and nuclear	
6	stability.[A(I)]	
6.	understand what is isospin quantum number.[U(1)]	
7.	predict the relation between stability and number of atomic	
	number and neutron number.[S(1)]	
8.	understand relation between shape and electric quadrapole	
	moment.[$U(I)$]	
9.	draw packing fraction curve of nuclei.[C(I)]	
10	know the binding forces between nucleons are due to	
11	exchange of mesons.[K(1)]	
11.	decide whether the nuclei is having odd parity or even	
	parity.[S(1)]	
	- D discuss the general properties of nuclei [U(I)]	
1.	analyse the binding energy graph $[\Lambda(\mathbf{R})]$	
2.	assess the stability of nuclei and to determine the stable and	
5.	unstable elements $[F(R)]$	
4	explain the reasons for the absence of electrons inside the	
<u>т.</u>	nucleus [K(M)]	
5	compare the similarities between liquid drop and nuclear	
5.	structure [K(R)]	
6	calculate nuclear radius nuclear density nuclear charge	
	and nuclear magnetic moments of various nucleus [P(R)]	
7	know the concept of protron-neutron hypothesis [K(R)]	
8.	design shell model of any nuclei.[C(M)]	
9.	obtain an expression for energy released in symmetric	
	fission.[S(M)]	
PART	-C	
1.	describe Yukawa's meson theory of nuclear forces and to	
	estimate the approximate meson mass . [P(M)]	
2.	analyse the liquid drop model with suitable Weizacker	
	semi-empirical mass formula.[A(M)]	
3.	explain how the shell model can be used to predict the	
	angular momenta and magnetic momenta of odd A- nuclei	
	in the ground state.[E(M)]	
4.	analyse the theories of nuclear composition[A(R)]	
5.	obtain an expression for energy released in symmetric	
	fission.[C(R)]	
6.	predict stability of nuclei against beta decay and mass	
	parabolas of odd isobars[S(I)]	

7. derive an expression for alpha decay and to obtain an		
expression for beta disintegration energy of mirror		
nuclei.[C(I)]		
UNIT 2 CO2	2	15
UNIT - II : RADIOACTIVITY		
PROGRAMME OUTCOME :		
PART – A		
1. define range of alpha particle.(K)		
2. know what is Geiger –Nuttal law.(K)		
3. define curie and Rutherford.(K)		
4. understand the range of alpha particle.(U)		
5. understand end point energy.(U)		
6. calculate disintegration energy of alpha particle.(P)		
/. analyse the relation between range and energy of		
particle.(A)		
8. synthesize range versus ionisation potential graph.(S)		
9. draw range versus disintegration graph of radioactive		
nuclei and can explain. (C)		
$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} = \mathbf{D}$		
I = Know about radioactive dating (K)		
2 understand the origin of continuous spectra (II)		
3 determine the energy of beta particle (P)		
4 analyse Geiger-Nuttal law (A)		
5 differentiate sharp line spectra and continuous spectra (U)		
6 illustrate alpha particle spectra (P)		
7 explain neutrino theory of beta decay (E)		
PART – C		
1. know about properties of alpha, beta and gamma rays.(K)		
2. understand radio carbon dating.(U)		
3. demonstrate the experimental set up and its working for		
the determination of range of alpha particle.(P)		
4. analyse the age of earth.(A)		
5. justify the fact that electrons are emitted from nuclei in		
beta decay.(S)		
6. predict the age of any specimen.(C)		
7. explain beta ray spectrum.(E)		
PROGRAMME SPECIFIC OUTCOME :		
PART - A		
1. define range of alpha particle.[K(R)]		
2. evaluate alpha particle disintegration energy.[$E(R)$]		
3. calculate the energy of beta particle.[P(M)]		
4. Identify Geiger-Nuttairelation.C(1)		
5. analyse the particles emitted in beta decay.[A(K)]		
o. Know the relation between range and internal energy of		
alpha particle.[K(K)]		

7. understand the factors affecting range of alpha		
particle.[U(M)]		
8. assess the relation between range and velocity of		
particle.[E(I)]		
9. list five groups of alpha particle.[K(I)]		
10. predict the charge carried by alpha particle.[C(I)]		
11. know the relation between number of atoms and		
disintegration constant [K(I)]		
12 analyse the relation between disintegration constant and		
half-life period [A(I)]		
PART – B		
1. describe how the range can be measured		
experimentally.[U(R)]		
2. demonstrate the experimental arrangement for the		
determination of the energy of beta particle and determine		
the energy of beta particle.[P(I]		
3. analyse Gamow's theory of alpha decay and to explain		
how it leads to Geiger-Nuttal law.[A(M)]		
4. calculate the age of earth and various specimen.[$S(R)$]		
5. design a graph between decay constant and half –life		
period.[C(R)]		
6. know about the concept of radio carbon dating.[K(R)]		
7. explain the law of radio active disintegration. $[E(R)]$		
$\mathbf{PART} - \mathbf{C}$		
1. compare alpha particle spectra and beta particle spectra.		
2. describe radioactive dating.[U(I)]		
3. explain the neutrino theory of beta decay.[E(R)]		
4. discuss the origin of continuous spectrum.[K(I)]		
5. calculate decay constant half life period, activity of a		
given specimen.[S(R)]		
6. explain beta ray spectrum.[E(M)]		
7. explain half life period of a radioactive element and		
derive an expression for it.[E(R)]		
8. list the properties of alpha, beta and gamma rays.[K(R)]		
9. design graph between range and ionisation potential and		
can explain the graph.[C(M)]		
UNIT 3 CO3- ARTIFICIAL TRANSMUTATION OF	3	15
ELEMENTS AND ETECTORS		
PROGRAMME OUTCOME :		
PART – A		
1. define threshold energy.(K)		
 define threshold energy.(K) define specific ionisation.(K) 		
 define threshold energy.(K) define specific ionisation.(K) know what is endoergic reaction.(K) 		
 define threshold energy.(K) define specific ionisation.(K) know what is endoergic reaction.(K) know the principle of ionization chamber.(K) 		
 define threshold energy.(K) define specific ionisation.(K) know what is endoergic reaction.(K) know the principle of ionization chamber.(K) understand recovery time.(U) 		

7.	compute Q-value of nuclear reaction.(P)	
8.	analyse the efficiency of counter.(A)	
9.	determine recovery time.(S)	
10	calculate radial field of proportional counter.(C)	
11	explain Bohr's theory of nuclear disintegration.(E)	
PART	-B	
1.	know the energy balance in nuclear reaction and Q-value	
	of reaction.(K)	
2.	understand conservation laws.(U)	
3.	understand construction and working of proportional	
	counter.(U)	
4.	calculate threshold energy of nuclear reaction. (P)	
5.	analyse threshold energy of endoergic reaction.(A)	
6.	calculate resolving time of GM counter.(S)	
7.	design time versus counter voltage graph of Geigher	
	counter.(C)	
8.	explain the construction and working of bubble	
	chamber.(E)	
PART	– C	
1.	know the construction and working of ionisation	
	chamber.(K)	
2.	understand quenching in GM counter.(U)	
3.	calculate current produced within ionisation chamber and	
	number of ion pairs required and energy of alpha	
	particles.(P)	
4.	analyse types of reactions.(A)	
5.	describe the discovery of artificial transmutation.(P)	
6.	develop the skills to determine best detector.(C)	
7.	explain Q-value of nuclear reaction.(E)	
PROG	RAMME SPECIFIC OUTCOME :	
	•	
	- A discuss O value of pueleer reaction [1]	
1. 2	define threshold energy [K(M)]	
2.	analyse the conservation laws followed in a given nuclear	
3.	reaction $[A(M)]$	
Δ	determine the threshold energy of neutrons [S(I)]	
5	assess whether the given relation is exothermic or	
	endothermic [F(M)]	
6	define specific ionisation [K(I)]	
7	define multiplication factor [K(I)]	
8	understand the relation between recovery time and pulse	
	size [U(I)]	
9	know that the number of ion pairs predicts energy of	
	particle.[K(R)]	
10). determine product nuclei and O –value in reaction.	
	[P(R)]	

PART – B		
1. know Bohr's theory of nuclear disintegration.[K(I)		
2. Derive an expression for threshold energy of an endoergic reaction [S(I)]		
3 calculate the O-value of given nuclear reaction $[P(M)]$		
4 assess the types of given nuclear reactions [F(M)]		
5 describe the construction and working of proportional		
counter.[U(M)]		
6. explain quenching in GM counter.[E(M)]		
7. analyse resolving time of a GM counter.[A(M)]		
8. compare advantages of detectors.[E{R)]		
PART – C		
1. describe the construction and working of GM counter.[U(M)]		
2 demonstrate ionisation chamber and calculate the current		
produced in ionisation chamber when a particle with the		
energy passes through it [P(R)]		
3. compare the working of detectors and design the best		
detector.[C(M)]		
4. explain Q-value of nuclear reaction.[E(M)]		
5. analyse the construction and working of proportional		
counter.[A(M)]		
6. compare the working of detectors and can predict best		
detector[E(M)]		
7. know the working of bubble chamber.[K(M)]		
8. explain construction and working of ionisation		
chamber.[E(M)]		
UNIT 4 CO4-PARTICLE ACCELERATORS NEUTRON	4	15
AND NUCLEARFISSION		
PROGRAMME OUTCOME :		
PART – A		
1. know the principle behind particle accelerator.(K)		
2. define nuclear fission.(K)		
3. define critical size of a system.(K)		
4. define chain reaction. (K)		
5. list the five elements in nuclear reaction.(K)		
6. understand controlled chain reaction.(U)		
7. understand the limitations of linear accelerators.(U)		
8. calculate cyclotron resonance condition.(P)		
9. analyse multiplication factor .(A)		
10. synthesize resonance frequency of synchrocyclotron.(S)		
11. determine the time period of reversal in dee's of		
cyclotron.(C)		
12. explain the advantages of synchrocyclotron over		
cyclotron.(E)		
PART – B		

1. know about the concept of nuclear fission.(K)	
2. differentiate neutrons.(U)	
3. determine critical size of a system.(P)	
4. analyse critical size of a system.(A)	
5. synthesize energy released in fission.(S)	
6. predict the uses of neutrons in various fields.(C)	
7. explain neutron sources and neutron detectors.(E)	
PART – C	
1. know about the concept of chain reaction.(K)	
2. understand the construction and working of cyclotron.(U)	
3. calculate the average energy gained per revolution and	
final energy of electron.(P)	
4. analyse the working of atom bombs.(A)	
5. describe the construction and working of linear	
accelerator.(S)	
6. compare the advantages and disadvantages of accelerator	
and predict the best one.(C)	
7. explain the construction and working of nuclear reactor.	
(E)	
PROGRAMME SPECIFIC OUTCOME :	
$\mathbf{PART} = \mathbf{A}$	
1. calculate the time period of reversal of electric field in	
dee s of cyclotron.[S(R)]	
2. Conclude the type of particle that can be accelerated by $hototron [C(P)]$	
decide whether a cyclotron be used to accelerate	
electrons [S(I)]	
4 discuss what are slow neutrons $[U(\mathbf{R})]$	
5 know the accelerator that works on the principle of	
synchro acceleration [K(I)]	
6 differentiate fast and slow neutrons [U(I)]	
7 explain the principle used in cyclotron [E(I)]	
8 understand the use of particle accelerator [U(I)]	
9. know the type of particle that can be accelerated by	
betatron.[K(I)]	
PART – B	
1. determine the flux density of the magnetic field and	
velocity of deuterons emerging out cyclotron.[S(M)]	
2. compare the advantages of particle accelerator.[E(I)]	
3. demonstrate the construction and working of	
synchrocyclotron.[S(M)]	
4. analyse the applications of nuclear fission.[A(I)]	
5. discuss about neutron sources.[U(I)]	
6. know about neutron detectors.[K(I)]	
7. explain uses of neutron.[E(R)]	

8.	explain nuclear fission and the energy released in nuclear		
	fission.[E(R)]		
9.	illustrate the working of atom bomb.[P(R)]		
PART	-C		
1.	Determine the frequency of radio frequency voltage and		
	length of the tube entered by the proton in linear		
	accelerator.[P(I)]		
2.	describe the principle, construction and working of		
	nuclear reactor.[U(R)]		
3.	analyse the working of accelerators and explain which		
	type of accelerator can be mostly used for particle		
	acceleration.[A(I)]		
4.	describe the construction and working of cyclotron and		
	to determine how rapidly the electric field between the		
	dee's will be reversed[S(M)]		
5.	know about the construction and working of		
	betatron.[K(M)]		
6.	understand the construction and working of		
	synchrocyclotron.[U(M)]		
7.	explain about chain reaction, multiplication factor and		
	critical size.[E(M)]		
1.	[U(M)]		
2.	decide what are particles and antiparticles in the given		
	elementary particles.[C(M)]		
3.	determine the energy released by the given elementary		
	particle.[S(M)]		
4.	list the group of particles belongs to lepton.[(K(I)]		
5.	analyse the particle of strong interaction.[A(1)]		
6.	explain why hyperons are called strange particles.[E(1)]		
7.	know about heavy particles.[K(I)]		
8.	know what are cosmic rays.[K(1)]		1.5
UNIT	5 CO5- COSMIC RAYS AND ELEMENTARY	5	15
PARTI	CLES		
	DAMME OUTCOME .		
	A AMINIE OUTCOME :		
	$-\mathbf{A}$ know what is cosmic ray (K)		
2	understand what is east-west effect (II)		
3	determine minimum momentum at zenith (P)		
4	analyse longitudinal effect (A)		
5	predict east-west asymmetry in cosmic rays (S)		
6	differentiate various mesons (U)		
7.	explain particles and antiparticles.(E)		
PART	- B		
1.	know about cascade theory of cosmic rays.(K)		
2.	understand the working of Vanallen belts.(U)		
3.	illustrate use of neutron in the discovery of positron.(P)		

4.	analyse altitude effect.(A)	
5.	describe pair production and pair annihilation and can	
	derive the energy content of radiation in pair	
	production (S)	
6	give the reason for season and dinural changes (C)	
7	explain latitude affect (E)	
/.	explain latitude effect.(E)	
DADT	C	
	-C	
1.	understand the origin of eastic rays (II)	
$\begin{array}{c} 2 \\ 2 \end{array}$	give avidence of the fact that examine rays are composed	
5.	give evidence of the fact that cosmic fays are composed	
	more number of positive charged particles.(5)	
4.	analyse primary and secondary cosmic rays.(A)	
5.	illustrate the effect of earth's magnetic field on cosmic	
_	rays.(P)	
6.	draw the graph between latitude versus cosmic ray	
	intensity and altitude versus cosmic ray intensity.(C)	
7.	explain cosmic ray showers.(E)	
8.	explain elementary particles.(E)	
PROC	GRAMME SPECIFIC OUTCOME :	
PART	- A	
1.	differentiate latitude, altitude and azimuthal.[U(M)]	
2.	decide what are particles and antiparticles in the given	
elemen	ntary particles.[C(M)]	
3.	determine the energy released by the given elementary	
	particle.[S(M)]	
4.	list the group of particles belongs to lepton. $[(K(1))]$	
5.	analyse the particle of strong interaction.[A(I)]	
6.	explain why hyperons are called strange particles.[E(I)]	
/.	know about heavy particles.[K(I)]	
8.	know what are cosmic rays.[K(I)]	
DADT	D	
	- D demonstrate the designing and working of Van Allen	
	Relt[C(I)]	
2	discuss origin of cosmic rays 1]	
$\frac{2}{2}$	design a nicture to represent primary cosmic rays and	
5.	design a picture to represent primary cosmic rays and $C(M)$	
1	differentiate latitude and altitude affect [U(D)]	
4.	unnerentiate faitude and attitude effect. $[U(K)]$	
5.	analyse azimutnai and east-west effect.[A(K)]	
6. -	know about particles and antiparticls.[K(I)]	
1.	explain the discovery of positron and about mesons.[$E(I)$]	
8.	explain the effect of earth's magnetic field on cosmic	
	rays.[E(R)]	
9.	illustrate the applications of cosmic rays.[P(I)]	
PART	- C	

1.	analyse the latitude ,longitude and azimuthal effect.[A(R)]	
2.	illustrate the applications of elementary particles in various	
	fields.[P(I)]	
3.	give an account on cosmic ray showers.[K(M)]	
4.	discuss about the classification of elementary	
	particles.[K(R)]	
5.	explain primary, secondary cosmic rays and cascade	
	theory of cosmic rays.[E(R)]	

SYLLABUS

ELECTIVE PAPER III

SEMESTER VI

5 Hrs/week

Credit : 5

NUCLEAR PHYSICS Code : EP63 UNIT- I: NUCLEAR ASPECTS AND NUCLEAR MODELS

Introduction – Classification of nuclei – General properties- Binding energy – Nuclear Stability- Theories of nuclear Composition-Nuclear forces-Meson theory of nuclear forces- Models of nuclear structure – Liquid drop model- Applications of semi empirical mass formula- Shell model.

UNIT-II: RADIOACTIVITY

Range of alpha particles – Experimental measurement of the range of alpha particles - Alpha particle disintegration energy- Alpha particle spectra- Beta rays spectrum – Origin of the continuous spectrum- Neutrino theory of beta decay – Units of radioactivity-Radioactive dating – Age of earth.

UNIT- III: ARTIFICIAL TRANSMUTATION OF ELEMENTS AND DETECTORS

Bohrs theory of nuclear disintegration- Q value equation for a nuclear reaction– Types of nuclear reaction- Conservation laws- Energy balance in nuclear reactions and the Q value - Ionisation chambers- Proportional counter- G-M counter- Bubble chamber

UNIT- IV: PARTICLE ACCELERATORS, NEUTRON AND NUCLEAR FISSION

Linear accelerator - Cyclotron- Synchrocyclotron- Betatron-Classification of neutron –neutron sources-neutron detection- nuclear fission-Energy released in fission-Chain reaction-atom bomb-nuclear reactors.

UNIT- V: COSMIC RAYS AND ELEMENTARY PARTICLES

Cosmic rays- Latitude effect – Azimuthal effect - Altitude effect- Primary cosmic rays - Secondary cosmic rays- Cosmic ray showers- Van allen belt- Origin of cosmic rays – Elementary particles- Introduction - Particles and anti particles. **TEXT BOOK:**

1.Modern Physics – R. Murugeshan – eighteenth Revised Edition 2016 – S.Chand

UNIT-I -(17.1-17.7),17.7.1,17.10,17.11,17.12

UNIT—II – 20.4,(20.4.1),20.5,20.6,20.10,(20.10.1),(20.10.2),20.19,20.21

UNIT—III – 21.1,21.2,(21.2.1),(21.2.3),(21.2.4),18.3,18.5,18.6,18.8

UNIT—IV -19.2,19.3,19.4,19.5,(21.10.1),21.11,21.12,22.1,(22.1.1),22.2,(22.2.1)22.3

UNIT—V – 23.1,23.2,23.3,23.4,23.5,23.6,23.9,23.10,24.1,24.2

BOOKS FOR REFERENCE:

- 1. Atomic Physics Satyaprakash Latest revised Edition after 2000 Published by RatanPrakashan, Mandir.
- Nuclear Physics Satyaprakash- 2005 Edition Sultan Chand & Sons. and Particle Physics
 Concept of Arthur Beiser- II Edition, McGrawHillKogakusha Ltd.
- Concept of Arthur Beiser- II Edition, McGrawHillKogakusha Ltd. Modern Physics
 Modern Physics Richtmyer, Kennard & Cooper -VI Edition, McGraw Hill Book Company.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT -	Introduction, classification of nuclei, general	3	L,P,I
Ι	properties of nucleus		
	Binding energy, nuclear stability	3	L,P,T
	Theories of nuclear composition, nuclear	3	L,P,I
	forces		
	Meson theory of nuclear forces	2	L,T
	Models of nuclear structure-liquid drop model	2	L,T
	Applications of semi empirical mass formula,	2	L,I
	shell model		
UNIT-I	Range of alpha particles, experimental	3	L,T,P
Ι	measurement of range		
	Alpha particle disintegration energy, alpha	3	L,P,I
	particle spectra		
	Beta ray spectrum	3	L,T,I
	Origin of continuous spectrum	2	L,I
	Neutrino theory of beta decay	2	L,T
	Units of radioactivity, radioactive dating, age	2	L,P
	of earth		
UNIT-I	Bohrs theory of nuclear disintegration, Q-value	2	L,T
II			·

	Types of nuclear reaction, conservation laws,	3	L,P,I
	energy balance		
	Ionisation chamber	2	L,I
	Proportional counter	3	L,T,P
	G-M counter	3	L,P,T
	Bubble chamber	2	L,I
			LED
UNIT-I V	Linear accelerator, cyclotron	3	L,1,P
	Synchrotron, betatron	2	L,I
	Classification of neutron, neutron sources,	3	L,T,P
	neutron detectors		
	Nuclear fission, energy released in nuclear fission	2	L,I
	Chain reaction, atom bomb	3	L,T,P
	Nuclear reactor	2	L,I
UNIT- V	Cosmic rays, latitude effect	3	L,T,I
	Azimuthal effect, altitude effect	3	L,P,I
	Primary cosmic rays, secondary cosmic rays	2	L,T
	Vanallen belt, origin of cosmic rays	2	L,P
	Elementary particles, particle and antiparticle	3	L,P,I
	Cosmic ray shower	2	L,T

Cource outcom es (COs)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos					
	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	6	3	3	3	3	3	4	5	3	4	4	4	4	3	3.71
CO2	5	5	3	3	3	2	2	3	6	3	3	2	3	5	3.43
CO3	6	5	4	3	2	3	3	5	4	3	3	2	1	7	3.64
CO4	7	4	3	3	3	3	3	4	6	2	2	4	1	4	3.5
CO5	3	4	3	3	3	2	4	6	3	2	3	1	3	4	3.14
	Mean overall score							3.48							

Result : The Score for this course is 3.48 - High

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%

APPLY	20%	20%

Course Designer : J.S.P.CHITRA, Department of PHYSICS

SEMESTER V & VI CORE PAPER XI MAJOR PRACTICAL PAPER – III

CODE : PP3

3 hrs / week

Any 16/22 experiments are to be done.

Credit : 3

NON ELECTRONICS

- 1) Newton's rings
- 2) Hartmann's interpolation formula
- 3) Spectrometer i-d curve
- 4) Spectrometer i-i' curve
- 5) Spectrometer Cauchy's constants
- 6) Spectrometer D.P. & R.P. of grating
- 7) BG Determination of mutual inductance
- 8) BG Determination of absolute capacity
- 9) BG Ammeter Calibration
- 10) BG High resistance by leakage
- 11) Conversion of galvanometer into ammeter & voltmeter
- 12) Emf of Thermocouple by potentiometer
- 13) Maxwell's bridge Determination of L
- 14) Anderson's bridge Determination of L
- 15) Koenig's method Determination of young's modulus (Non uniform)
- 16) Solar cell characteristics
- 17) Photo voltaic cell characteristics
- 18) Fiber optics Numerical Aperture & Acceptance angle
- 19) Fiber optics Attenuation Losses
- 20) Potentiometer-Resistance & Resistivity.
- 21) Laser Diffraction Determination of Wavelength
- 22) Laser Diffraction Determination of Slit width

SEMESTER V & VI CORE PAPER XI

MAJOR PRACTICAL PAPER – IV

CODE : PP4

2 hrs / week

Any 16/22 experiments are to be done.

Credit : 2

ELECTRONICS

- 1. Construction of Bridge rectifier & voltage doubler
- 2. Zerner diode characteristics and voltage regulation
- 3. Hartley Oscillator Transistor
- 4. Colpitt's Oscillator Transistor
- 5. Single state amplifier with and without feed back- Transistor
- 6. Double Stage amplifier Transistor
- 7. Astable multivibrator Transistor
- 8. Characteristics (CE Mode) of a Transistor
- 9. Bistable multivibrator using Transistor
- 10. IC verification of Truth table (Universal NAND & NOR)
- 11. IC Verification of Demorgan's theorem
- 12. IC Dual power supply
- 13. OP AMP Adder, Subtractor
- 14. IC Half & Full Adder
- 15. Ring counter
- 16. Logic gates with discrete components / IC
- 17. FET Characteristics
- 18. Voltage Trippler & Doubler
- 19. Shift register
- 20. Relaxation oscillator using UJT
- 21. RS, JK, D Flip Flop

For Major Practical Examination Marks Allotment

External examination will be conducted at the even semester

Exam Duration – 3 Hrs

Internal Marks - 40 External Marks - 60 Total Marks - 100

Internal Marks:

Record - 10 Marks Viva Voce - 10 Marks Model Exam - 20 Marks

Total - 40 Marks

External Marks:

External Exam - 60 Marks

SEMESTER - I & III (SEM I for B.Sc., (Chemistry) & SEM III for B.Sc., (Maths)) ALLIED PHYSICS PAPER - I

Code : AP1

4 Hrs/Week Credit : 3

Unit - I: MECHANICS

Force – Conservative and non conservative forces – Friction –Coefficient of friction – Laws of friction – Acceleration down an inclined plane.

Rotational motion- Expressions for torque, angular momentum and kinetic energy of rotating rigid bodies.

FLUID MECHANICS :

Viscosity – Stream lined and turbulent motion – Reynold's number - Bernoulli's theorem - Statement & Proof – Application – Venturimeter and Pitot tube.

Unit - II: GRAVITATION

Kepler's laws of planetary motion- Law of gravitation – Boy's method for G-Compound pendulum - Expression for period – Experiment to find g – Variation of g with latitude, altitude and depth – Orbital velocity – Artificial satellites.

Unit - III: ELASTICITY

Elasticity – Young's Modulus – Rigidity modulus – Bulk modulus – Poisson's ratio – Bending of beams – Expression for bending moment – Determination of Young's modulus – Uniform and non-uniform bending - I – Section of girders – Torsion of a cylinder – Expression for torque per unit twist – Work done in twisting the wire – Torsional oscillations of a body– Determination of rigidity modulus of the wire by torsion pendulum.

Unit – IV: HEAT AND THERMODYNAMICS

Conduction – Coefficient of Thermal Conductivity – Lee's Disc method – Convection in atmosphere – Lapse rate - Radiation – Stefan's law – Stefan's constant – Experimental determination – Solar constant - Temperature of the Sun.

Zeroth, I, II and III law of thermodynamics – Carnot's engine – Efficiency – Entropy – Change in entropy in reversible and irreversible processes.

Unit – V: OPTICS

Theory of interference – Air Wedge – Newton's Rings – Diffraction - Fresnel and Fraunhofer diffraction – Transmission Grating – Polarisation – Double refraction – Nicol prism- Quarter and half wave plates.

Text Book:

- Ancillary Physics I Semester (Mechanics, Properties of Matter and Sound) R.Murugesan – S.Chand & Co, 2008. (UNIT I,II & III)
- Ancillary Physics II Semester (Thermal Physics) R.Murugesan S.Chand & Co, 2008.

(UNIT IV)

 Ancillary Physics – IV Semester (Optics, Spectroscopy and Modern Physics) -R.Murugesan – S.Chand & Co, 2008. (UNIT V)

Unit I: 1.1,1.3,1.4,1.5,1.6,1.7,1.8,2.8,2.9,2.10,5.1,5.5,5.6,5.7.

Unit II : 3.1,3.2,3.4,3.5,3.6,3.7,3.8,3.9.

Unit III : 4.1,4.2,4.3,4.4,4.5,4.7,4.8,4.9,4.10,4.11,4.12,4.13.

Unit IV : 3.1,3.2,4.1,4.2,4.3,5.1,5.2,5.3,5.4,5.6,7.2,7.4,7.5,7.6.

Unit V : 2.1,2.2,2.4,2.5,2.8,2.9,3.1,3.2,3.4,3.5,3.

Reference:

- 1. Mechanics D.S.Mathur, S.Chand & Co., 2002.
- 2. Properties of Matter Brijlal and Subramanyam, S.Chand & Co., 2002.
- 3. Heat and Thermodynamics Brijlal and Subramanyam, S.Chand & Co., 2006
- 4. Optics Brijlal and Subramanyam, Brijlal and Subramanyam, S.Chand & Co., 2006

SEMESTER II & IV ALLIED PHYSICS PAPER – II (SEM II for B.Sc., (Chemistry) & SEM IV for B.Sc., (Maths))

Code : AP2

4 Hrs./Week Credit : 4

Unit - I : CURRENT ELECTRICITY AND AC CIRCUITS

Kirchhoff's laws – Wheatstone's network – Condition for balance -Carey – Foster's Bridge – Measurement of Specific resistance – Potentiometer – Calibration of Voltmeter and Ammeter.

AC Circuits – Mean value – RMS value – Peak value – LCR in series – Sharpness of resonance – Chokes – Uses.

Unit – II : PHOTO ELECTRICITY

Laws of photoelectric emission – Einstein's equation – Photoelectric cells – Photoemissive cells – Photoconductive and Photovoltaic cells – Applications – Solar cell.

Unit – III : RELATIVITY

Inertial frames – Galilean transformation equations – Michelson and Morley experiment – Postulates of Special theory of Relativity – Lorentz transformation (no derivation) - Length contraction – Time dilation – Mass energy equivalence.

Unit – IV : ELECTRONICS

Junction diode – Biasing – Bridge rectifier – Transistor – Transistor characteristics (CE mode) – Single stage amplifier - Oscillator – Hartley Oscillator – Modulation – Amplitude modulation – De modulation – AM detectors (diode).

Unit – V : DIGITAL ELECTRONICS

Number systems – Decimal – Binary – Binary addition and subtraction – Basic Logic Gates – Universal gates – Laws and theorems of Boolean algebra – De-Morgan's theorems.

Text Book :

- 1. Ancillary Physics III Semester (Electricity and Electronics) R.Murugesan S.Chand & Co., 2008.
- Ancillary Physics IV Semester (Optics, Spectroscopy and Modern Physics) R.Murugesan – S.Chand & Co. 2008.

Unit I : 2.1,2.2,2.3,2.5,2.6,2.7,2.8,3.11,3.15,3.20.

Unit II : 4.11,4.12,4.13,4.14.

Unit III : 5.5,5.6,5.7,5.8,5.9,5.11.

Unit IV : 4.1,4.2,4.7,4.9,4.12,4.14,4.15,4.16.

Unit V : 5.1,5.2,5.3,5.4,5.5,5.6,5.10,5.11,5.12,5.13,5.14,5.15,5.17,5.7,5.8,5.9.

Reference:

1. Electricity and Magnetism - R.Murugesan - S.Chand & Co. 2007

- 2. Optics, Spectroscopy and Modern Physics R.Murugesan S.Chand & Co.2008
- 3. Digital principles and application –Malvino and Leach (2000) 4thEd,

New Delhi

SEMESTER I & II (Chemistry)/ SEMESTER III & IV (Maths) ALLIED PHYSICS PRACTICALS

Code: PPA

3 Hrs/Week Credit: 3

Any fourteen Only (For Two Semesters)

- 1. Young's Modulus Uniform Bending (Optic lever).
- 2. Young's Modulus Non-Uniform Bending (Pin & Microscope).
- 3. Compound Pendulum.
- 4. Torsion Pendulum Rigidity Modulus
- 5. Surface Tension of a liquid by Capillary Rise method.
- 6. Coefficient of Viscosity by Poiseullie's method.
- 7. Coefficient of Thermal conductivity Lee's Disc method.
- 8. Newton's Law of cooling Specific heat capacity of a liquid.
- 9. Carey Foster's Bridge Determination of specific resistance.
- 10. Potentiometer Determination of specific resistance.
- 11. Potentiometer Calibration of voltmeter.
- 12. Potentiometer Calibration of low range ammeter.
- 13. Newton's Rings Radius of Curvature of the lens.
- 14. Thickness of a thin wire by Air-Wedge.
- 15. Spectrometer Grating Normal incidence method.
- 16. Spectrometer Dispersive power of the prism.
- 17. LCR Series Resonance Circuit.
- 18. LCR Parallel Resonance Circuit.
- 19. Junction and Zener diode V-I Characteristics.
- 20. Construction of Regulated power supply using Zener diode.
- 21. Transistor characteristics Common Emitter Configuration.
- 22. Logic gates OR, AND, NOT (Using discrete components).
- 23. Logic Gates NAND, NOR (Using discrete components).
- 24. Transistor Hartley Oscillator.
- 25. Desauty's bridge (Series and Parallel Capacitances)
- 26. B.G. C1 / C2 (or E1 / E2).
- 27. AC frequency-sonometer
- 28. Verification of Ohm's law

For Ancillary Physics Examination Marks Allotment

PPA Practical Examination :

External examination is at the end of II semester (Chemistry) IV semester (Maths).

Exam Duration	- 3 Hrs	5
Internal Marks External Marks	- 40 - 60	
Total Marks	- 100	

Internal Marks:

Record Viva voce Model Exam	- -	 Marks Marks Marks
Total	-	<u>40 Marks</u>
External Marks:		
External Exam	-	60 Marks