

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI – 625 002.

DEPARTMENT OF COMPUTER APPLICATIONS

BACHELOR OF COMPUTER APPLICATIONS

SYLLABUS TO BE INTRODUCED FOR THE ACADEMIC YEAR 2021 - 2022

OUTCOME BASED EDUCATION

UNDER C.B.C.S.

SRI MEENAKSHI GOVT ARTS COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF COMPUTER APPLICATIONS

DEPARMENT NAME: COMPUTER APPLICATIONS

INTRODUCTION

The Department of Computer Applications blossomed in the year 1998 offering Master of Computer Applications course approved by AICTE. In August 2018 B.C.A course was started. The Department has an enterprising faculty team of 3 Assistant Professors, 2 Guest faculties and 1 Programmer. It has more than 100 research publications to its credit. They contribute their share of knowledge to academic community through Invited Talks and Paper presentations in National / International Conferences. The Department takes continuous efforts in upgrading the course content and enhancing students skills.

COURSES OFFERED:

- **B.C.A**
- M.C.A

• M.Phil COMPUTER APPLICATIONS

VISION

Enabling Students to become enterprising Academicians, Young Entrepreneurs and Responsible Citizens.

MISSION

Imparting Quality Knowledge and Essential Virtues Treading Towards Holistic Development.

PROGRAMME OUTCOME OF B.C.A

At the end of the Degree programme the students will be able to:

- **PO1:** Capable of adapting to new technologies and constantly upgrade their skills with an attitude towards independent and lifelong learning. (P)
- **PO2:** Able to analyze and identify the customer requirements in multidisciplinary domains, create high level design and implement robust software applications using latest technological skills .(A)
- **PO3:** Able to design and develop reliable software applications for social needs and excel in IT enabled services.
- **PO4:** Perform professionally with social, cultural and ethical responsibility as an individual as well as in multifaceted teams with positive attitude. (S)
- **PO5:** Proficient in successfully designing innovative solutions for solving real life business problems and addressing business development issues with a passion for quality, competency and holistic approach (C)

PROGRAMME SPECIFIC OUTCOME(PSO)

- **PSO1:** Enhance Professional Skills
- PSO2: Attain the ability to Design and Develop computer applications,
- **PSO3:** Evaluate and recognize potential risks and provide innovative solutions.
- **PSO4**: AcquireSuccessful Entrepreneurship skills
- **PSO5:** Explore technical knowledge in diverse areas of Computer Applications and experience an environment conducive in cultivating skills for higher studies.

TITLE OF THE PAPERS AND DISTRIBUTION OF CREDITS & MARKS

Subject Code	Study Components	Title of paper	Lect. Hrs/ week	Exam Hrs	No. of Credit	Int. Marks	Ext Marks	Total			
	SEMESTER – I										
1A1	Part-I	Tamil	6	3	3	25	75	100			
2A1	Part-II	English	6	3	3	25	75	100			
U11	Part-III Core-1	Programming in C	5	3	5	25	75	100			
AU1	Allied-1	Discrete Mathematics	5	3	5	25	75	100			
PU1	Core-2	Programming in C Lab	5	3	3	40	60	100			
SUP1	SBE-1	Office Automation Lab	2	3	2	40	60	100			
AV1	Part-IV *	Value Education	1		-						
	Total		30		21			600			
		SEMES	STER –	II							
1A2	Part-I	Tamil	6	3	3	25	75	100			
2A2	Part-II	English	6	3	3	25	75	100			
U21	Part-III Core-3	Object Oriented Programming with C++	4	3	4	25	75	100			
U22	Core-4	Digital Principles and Computer Organization	4	3	4	25	75	100			
AU2	Allied-1	Probability and Statistics	5	3	5	25	75	100			
PU2	Core-5	Programming in C++ Lab	4	3	3	40	60	100			
AV1	Part-IV *	Value Education	1	3	2	25	75	100			
		Total	30		24			700			

*Examination at the end of the Year

Subject Stud	y Title of paper	Lect.	Exam	No. of	Int.	Ext	Total
--------------	------------------	-------	------	--------	------	-----	-------

BCA – 2021-22 – CBCS Pattern – SMGAC-MDU

Code	Components		Hrs/ week	Hrs	Credit	Marks	Marks	
		SEMES	STER - I	II				
1A3	Part-I	Tamil	6	3	3	25	75	100
2A3	Part-II	English	6	3	3	25	75	100
U31	Part-III Core-6	Operating Systems	4	3	4	25	75	100
U32	Core-7	Programming in Java	4	3	4	25	75	100
PU3	Core-8	Programming in Java Lab	3	3	2	40	60	100
AU3	Allied-2	E Commerce	5	3	4	25	75	100
SUP2	SBE-2	SPSS Lab	2	3	2	40	60	100
	Part-V	Extension Activity / Sports	-	-	1	25	75	100
		Total	30		23			800
		SEMES	STER –I	V				
1A4	Part-I	Tamil	6	3	3	25	75	100
2A4	Part-II	English	6	3	3	25	75	100
U41	Core-9	Data Structures	4	3	4	25	75	100
U42	Core-10	Computer Networks	4	3	4	25	75	100
AU4	Allied-2	Computer Based Financial Accounting	3	3	3	25	75	100
PU4	Core-11	Data Structures Lab	4	3	4	40	60	100
UPA	Allied Lab	TALLY Lab	3	3	3	40	60	100
		Total	30		24			700

Subject Code	Study Components	Title of paper	Lect. Hrs/ week	Hrs	AN3.08f-2 Credit	2 – GACS Marks	Patte E Xt- SN Marks	GAC-M Total
			STER –	·V				
U51	Core-12	Web Programming with PHP	5	3	5	25	75	100
EU51	Elective-1	Programming with .NET / Artificial Neural Networks / Digital Image Processing	5	3	5	25	75	100
EUP2	Elective-2	.NETProgrammingLab / Artificial NeuralNetworkusingMATLAB / DigitalImage Processing usingMATLAB	6	3	5	40	60	100
SU53	SBE-3	DataBase Management Systems	2	3	2	25	75	100
PU5	Core-13	PHP Lab	6	3	5	40	60	100
SUP5	SBE - 5	Oracle Lab	2	3	2	40	60	100
SGK4	SBE-4	GK	2	3	2	25	75	100
NMU1	NME-1	Computer Fundamentals	2	3	2	25	75	100
		Total	30		28			800
		SEMES	STER –	VI				
U61	Core-14	Software Engineering	6	3	4	250	75	100
EU63	Elective-3	Artificial Intelligence / Data Warehousing and Mining / System Software	6	3	5	25	75	100
SU66	SBE-6	Computer Graphics	4	3	2	25	75	100
NMU2	NME-2	Internet and its Applications	2	3	2	25	75	100
ENS6	Part-IV	EVS	2	3	2	25	75	100
UPJ	Core - 15	Project Work	10	3	5	20	80	100
		Total	30		20			600

SEMESTER V: Elective - 1

- 1) Programming with .NET
- 2) Artificial Neural Networks
- 3) Digital Image Processing

Elective - 2

- 1) .NET Programming Lab
- 2) Artificial Neural Network using MATLAB
- 3) Digital Image Processing using MATLAB

SEMESTER VI:

Elective - 3

- Artificial Intelligence
 Data Warehousing and Mining
- 3) System Software

TOTAL CREDITS = 140 TOTAL MARKS = 4200

Value Added Courses Offered

S.No	Paper No	Title	Institution/Synergy	Target Students
1	#1	Web Programming	Institution	For BCA students
2	#2	Multimedia and its pplications	Institution	Open to all
3	#3	Python Programming	Institution	For BCA students
4	#4	Digital Marketing	Cormet Solutions Chennai	Open to all

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN(A), MADURAI–2. DEPARTMENT OF COMPUTER APPLICATIONS BACHELOR OF COMPUTER APPLICATIONS

	Part- I	Part-II		Par	t-III			Par	t-IV		Part-V	
Semester	Tamil	English	Core	Elective	Allied- I	Allied- II	NME	SBE	EVS	VE	NSS/ NCC/ Physical Education/ Extension Activity	Total
Ι	3	3	8	-	5	-	-	2	-	-	-	21
II	3	3	11	-	5	-	-	-	-	2	-	24
III	3	3	10	-	-	4	-	2	-	-	1	23
IV	3	3	12	-	-	6	-	-	-	-	-	24
V	-	-	10	10	-	-	2	6	-	-	-	28
VI	-	-	9	5	_	-	2	2	2	-	-	20
Total	12	12	60	15	10	10	4	12	2	2	1	140

I. QUESTION PAPER PATTERN FOR EXTERNAL EXAMINATION

1. Core, Major Elective and Allied Papers

Section - A	5 compulsory questions (1 question from each unit)	5 X 2 = 10 Marks
Section - B	5 questions to be answered under 'either – or' pattern (2 questions from each unit)	5 X 7 = 35 Marks
Section - C	3 questions to be answered out of 5 questions (one from each unit)	3 X 10 = 30 Marks
	Total	75 Marks

2. Skill Based Elective Papers

Section - A	5 questions to be answered under 'either – or' pattern (2 question from each unit)	5 X 15 =75 Marks
	Total	75 Marks

3. Non Major Elective Papers

Section - A	25 compulsory questions (5 Multiple Choice Questions from each unit)	25 X 1 = 25 Marks
Section - B 5 questions to be answered under 'either - or' pattern (2 questions from each unit)		5 X 10 = 50 Marks
	Total	75 Marks

II. EVALUATION PATTERN

1.Theory Paper

Internal

Test	20
Quiz/Assignment	5
Total	25

Internal	-	25
External	-	75
Total	-	100

2.Practical Paper

Internal

Record	10
Viva-Voce	10
Internal Practical Exam	20
Total	40

Internal - 40

- External 60
- Total 100

3.Project

Internal Assessment	20
Viva-Voce	80
Total	100

III. PASSING MINIMUM

	Exte	rnal	Ductor	Internal		
•	- Passing imum		l - Passing imum	Project Mir	Passing Minimum	
35% (27 Marks)	Aggregate of 40 Marks in Total	35% (21 Marks)	Aggregate of 40 Marks in Total	35% (28 Marks)	Aggregate of 40 Marks in Total	No

Programme :BCASemester: ISub. Code: U11

Part III: Core Hours : 5 P/W 75 Hrs P/S Credits : 5

TITLE OF THE PAPER: PROGRAMMING IN C

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TU	JTORIAL	ICT	
	5	2	1	1		1	
PREAMBLE	E:						
			ecessary program inter concepts in	ming skills and to C language.	o design,	code an	d implement
COURSE O	UTCOME					Unit	Hrs P/S
At the end of	At the end of the Semester, the Students will be able to						
UNIT 1 CO1 : Understand programming concepts by learning algorithms and flowcharts.						1	15
UNIT 2 CO2	2: Obtain ki	nowledge ab	out the basics of	C Programming.		2	15
UNIT 3 CO3	B: Apply dif	fferent opera	ations in an array.			3	15
UNIT 4 CO4	: Understa	nd use of fu	nction, pointers,	structures and unic	ons.	4	15
UNIT 5 CO5	5: Acquire l	knowledge a	bout the basics o	f file handling mec	hanism	5	15

SYLLABUS

UNIT I:

Overview of C:History of C – Importance of C – Basic Structure of C Programs – Programming Style – Character Set – C Tokens – Keywords and Identifiers – Constants, Variables and Data Types – Declaration of Variables – Defining Symbolic Constants – Declaring a variable as a constant – overflow and underflow of data – Operators and Expressions: Arithmetic, relational, logical, assignment operators – increment and decrement operators, conditional operators, bitwise operators, special operators – Arithmetic Expressions- Evaluation of Expressions – Precedence of Arithmetic Operators – Type Conversions in Expressions – Operator Precedence and Associativity.

UNIT II:

Managing I/O Operations: Reading and Writing a Character – Formatted Input, Output – Decision Making and Branching: if statement - if else statement - nesting of if else statements - else if ladder – switch statement – the ?: operator – goto statement – the while statement – do statement – the for statement – jumps in loops.

UNIT III:

Arrays: One-Dimensional Arrays - Declaration, Initialization - Two-Dimensional Arrays -

Multi-dimensional Arrays – Dynamic Arrays – Initialization. Strings: Declaration, Initialization of string variables – reading and writing strings – string handling functions. **UNIT IV:**

User-defined functions: need – multi-function programs – elements of user defined functions – definition – return values and their types – function calls, declaration, category – all types of arguments and return values – nesting of functions – recursion – passing arrays, strings to functions – scope visibility and life time of variables. Structures and Unions: Defining a structure – declaring a structure variable – accessing structure members – initialization – copying and comparing – operation on individual members – array of structures – arrays within structures – structures within structures – structures and functions – size of structures – bit fields.

UNIT V:

Pointers:Accessing the address of a variable – declaring, initialization of pointer variables – accessing a variable through its pointer – chain of pointers – pointer increments and scale factors – pointers and character strings – pointers as function arguments – pointers and structures. Files: Defining, opening, closing a file – IO Operations on files – Error handling during IO operations – command line arguments.

TEXT BOOKS:

Programming in ANSI C, E.Balagurusamy, 6th Edition, McGraw Hill Education (India) Pvt. Ltd., 2017.

Unit I: Chapter 1, Chapter 2, Chapter 3 Unit II: Chapters 4, Chapter 5, Chapter 6 Unit III: Chapter 7, Chapter 8 Unit IV: Chapter 9, Chapter 10 Unit V: Chapter 11, Chapter 12

REFERENCES:

- 1. B. Gottfried, "Schaum's Outline of Programming with C", 3rd Edition, Tata McGraw Hill, 2010.
- 2. J.R. Hanly and E.B. Koffman, "Problem Solving and Program Design in C", 6th Edition, Pearson Education, 2009.
- 3. Programming with ANSI and Turbo C, Ashok N.Kamthane , Pearson Education, 2006
- 4. H. Schildt, C: The Complete Reference, 4th Edition, TMH Edition, 2000.
- 5. Kanetkar Y., Let us C, BPB Pub., New Delhi, 1999.

E-LEARNING RESOURCES:

1. http://spoken-tutorial.org/tutorial-search/?search_foss=C+and+Cpp&search_language

=English

UNITS	TOPIC BCA –	2626-27-CSES HOURS	Pattern = SMCAC-MI TEACHING
UNIT 1			
	Overview of C:History of C – Importance of C – Basic Structure of C Programs – Programming Style – Character Set – C Tokens – Keywords and Identifiers	5	Lecture

	– Constants, Variables and Data Types – Declaration of		
	Variables – Defining Symbolic Constants – Declaring a		
	variable as a constant – overflow and underflow of data		
	OperatorsandExpressions:Arithmetic, relational, logical, assignment operators – increment	5	Lecture
	and decrement operators, conditional operators, bitwise operators, special operators – Arithmetic Expressions-		
	Evaluation of Expressions – Precedence of Arithmetic Operators – Type Conversions in	5	Lecture
	Expressions – Operator Precedence and Associativity.		
UNIT 11			
	Managing I/O Operations:Reading and Writing a Character – Formatted Input, Output	5	Peer teaching
	Decision Making and Branching: if statement -	5	Lecture and
	if else statement - nesting of if else statements - else if		ICT
	ladder – switch statement –		
	the ?: operator – goto statement – the while statement – do statement – the for statement – jumps in loops.	5	Videos
UNIT III			
	Arrays:One-Dimensional Arrays – Declaration,	6	Lecture
	Initialization – Two-Dimensional Arrays – Multi-		
	dimensional Arrays – Dynamic Arrays – Initialization.		
	Strings: Declaration, Initialization of string	5	Lecture
	variables –		
	reading and writing strings – string handling functions	4	ICT
UNIT IV			l
	User-defined functions: need – multi-function	5	Lecture
			1
	programs - elements of user defined functions -		
	definition – return values and their types – function		

passing arrays, strings to functions – scope visibility _{<i>BCA</i>} and life time of variables.	- 2020-21 – CBCS	Pattern – SMGAC-A	1DU
Structures and Unions: Defining a structure –	5	Videos	
declaring a structure variable - accessing structure			
members – initialization –			

	copying and comparing – operation on individual members – array of structures – arrays within structures – structures within structures – structures and functions	5	PPT
	– unions – size of structures – bit fields.		
UNIT V			
	Pointers: Accessing the address of a variable – declaring, initialization of pointer variables – accessing a variable through its pointer – chain of pointers – pointer increments and scale factors – pointers and character strings – pointers as function arguments – pointers and structures.	5	Lecture
	Files: Defining, opening, closing a file – IO Operations on files –	5	ICT
	Error handling during IO operations – command line arguments.	5	Lecture

Course Outcomes (Cos)	s Programme Outcomes (POs) Programme Specific Outcomes (PSOs)					Mean scores of Cos					
	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	5	1	5	4	5	2	3	5	3.6
CO2	2	3	4	4	2	4	2	2	5	3	3.1
CO3	3	4	5	3	4	4	5	2	1	3	3.4
CO4	4	4	5	2	4	4	5	2	1	3	3.4
CO5	2	3	5	2	4	4	5	2	2	2	3.1
Mean Overall Score								3.32			

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= Total of V	alue	Mean Overall Score of $COs = Total of Mean Score$		
	Total No. of Pos	s & PSOs			Total No. of COs

BLOOM"S TAXANOMY	INTERNAL	EXTERNAL			
KNOWLEDGE	50%	50%			
UNDERSTANDING	30%	30%			
APPLY	20%	20%			
Course Designer:	Department of Computer Application				

BCA - 2020-21 - CBCS Pattern - SMGAC-MDU

Programme : BCASemester: ISub. Code: AU1

Part III: Allied-1 Hours : 5 P/W 75 Hrs P/S Credits :5

TITLE OF THE PAPER: DISCRETE MATHEMATICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	IC	Т	
	5	5	-	-		-	
PREAMBLE:				II			
	To equip the students with applications of discrete mathematics in the field of computer science. To cover sets, logic, proving techniques, combinatorial functions, relations a nd Graph theory.						
		COU	RSE OUTCOME	C	Unit	Hrs P/S	
At the end of the Semester, the Students will be able to							
UNIT 1 CO1:		oolean algeb orld of com		hat simplifies communication	1	15	
UNIT 2 CO2:	Use form	al logic, and	l will be able to id	lentify interesting outcomes	2	15	
UNIT 3 CO3 : Implement mathematical structures (sets, relations, functions, sequences, series, graphs) in real world situations.						15	
UNIT 4 CO4 : Summarize principles of counting and will be able to grasp patterns in data that follows fixed set of rules.						15	
UNIT 5 CO5:	Discuss g	graph concep	ots.		5	15	
					-	1	

SYLLABUS UNIT I:

Set Theory: Introduction – Sets – Notation and Description of Sets – Subsets – Venn – Euler Diagrams – Operation on sets – Properties of set operations – Verification of basic laws and algebra by Venn diagram.

UNIT II:

Relations and Functions: Relations – Representation of a relation – Operations on relations – equivalence relation – Closures & Warshalls Algorithm – Partial order Relation – Hasse Diagrams – Lattice.

UNIT III:

Logic: Introduction – IF statements – Connectives – Truth table of a formula – Tautology – Tautological implications and Equivalence of formulae – Quantifiers.

UNIT IV:

Recurrence relations and Generating functions: Recurrence relation – an introduction – Polynomial and their evaluations – Recurrence relations – Solutions of finite order homogeneous (linear) relations – Solutions of non-homogeneous relations – Generating functions (for all the theorem consider the statements without proofs).

UNIT V:

Introduction: What is a graph – Application of graphs – Finite and infinite graphs – Incidence and degree – Isolated vertex, Pendant vertex and null graph. Paths and circuits : Isomorphism – Sub graphs – A puzzle with multicolored cubes – walks, paths and circuits – Connected graphs, disconnected graphs and components – Euler Graphs – Operations on graph – Hamiltonian paths and circuits (Excluding theorems) – The travelling salesman problem. Trees and fundamental circuits: Trees – Some properties of trees (Theorem 3.1, 3.2, 3.3 only) - Pendant vertices in a tree – Distance and centers in a tree (Theorem 3.9 only).

TEXT BOOKS:

- 1. Discrete Mathematics M.Venkataraman, N.Sridharan and N.Chandrasekaran The National Publishing Company, May 2009.
- Graph Theory with applications to Engineering and Computer Science, NarsinghDeo, Prentice Hall of India Pvt. Limited, 1999 UnitI :Text Book 1 - Chapter 1.1 to 1.8

Unit II: Text Book 1 - Chapter 2 (2.2 to 2.6), 10.1

Unit III: Text Book 1 - Chapter 9 (9.1 to 9.3, 9.6 to 9.8, 9.15)

Unit IV: Text Book 1 - Chapter 5.1 to 5.6

Unit V: Text Book 2. Chapter 1.1 – 1.5, 2.1 – 2.7, 2.9(Excluding Theorems), 2.10, 3.1 – 3.2 (Theorem 3.1,3.2,3.3 only), 3.3,3.4(Theorem 3.9 only)

REFERENCES:

- 1. B. Gottfried, "Schaum's Outline of Programming with C", 3rd Edition, Tata McGraw Hill, 2010.
- 2. J.R. Hanly and E.B. Koffman, "Problem Solving and Program Design in C", 6th Edition, Pearson Education, 2009.
- 3. Programming with ANSI and Turbo C, Ashok N.Kamthane, Pearson Education, 2006
- 4. H. Schildt, C: The Complete Reference, 4th Edition, TMH Edition, 2000.
- 5. Kanetkar Y., Let us C, BPB Pub., New Delhi, 1999.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Set Theory: Introduction – Sets – Notation and Description of Sets – Subsets–	5	Lecture
	- Venn - Euler Diagrams - Operation on sets - Properties of set operations	5	Lecture
	Verification of basic laws and algebra by Venn diagram.	5	Lecture
UNIT 11	I	I	1
	Relations and Functions: Relations – Representation of a relation —.	5	Lecture
	Operations on relations – equivalence relation – Closures &Warshalls Algorithm	5	Lecture
	Partial order Relation – Hasse Diagrams – Lattices	5	Lecture
UNIT III			
	Logic: Introduction – IF statements – Connectives	5	Lecture
	Truth table of a formula – Tautology	5	Lecture
	Tautological implications and Equivalence of formulae – Quantifiers.	5	Lecture
UNIT IV		I	I
	Recurrence relations and Generating functions: Recurrence relation – an introduction – Polynomial and their evaluations —	5	Lecture
	Recurrence relations – Solutions of finite order homogeneous (linear) relations – Solutions of non- homogeneous relations	5	Lecture
	Generating functions (for all the theorem consider the statements without proofs).	5	Lecture
UNIT V	•		
	Introduction: What is a graph – Application of graphs – Finite and infinite graphs – Incidence and degree	5	Lecture

– Isolated vertex, Pendant vertex and null graph.		
Paths and circuits : Isomorphism – Sub graphs – A puzzle with multicolored cubes – walks, paths and circuits – Connected graphs, disconnected graphs and components – Euler Graphs – Operations on graph – Hamiltonian paths and circuits (Excluding theorems) – The travelling salesman problem.	5	Lecture
Treesand fundamental circuits: Trees – Some properties of trees (Theorem 3.1, 3.2, 3.3 only) - Pendant vertices in a tree – Distance and centers in a tree (Theorem 3.9 only).	5	Lecture

Course Outcomes (Cos)	es contraction of the second						Mean scores of Cos				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	5	4	5	4	5	3	3	5	4
CO2	2	3	4	4	4	4	5	2	5	3	3.6
CO3	5	4	4	3	5	4	5	2	1	3	3.6
CO4	4	4	5	5	4	4	5	2	1	3	3.7
CO5	4	3	5	2	4	4	5	2	2	2	3.3
				Μ	ean Ov	verall Scor	re	-	-		3.64

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	os = <u>Total of</u> Total No. of Po		Mean Overall So		otal of Mean Score Total No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : BCA

Part III: Core-2

Semester : I Sub. Code : PU1

Hours : 5 P/W 75Hrs P/S Credits : 3

TITLE OF THE PAPER: PROGRAMMING IN C LAB

Pedago	ogy	Hours	Practicals	Peer Teaching	GD/VIDOES/TUTOR	IAL ICT
		5	4	-	1	-
SYLL	ABUS					
1.	Write a	a program	in C to find	the maximum and	d minimum element in a	an array. (user input)
2.	Write a	a program	in C to print	all unique eleme	nts in an array. (user in	put)
3.		a Program functions)	in C to Cheo	ck Whether a strin	ng is Palindrome or Not	(without using default
4.	Write a	a program	in C to men	u driven program	for string manipulation	using switch case
5.	Write a	a program	in C to Sum	of digit		-
6.	Write a	a program	in C to chec	k a given number	Armstrong or not.	
7.	Write a	a program	in C to print	Pascal triangle u	pto n rows.	
		e Input: 5	1	0.00	<u>.</u>	
	-	e Output:				
		1				
		1				
		11				
		121				
	1	1331				
	1	4641				
8.	Write a	a program	in C to conv	vert decimal numb	per to binary number us	ing the function
9.	Write a	a program	in C to searce	ch an element usi	ng linear search techniq	ue.
10.	Write a	a program	in C to add	two Matrices and	display matrix format w	with result
11.	Write a	a program	in C to print	Fibonacci Series	using recursion.	
12.	Write a	a program	in C to impl	ementation of Di	gital Clock	
13.	Write a	a program	in C to cour	t the number of v	owels and consonants i	n a string using a pointer.
14.	Write a	a program	in C to creat	te and store inform	nation in a text file	
				-	es from an unsigned int	•
16.	Write a A, Mat		in C for mul	tiplication of two	matrices (User input: r	ow, column, Matrix
17.	Write a	a program	in C to Find	ing the No. of cha	aracters, words and line	s from a given text file
18.	Write a	a program	in C to copy	a file in another	name.	
19.	Write a	a program	in C to Bina	ry Search		
20.	Write a	a program	in C to read	and write inform	ation of an employee us	sing structure

21. Write a Program in C to design Log In screen, check username and password using structure.

Programme :BCA Semester: I Sub. Code : SUP1 Part III:Skill Based Elective-1 Hours : 2 Hrs 30Hrs P/S Credits : 2

TITLE OF THE PAPER: OFFICE AUTOMATION LAB

Pedagogy	Hours	Hours Practical Peer		GD/VIDOES/TUTORIAL	ICT
	5	4		1	-
SYLLABUS			I		
MS – WORD					
1. Open a	n word doo	sument to pr	enare vour Resun	ne by performing the followin	g operations.
ii openi		1	ext – Alignment &	• 1 0	5 operations:
		-	•	e height & width)	
2. Create	a word do	cument to p	repare an applica	tion form (College)	
3. Create	a word do	cument to p	orepare a student r	mark sheet.	
4. Desigr	an invitat	tion using di	fferent fonts, font	t sizes, bullets and Word Art /	Clip Art
5. Prepar	e an invita	tion and ser	t to specific addre	esses in the data source using	.Mail Merge
Conce	pt.				
MS – EXCI	EL				
6.Create a s	tudent ma	rk sheet wit	h necessary inform	nation and use Data sort to	
displayresul	ts. Also us	e Data Filte	rs to answer at lea	ast five different criteria.	
7. Create ast	udent mai	k sheet with	n necessary inform	nation and make out a suitable	e chart
showing grid	ilines,lege	nds and title	es for axes.		
8. Prepare a	salary bill	in a worksh	neet showing Basi	ic Pay, DA, HRA, Gross salar	y, PF,
TT 1 NT 4	1	•, 11 •	Excel Function.		

POWER POINT

9.Create a power point presentation to explain various aspects of your college using Auto play. 10.Create a power point presentation to explain various aspects of ABC company using Auto play.

MS – ACCESS

11.Create a Student Database having Name, Regno, Tamil, English, Maths, Total, and

``Average. Find the total and average marks and check data entered.

12.Create an Inventory database having Item Name, Item no. Quantity and Price.-Perform query operations to retrieve data.

13.Create a form to enter the details of Book database.

14Create report for the above database.

Programme : B.C.A Semester : II Sub. Code : U21

Part III: Core 3 Hours : 4 P/W 60Hrs P/S Credits : 4

TITLE OF THE PAPER: OBJECT ORIENTED PROGRAMMING WITH C++

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/	TUTORIAL	ICT					
	4	2	1	1		-					
	PREAMBLE: To develop knowledge in object oriented programming concepts. To design Progra is in C++.										
		COUR	SE OUTCOME			Unit	Hrs P/S				
At the end of	At the end of the Semester, the Students will be able to										
UNIT 1 CO1	: Design pi	ograms wit	h object and class	es.		1	12				
UNIT 2 CO2	UNIT 2 CO2 : Discuss the significance of object oriented concepts for modular development.										
UNIT 3 CO3	: Apply Ob	oject Oriente	ed Programming	Concepts.		3	12				
UNIT 4 CO4	ce.	4	12								
UNIT 5 CO5	5	12									

SYLLABUS

UNIT I:

Software Crisis – Software Evolution – Basic Concepts of Object-Oriented Programming – Benefits of OOP – Object-Oriented Languages - Applications of OOP – Application of C++ - Structure of a C++ Program – Tokens – Keywords – Identifiers – Basic Data Types – User-defined Data types – Derived data types – Symbolic constants – Type compatibility – Declaration of variables – Dynamic initialization of variables –Reference variables – Operators in C++ - Manipulators – Type cast operator – Expressions and their types-Implicit conversions – Control structures – The main function – Function prototyping – inline functions – Function overloading.

UNIT II:

Specifying a class – Defining member functions – Making an outside function inline – Nesting of member functions – Private member functions – Array within a class – Memory allocation for objects – Static data members – Static member functions – Array of objects - Objects as function arguments – Friendly functions – Returning objects – Constant member functions – Constructors – Parameterized constructor – Multiple constructors in a class – Constructors with default arguments – Dynamic initialization of objects – Copy constructor – Destructors.

UNIT III:

Defining operator overloading – Overloading unary operators – Overloading binary operators – Overloading binary operators using friend function – Rules for overloading operators - Defining derived classes – Single inheritance – Making a private member inheritable – Multilevel inheritance –

Multiple inheritance – Hierarchical inheritance – Hybrid inheritance - Virtual base classes – Constructors in derived class – Member classes: Nesting of classes.

UNIT IV:

Pointer to objects – this pointer – Pointers to derived classes – Virtual functions –Pure virtual functions – C++ Stream classes – Unformatted I/O operations –Managing output with manipulator

UNIT V:

Classes of file stream operations – Opening and Closing files – Detecting end of file – More about open() function – File modes, File pointers and their manipulation – Sequential input and output operations – Command-line arguments- Templates: class templates and function templates.

TEXT BOOKS:

Object Oriented Programming with C++, E. Balagurusamy, McGraw Hill Education (India) Private Limited, New Delhi, *Sixth Edition*-2013

REFERENCES:

- 1. C++ The Complete Reference, Herbert Schildt, TMH, 1998.
- 2. C++ How to Program, Paul Deitel, Harvey Deitel, PHI, Ninth edition (2014).
- 3. Ashok N.Kamthane, Object Oriented Programming with ANSI & Turbo C ++, Pearson Education, 2006.
- 4. Object-Oriented Programming Using C++, Alok Kumar Jagadev, Amiya Kumar Rath and SatchidanandaDehuri, Prentice-Hall of India Private Limited, New Delhi, 2007.

E-LEARNING RESOURCES:

1.<u>http://spokentutorial.org/tutorialsearch/?search_foss=Advanced+Cpp&search_language=</u>

<u>English</u>

2.<u>http://www.cplusplus.com/files/tutorial.pdf</u>

3.<u>https://www.youtube.com/playlist?list=PLVlQHNRLflP8_DGKcMoRw-</u>

TYJJALgGu4J 4. http://www.learncpp.com

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1	·		
	Software Crisis – Software Evolution – Basic Concepts of Object-Oriented Programming – Benefits of OOP – Object-Oriented Languages - Applications of OOP – Application of C++	4	Lecture
	- Structure of a C++ Program – Tokens – Keywords – Identifiers – Basic Data Types – User-defined Data types – Derived data types – Symbolic constants – Type compatibility – Declaration of variables – Dynamic initialization	4	Peer Teaching

	of variables –Reference variables		
	Operators in C++ - Manipulators – Type cast	4	Lecture
	operator – Expressions and their types-Implicit		
	conversions – Control structures – The main		
	function – Function prototyping – inline functions		
	– Function overloading.		
UNIT 11	I		
	Specifying a class – Defining member	4	Lecture
	functions – Making an outside function inline –		
	Nesting of member functions – Private member		
	functions – Array within a class – Memory		
	allocation for objects – Static data members –		
	Static member functions		
	Array of objects - Objects as function	4	Lecture
	arguments - Friendly functions - Returning		
	objects – Constant member functions		
	Constructors – Parameterized constructor	4	Lecture
	– Multiple constructors in a class – Constructors		
	with default arguments – Dynamic initialization		
	of objects – Copy constructor – Destructors.		
UNIT III			
	Defining operator overloading –	4	Lecture
	Overloading unary operators – Overloading		
	binary operators – Overloading binary operators		
	using friend function – Rules for overloading		

operators		-21 – CBCS Pattern – SMGAC-N
Defining derived classinheritance – Making a pr inheritable – Multilevel inher inheritance – Hierarchical inheritance -	ivate member ritance – Multiple	Lecture
Virtual base classes – derived class – Member clas classes.		Lecture
UNIT IV		
Pointer to objects – this to derived classes –	s pointer – Pointers 5	Videos
Virtual functions – Pure –	e virtual functions 3	Lecture

	C++ Stream classes – Unformatted I/O operations – Managing output with manipulators.	4	Lecture
UNIT V	·		
	Classes of file stream operations – Opening and Closing files – Detecting end of file – More about open() function –	4	Lecture
	File modes, File pointers and their manipulation – Sequential input and output operations – Command-line arguments-	4	PPT
	Templates: class templates and function templates.	4	Lecture

Course Outcomes (Cos)	Pr	ogrami	me Outo	comes	(POs)	Pro	gramme S	Specific (Dutcome	s (PSOs)	Mean scores of Cos
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	3	3	4	5	3	3	5	3.5
CO2	3	3	4	2	2	4	5	2	5	3	3.3
CO3	5	4	2	3	4	4	5	2	1	3	3.3

								BCA - 202	20-21 – CH	BCS Pattern – S	MGAC-MDU
CO4	4	4	5	5	3	2	5	2	1	3	3.4
CO5	4	3	5	2	4	4	5	2	2	2	3.3
Mean Overall Score											3.36

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	os = <u>Total of Y</u> Total No. of Po		Mean Overall S		otal of Mean Score Total No. of COs

BLOOM"S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : BCA Semester : II Sub. Code : U22

Part III: Core-4 Hours : 4 P/W 60 Hrs P/S

Credits : 4

TITLE OF THE PAPER: DIGITAL PRINCIPLES AND COMPUTER ORGANISATION

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	4	2	1	1	-
PREAMBLE:					

To acquire knowledge in digital logic, combinational logic circuit, flip-flops and registers. To discuss about the basic structure of computer, I/O system, memory system and processing unit

COURSE OUTCOME	T Le it	Hrs P/S
COURSE OUTCOME	Unit	HIS P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1 : Define the basic components of a digital computer and their function	1	12
UNIT 2 CO2 : Enhance knowledge on simplifying digital circuits.	2	12
UNIT 3 CO3: Apply Boolean algebra in design of gates.	3	12
UNIT 4 CO4 : Simplify and solve the logical expressions.	4	12
UNIT 5 CO5: Design various counters.	5	12

SYLLABUS

UNIT I:

Logic circuits:Binary number systems – OR gates – AND gates – Boolean Algebra –NOR gates – NAND Gates. Circuit Analysis and Design: Boolean laws and theorem – Sum of products – Truth table of Karanaugh map – Pairs, Quads and Octets – Karnaugh Simplification – Don''t care conditions - Product of Sums Method – Products of sums simplification.

UNIT II:

Data Processing Circuits: Multiplexers - Demultiplexers – BCD to Decimal Decoders – Encoders – EX OR Gates. Number system and codes: Binary to decimal Conversion – Decimal to Binary conversion – Octal Numbers – Hexa Decimal Numbers.

UNIT III:

Flip Flops: RS Flip flops – D Flipflops – JK Flipflops – JK Master Slave Flip flops. Instruction Codes – Computer Registers – Computer Instruction – Timing and control – Instruction Cycle – Memory reference Instruction – Input – Output and Interrupt – Programming the Basic Computer – Assembly Language.

UNIT IV:

Central Processing Unit - General Register Organization - Stack Organization - Instruction formats

– Addressing mode – Data Transfer and manipulation.

UNIT V:

Input-Output organization – Input-Output Interface – Priority Interrupt – DMA – IOP. – Memory Organisation – Memory Hierarchy –Cache memory – Virtual memory.

TEXT BOOKS:

Digital Principles And Applications by D.P. Leach and A.P. Malvino, Tata McGraw Hill, New Delhi, 6th Edition,.

Computer System Architecture by M.Morris Mano, 3rd Edition, 1998.

REFERENCES:

Digital Systems Principles and Applications by Ronald J. Tocci, Neal S. Widmer, Gregory L.Moss, Pearson Prentice Hall, 6 dition.Computure Organization by Carl Hamacher, Zvonko Vranesic,

Safwat Zaky, Tata McGraw Hill, 5th Edition

E-LEARNING RESOURCES:

- 1. http://nptel.ac.in/courses/117106086/1
- 2. https://swayam.gov.in/courses/1392-digital-circuits-and-systems
- 3. http://nptel.ac.in/courses/106102062/
- 4. https://www.tutorialspoint.com/computer_organization/index.asp

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1		_	
	Logic circuits:Binary number systems – OR gates – AND gates – Boolean Algebra –NOR gates – NAND Gates.	4	Lecture
	Circuit Analysis and Design: Boolean laws and theorem – Sum of products – Truth table of Karanaugh map – Pairs, Quads and Octets –	4	Lecture
	Karnaugh Simplification – Don"t care conditions - 4Product of Sums Method – Products of sums simplification.	4	Lecture
UNIT 11			
	Data Processing Circuits: Multiplexers - Demultiplexers – BCD to Decimal Decoders – Encoders – EX OR Gates.	4	Lecture
	Number system and codes: Binary to decimal	4	Lecture

		Conversion –.	BCA – 20.	20-21 – CBCS Patte	rn – SMGAC-MDU
		Decimal to Binary conversion – Octal Numbe Hexa Decimal Numbers	rs –	4	Lecture
UNIT	III				
		Flip Flops: RS Flip flops – D Flipflops	– JK	4	Lecture

	Flipflops – JK Master Slave Flip flops.		
	Instruction Codes – Computer Registers – Computer	4	Lecture
	Instruction – Timing and control –		
	Instruction Cycle – Memory reference Instruction –	4	PPT
	Input – Output and Interrupt – Programming the		
	Basic Computer – Assembly Language		
UNIT IV			
	Central Processing Unit – General Register Organization – Stack Organization –	6	Lecture
	Instruction formats – Addressing mode –	6	Lecture
	instruction formatis - Addressing mode	0	Lecture
	Data Transfer and manipulation		Video
UNIT V			
	Input-Output organization – Input-Output Interface – Priority Interrupt –	6	Lecture
	DMA – IOP. – Memory Organisation – Memory Hierarchy	6	Lecture

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	5	3	3	5	3.4
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	3	3.1
CO4	4	4	5	5	3	4	5	2	1	3	3.6
CO5	4	3	5	2	1	5	5	2	2	2	3.1
	Mean Overall Score										3.26

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall S	core of COs = $\underline{1}$	<u>`otal of Mean Score</u> Total No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer: Department of Computer Applications

Programme : BCA

Part III: Allied–1

Semester : II Sub. Code : AU2

Hours : 5 P/W 75 Hrs P/S Credits : 5

TITLE OF THE PAPER: PROBABILITY AND STATISTICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	5	-	-	-	
PREAMBLE To		e basices of	Probability and sta	atistical.		
		COUR	SE OUTCOME		Unit	Hrs P/S
At the end of						
UNIT 1 CO1	: Acquire probabili		ncept of Probabilit	y and Conditional	1	15
UNIT 2 CO2		ize the conco generating f	=	ables, expectations and	2	15
UNIT 3 CO3	B: Discuss a	about some	standard distribution	ons.	3	15
UNIT 4 CO4	: Know ab	out correlati	on and regression.		4	15
UNIT 5 CO5	: Understa	and the conce	ept of testing of hy	pothesis.	5	15

SYLLABUS

UNIT I:

Mean Medium, Mode, Standard Deviation, Mean Deviation, and Quartile Deviation.

UNIT II:

Curve Fitting – Principle of Least Square – Fitting a Straight Line – Fitting a Second Degree Parabola – Fitting Exponential Curve.

UNIT III:

Correlation – Rank Correlation – Regression – Correlation Coefficient for a Vicariate – Frequency Distribution.

UNIT IV:

Probability – Conditional Probability – Random Variables – Discrete Random Variables – Continuous Random Variables – Mathematical Expectations – Moment Generating Functions.

UNIT V:

Some Special Distribution – Binomial Distribution – Poisson distribution – Normal Distribution.

TEXT BOOKS:

Statistics, S. Arumugam and A. ThangapandiIssac, New Gamma Publishing House.

REFERENCES:

- 1. KishorS.Trivedi Probability and statistics with reliability queuing and Computer Science Applications Prentice Hall of India(P) Ltd., New Delhi 1997.
- 2. S. Arumugam Statistics, Gamma Publishers, Palayankotai, 1997.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Mean Medium, Mode,.	5	Lecture
	Standard Deviation,	5	Lecture
	Mean Deviation, and Quartile Deviation	5	Lecture
UNIT 11	·		•
	Curve Fitting – Principle of Least Square – Fitting a Straight Line –.	5	Lecture
	Fitting a Second Degree Parabola	5	Lecture
	– Fitting Exponential Curve	5	Lecture
UNIT III			
	Correlation – Rank Correlation –	5	Lecture
	Regression –	5	Lecture
	Correlation Coefficient for a Vicariate – Frequency Distribution.	5	Lecture
UNIT IV			
	Probability – Conditional Probability – Random Variables —	5	Lecture
	.Discrete Random Variables – Continuous Random Variables	5	Lecture
	Mathematical Expectations – Moment Generating Functions	5	Lecture
UNIT V		•	
	Some Special Distribution – Binomial Distribution –	5	Lecture
	Poisson distribution	6	Lecture
	Normal Distribution.	4	Lecture

Course Outcomes (Cos)	Pro	gramm	ne Outco	omes (POs)	Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	5	3	3	5	3.4
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	3	3.1
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	2	2	3.1
Mean Overall Score									3.2		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall S	Score of COs =]	<u>Fotal of Mean Score</u> Total No. of COs

BLOOM"S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPL	20%	20%

Course Designer: Department of Computer Applications.

Programme : B.C.A

Semester : II

Sub. Code : PU2

Part III: Core-5 Hours : 4P/W 60Hrs P/S Credits :3

TITLE OF THE PAPER: PROGRAMMING IN C++ LAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	4	3	-	1	-

SYLLABUS

- 1. Generate prime numbers between the given two numbers.
- 2. Perform arithmetic operations using Inline function.
- 3. Accept a three digit number and display it in words.(Example 123 should be printed out as One Two Three)
- 4. Find the sum of given numbers using function with default arguments.
- 5. Swap two values using methods of passing arguments in function
- 6. Prepare a student Record using class and object.
- 7. Find the area of geometric shapes using function overloading.
- 8. Illustrate the concept of Friend function.
- 9. Demonstrate default constructor or no argument constructor.
- 10. Demonstrate parameterized constructor.
- 11. Demonstrate copy constructor.
- 12. Demonstrate constructor overloading.
- 13. Demonstrate destructors.
- 14. Demonstrate constructor using "this" pointer.
- 15. Demonstrate constructor with default arguments.
- 16. Program using manipulators.
- 17. Perform operator overloading for Unary minus, unary increment and unary decrement
- 18. Concatenate two strings using the concept of Binary operator overloading.
- 19. Perform addition and subtraction of complex numbers using Binary Overloading.
- 20. Create student mark sheet using single inheritance.
- 21. Prepare employee information using multiple inheritance.
- 22. Process employee details using hierarchical inheritance.
- 23. Implement the concept of Virtual functions.
- 24. Implement the concept of virtual base class.
- 25. Sort the given set of numbers using function templates
- 26. Search the key element in the given set of numbers using class template.
- 27. Processing mark list using binary file.
- 28. Count number of objects in a file.
- 29. Demonstrating the use of Command-line arguments.
- 30. Implement a file handling concept using sequential access.
- 31. Implement file handling concept using random access

Programme : BCASemester: IIISub. Code: U31

Part III: Core Hours : 4 P/W 60Hrs P/S Credits : 4

TITLE OF THE PAPER: OPERATING SYSTEMS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	4	2	1	1	-

PREAMBLE:

To discuss the operating system evolution and its major rule. To understand the various operating system components like process management, memory management, I/O management and file management. To know about issues in resource allocation and management.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: Analyze the concepts of file management.	1	12
UNIT 2 CO2: Implement security aspects in appropriate situations.	2	12
UNIT 3 CO3: Discuss various other operating systems.	3	12
UNIT 4 CO4 : Apply knowledge gained through processor scheduling to other applications.	4	12
UNIT 5 CO5: Analyze limitations of operating systems.	5	12

SYLLABUS

UNIT I:

Introduction to Operating Systems:Introduction, What is an Operating systems, Operating system components and goals, Operating systems architecture. Process Concepts: Introduction, Process States, Process Management, Interrupts, Interprocess Communication.

UNIT II:

Asynchronous Concurrent Execution:Introduction, Mutual Exclusion, Implementing Mutual Exclusion Primitives, Software solutions to the Mutual Exclusion Problem, Hardware solution to the Mutual Exclusion Problem, Semaphores. Concurrent Programming: Introduction, Monitors.

UNIT III:

Deadlock and Indefinite Postponement:Introduction, Examples of Deadlock, Related Problem Indefinite Postponement, Resource concepts, Four Necessary conditions for Deadlock, Deadlock solution, Deadlock Prevention, Deadlock Avoidance with Dijkstra's Banker's algorithm, Deadlock Detection, Deadlock Recovery. Processor Scheduling:Introduction, Scheduling levels, Preemptive Vs Non-Preemptive Scheduling Priorities, Scheduling objective, Scheduling criteria, Scheduling

algorithms.

UNIT IV:

Real Memory Organization and Management:Introduction, Memory organization, Memory Management, Memory Hierarchy, Memory Management Strategies, Contiguous Vs Non-Contiguous Memory allocation, Fixed Partition Multiprogramming, Variable Partition multiprogramming. Virtual Memory Management:Introduction, Page Replacement, Page Replacement Strategies, Page Fault Frequency (PFF) Page replacement, Page Release, Page Size.

UNIT V:

Disk Performance Optimization:Introduction, Why Disk Scheduling is necessary, Disk Scheduling strategies, Rotational optimization. File and Database Systems:Introduction, Data Hierarchy, Files, File Systems, File Organization, File Allocation, Free Space Management, File Access control.

TEXT BOOKS:

Operating Systems, Deitel&DeitelChoffnes, Pearson education, Third edition, 2008.

REFERENCES:

- 1. An introduction to Operating systems concepts and Practice, Pramod Chandra P. Bhatt, PHI, Second Edition, 2008.
- 2. Operating System Concepts, Abraham Silberschatz Peter Galvin Greg Gagne, 6th edition Windows XP Update, Wiley India edition, 2007.
- 3. Operating Systems Principles and Design, PalChoudhury, PHI Learning, 2011.
- 4. Operating Systems, A Concept Based Approach DhananjayM.Dhamdhere Tata McGraw Hill, 3rd Edition, 2012.

E-LEARNING RESOURCES:

- 1. nptel.ac.in/courses/106108101/
- 2. w3schools.in/operating-system-tutorial
- 3. https://swayam.gov.in/course/237-operating-system

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1	·		
	Introduction to Operating Systems:Introduction, What is an Operating systems, Operating system components and goals, Operating systems architecture.	4	Lecture
	Process Concepts: Introduction, Process States,	4	Lecture
	ProcessManagement,Interrupts,Interprocess	4	PPT

UNIT 11			
	AsynchronousConcurrentExecution:Introduction,MutualExclusion,Implementing Mutual Exclusion Primitives,	4	Lecture
	Software solutions to the Mutual Exclusion Problem, Hardware solution to the Mutual Exclusion Problem	3	Videos
	Semaphores. Concurrent Programming: Introduction, Monitors	5	Lecture
UNIT III			
	Deadlock and Indefinite Postponement:Introduction, Examples of Deadlock, Related Problem Indefinite Postponement, Resource concepts, Four Necessary conditions for Deadlock, Deadlock solution, Deadlock Prevention, Deadlock Avoidance with Dijkstra"s Banker"s algorithm, Deadlock Detection, Deadlock Recovery.	6	Lecture
	Processor Scheduling:Introduction, Scheduling levels, Preemptive Vs Non-Preemptive Scheduling	2	PPT
	Priorities, Scheduling objective, Scheduling criteria, Scheduling algorithms.	2	Lecture
UNIT IV			I
	Real Memory Organization and Management:Introduction, Memory organization, Memory Management, Memory Hierarchy, Memory Management.	4	Lecture
	Strategies, Contiguous Vs Non-Contiguous Memory allocation, Fixed Partition Multiprogramming, Variable Partition multiprogramming	4	PPT
	Virtual Memory Management:Introduction, Page Replacement, Page Replacement Strategies, Page Fault Frequency (PFF) Page replacement, Page Release, Page	4	Videos

Size.

BCA	-2020-21 - CDCS	uuem - SMOAC-W	TD
Disk Performance Optimization: Introduction, Why	4	Lecture	
Disk Scheduling is necessary, Disk Scheduling			

strategies, Rotational optimization.		
File and Database Systems: Introduction, Data Hierarchy, Files, File Systems, File Organization,	3	PPT
File Allocation, Free Space Management, File Access control.	4	Video

Course Outcomes (Cos)	Pro	gramm	ne Outco	omes (POs)	Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	3	3	4	3	2	5	3	3	5	3.3
CO2	2	5	4	2	2	3	5	2	5	3	3.3
CO3	5	3	2	3	4	2	5	2	1	3	3
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	2	2	3.1
	Mean Overall Score										

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	Os = <u>Total of</u> Total No. of P		Mean Overall S <u>Score</u>	Score of COs =]	<u>Fotal of Mean</u> Total No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : BCASemester: IIISub. Code: U32

Part III: Core-7 Hours : 4 P/W 60Hrs P/S Credits :4

TITLE OF THE PAPER: PROGRAMMING IN JAVA

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTO	RIAL ICT	
	4	2	1	1	-	
PREAMBLI		adga in Plat	form Indonandan	t programming langua	go Jovo	
• To ex	plore Packa	age and App	olet concepts.	l Graphics concepts.	ge Java.	
		COUR	SE OUTCOME		Unit	Hrs P/S
At the end of	the Semest	ter, the Stud	ents will be able	to		
UNIT 1 CO: program stru	1	Java applic	ation using OOP	concepts with appropr	iate 1	12
UNIT 2 CO2	2: Understa	nd the conce	epts of polymorpl	nism and inheritance.	2	12
UNIT 3 CO.	3 : Develop	packages a	nd interfaces in a	Java program.	3	12
UNIT 4 CO4	4	12				

SYLLABUS

UNIT I:

JavaEvolution: Java Features – How Java differs from C and C++ – Java and Internet – Java and World Wide Web – Web Browsers – Hardware and Software Requirements – Java Environment. Overview of Java Language: Simple Java Program – Java Program Structure – Java Tokens – Java Statements – Implementing a Java Program – Java Virtual Machine – Command Line Arguments. Constants – Variables – Data types – Declaration of Variables – Giving Values to variables – Scope of Variables – Symbolic Constants – Type Casting. Operators and Expressions: Arithmetic Operators – Relational Operators – Logical Operators – Assignment Operators – Increment and Decrement Operators – Conditional Operators – Bitwise Operators – Special Operators – Arithmetic Expressions – Evaluation of Expressions – Precedence of Arithmetic Operators – Operator Precedence and Associativity – Mathematical Functions. Decision Making and Branching: Decision Making with If statement – Simple If Statement – If else Statement – Nesting If Else Statement – the ElseIf Ladder – The switch Statement – The ?: operator. Decision Making and Looping: The while statement – The do statement – Jumps in Loops.

UNIT II:

Class, Objects and Methods: Defining a Class – Fields Declaration – Methods Declaration – Creating Objects – Accessing class members – Constructors – Methods Overloading – Static Members – Nesting of Methods – Inheritance – Overriding Methods – Final Variables and Methods – Final Classes – Finalizer Methods – Abstract Methods and Classes – Visibility Control. Arrays, Strings and Vectors: One – dimensional Arrays – creating an Array – Two dimensional Arrays – Strings – Vectors – Wrapper Classes – Enumerated Types. Interfaces: Multiple Inheritance : Defining Interfaces – Extending Interfaces – Implementing Interfaces – Accessing Interface Variables.

UNIT III:

Packages: Java API Packages – Using system Packages – Naming Conventions – Creating Packages – Accessing a Package – Using a Package – Adding a Class to a Package – Hiding Classes – Static Import. Multithreaded Programming: Creating Threads – Extending the Thread Class – Stopping and Blocking a Thread – Life Cycle of a Thread – Using Thread Methods – Thread Exceptions – Thread Priority – Synchronization – Implementing the Runnable Interface.

UNIT IV:

Managing Errors and Exceptions: Types of Errors – Exceptions – Syntax of Exception Handling Code – Multiple Catch Statements – Using Finally Statement – Throwing our own Exceptions – Using Exceptions for debugging. Applet Programming: How Applets differ from Applications – Preparing to write Applets – Building Applet Code – Applet Life Cycle – Creating an executable Applet – Designing a WebPage – Applet Tag – Adding Applet to HTML file – Running the Applet.

UNIT V:

Graphics Programming: The Graphics Class – Lines and Rectangles – Circles and Ellipses, Drawing Arcs – Drawing Polygons – Line Graphs – Using Control Loops in Applets – Drawing Bar Charts. Managing Input/Output Files in Java: Concept of Streams – Stream Classes – Byte Stream Classes – Character Stream Classes – Using Streams – Other Useful I/O Classes – Using the file Class – I/O Exceptions – Creation of Files – Reading / Writing Characters – Reading / Writing Bytes – Handling Primitive Data Types – Concatenating and Buffering Files – Random Access Files – Interactive Input and Output.

TEXT BOOKS:

Programming with Java, E.Balagurusamy, A primer, Tata McGraw Hill, Fourth Edition, 2008. **REFERENCES:**

- 1. Object Oriented Programming Through JAVA- P.Radha Krishna, University Press, 2007.
- 2. Java and Object-Oriented Programming Paradigm, Debasish Jana, Prentice Hall of India Private Limited, New Delhi, 2008. Edition, July 2014 Reprint.
- 3. The Complete Reference, Java2, Herbert Schildt, Tata McGraw Hill, Fifth Edition, 2002.
- 4. Introduction to Java Programming ,K.Somasundaram, Jaico Publications, 2013.
- 5. Core Java Vol. I Fundamentals, Cay S. Horstmann, Pearson Education; Tenth edition, 2016.

E-<u>LEARNING RESOURCES:</u>

- 1. https://swayam.gov.in/course/3482-spoken-tutorials-java
- 2. <u>http://spoken-tutorial.org/tutorial-search/?search_foss=Java&search_language=English</u>

UNITS	ΤΟΡΙϹ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	JavaEvolution: Java Features – How Java differs from C and C++ – Java and Internet – Java and World Wide Web – Web Browsers – Hardware and Software Requirements – Java Environment.	5	Lecture
	Overview of Java Language: Simple Java Program –Java Program Structure – Java Tokens – JavaStatements – Implementing a Java Program – JavaVirtual Machine – Command Line Arguments.Constants – Variables – Data types – Declaration ofVariables – Giving Values to variables – Scope ofVariables – Symbolic Constants – Type Casting.	4	PPT
	Operators and Expressions: Arithmetic Operators – Relational Operators – Logical Operators – Assignment Operators – Increment and Decrement Operators – Conditional Operators – Bitwise Operators – Special Operators – Arithmetic Expressions – Evaluation of Expressions – Precedence of Arithmetic Operators – Operator Precedence and Associativity – Mathematical Functions. Decision Making and Branching: Decision Making with If statement – Simple If Statement – If else Statement – Nesting If Else Statement – the ElseIf Ladder – The switch Statement – The ?: operator. Decision Making and Looping: The while statement – The do statement – The for statement – Jumps in Loops.	3	Peer Teaching
UNIT 11			
	Class, Objects and Methods: Defining a Class – Fields Declaration – Methods Declaration – Creating Objects – Accessing class members – Constructors – Methods Overloading – Static Members – Nesting of Methods – Inheritance – Overriding Methods – Final Variables and Methods – Final Classes – Finalizer Methods – Abstract Methods and Classes – Visibility Control.	4	Lecture
	Arrays, Strings and Vectors: One – dimensional Arrays – creating an Array – Two dimensional Arrays –	4	Peer Teaching

i			
	Strings – Vectors – Wrapper Classes – Enumerated Types.		
	Interfaces: Multiple Inheritance : Defining Interfaces – Extending Interfaces – Implementing Interfaces – Accessing Interface Variables.	4	Lecture
UNIT III			
	Packages: Java API Packages – Using system Packages – Naming Conventions – Creating Packages – Accessing a Package – Using a Package – Adding a Class to a Package – Hiding Classes – Static Import.	4	Lecture
	Multithreaded Programming: Creating Threads – Extending the Thread Class – Stopping and Blocking a Thread – Life Cycle of a Thread – Using.	4	Lecture
	Thread Methods – Thread Exceptions – Thread Priority – Synchronization – Implementing the Runnable Interface	4	Lecture
UNIT IV			
	Managing Errors and Exceptions: Types of Errors – Exceptions – Syntax of Exception Handling Code – Multiple Catch Statements – Using Finally Statement – Throwing our own Exceptions – Using Exceptions for debugging.	4	Lecture
	Applet Programming: How Applets differ from Applications – Preparing to write Applets – Building Applet Code – Applet Life Cycle – Creating an executable Applet	4	PPT
	 Designing a WebPage – Applet Tag – Adding Applet to HTML file – Running the Applet. 	4	Lecture
UNIT V	1		
	Graphics Programming: The Graphics Class – Lines and Rectangles – Circles and Ellipses, Drawing Arcs – Drawing Polygons – Line Graphs – Using Control Loops in Applets – Drawing Bar Charts.	4	Lecture
	Managing Input/Output Files in Java: Concept of Streams – Stream Classes – Byte Stream Classes –	4	PPT

Character Stream Classes – Using Streams – OtherUseful I/O Classes – Using the file Class – I/OExceptions – Creation of Files –
Reading / Writing 4 Lect ure Bytes – HandlingPrimitive Data Types –Concatenating and Buffering Files – Random AccessFiles – Interactive Input and Output.Concept Concept Con

Course Outcomes (Cos)	Pro	gramm	ne Outco	omes (.	POs)	Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	3	3	4	3	2	5	3	3	5	3.3
CO2	2	5	4	2	2	3	5	2	5	3	3.3
CO3	5	3	2	3	4	2	5	2	1	3	3
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	2	2	3.1
	Mean Overall Score										3.24

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	Os = <u>Total of</u> Total No. of P		Mean Overall S <u>Score</u>	Score of COs = <u>]</u>	<u>Fotal of Mean</u> Total No. of COs

BLOOM"S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

BCA – 2020-21 – CBCS Pattern – SMGAC-MDU

Programme : BCA Semester : III

Sub. Code : PU3

Part III: Core-8 Hours : 3 P/W 45Hrs P/S

Credits :2

TITLE OF THE PAPER: PROGRAMMING IN JAVA LAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	3	3	-	-	-
SYLLABUS					
1. To im	plement a	simple tempe	erature conversior	n program.	
	-			x numbers using class and ob	jects.
-			on using method o	6	
_			-	en string is palindrome or not.	
5. String	manipulat	ion using Stu	ing Methods (Use	e of any five String methods a	re preferred).
6. Write	a program	to fill names	s into a list .Also,	copy them in reverse order in	to another list. If
the na	me contair	ns any numer	ic value throw an	exception "Invalid Name"	
7. Progra	am to demo	onstrate the u	se of any two bui	lt-in exceptions in Java.	
8. To pe	rform mult	iplication of	matrices using cla	ass and objects.	
9. Using	multilevel	inheritance	process student m	arks.	
10. Imple	ment multi	ple inheritan	ce for payroll pro	cessing.	
11. Imple	ment interf	face for area	calculation for dif	ferent shapes.	
12. Create	e a package	e called "Arit	hmetic" that cont	ains methods to deal with all	arithmetic
operat	tors. Also v	vrite a progra	am to use the pack	kage.	
			one of the thread given limits.	generate Fibonacci series and	another generate
	e an except		Marks Out of b	ound:" Exception, that is three	own if the entered
15. Progra	am to demo	onstrate the u	se of Wrapper cla	ass methods.	
16. File P	rocessing u	ising Byte st	ream.		
17. File P	rocessing u	ising Charac	ter Stream.		
18. Write	applets to	draw the foll	owing Shapes:		
		•	· · · •	a Circle (d).Circle inside a So	quare
19. Write	an applet I	Program to d	esign a simple cal	culator.	
20. Write	an Applet	Program to a	nimate a ball acro	oss the Screen.	

Programme : BCASemester: IIISub. Code: AU3

Part III: Allied-2 Hours : 5 P/W 75Hrs P/S Credits : 4

TITLE OF THE PAPER: E-COMMERCE

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	2	-	1	,	2
			-	f Electronic Commerce and its ment procedures and security is		
COURSE OUTCOME At the end of the Semester, the Students will be able to						
UNIT 1 CO1 : Summarize the impact of information and Communication Technologies, on the internet in Business Operations.						15
UNIT 2 CO2: Analyze Electronic Payment System and its environment.						15
UNIT 3 CO3 : Make ethical decisions related to e-commerce based on laws, privacy, and security.						15
UNIT 4 CO4 : Explain the steps, tools, and security considerations needed to start selling online.						15
UNIT 5 CO5	: Discuss var	ious types of o	digital documents.		5	15

SYLLABUS

UNIT I:

Welcome to Electronic Commerce: Electronic Commerce Framework - Electronic Commerce and Media Convergence. The Network Infrastructure for Electronic Commerce: Components of I-way – Network Access equipment – Global Information Distribution Networks.

UNIT II:

Network Security and Firewalls: Firewalls and network Security – Data and message Security. Electronic Commerce and World Wide Web: Architectural Framework for Electronic Commerce – World Wide Web as the Architecture – Technology behind the Web – Security and the Web.

UNIT III:

Electronic Payment Systems: Types of Electronic Payment systems – Digital Token-based Electronic Payment Systems – Smart Cards and Electronic Payment Systems – Credit card based Electronic Payment Systems – Designing Electronic Payment Systems.

UNIT IV:

Inter organizational Commerce and EDI – Electronic Data Interchange – EDI: Legal, security and privacy issues. EDI Implementation, MIME and Value-Added Networks – EDI software Implementation – EDI envelope for message transport – Value-Added Network(VAN).

UNIT V:

Intra organizational Electronic Commerce: Internal Information System – Workflow automation and coordination – Supply Chain Management (SCM). Corporate Digital Library: Type of Digital

Documents. Advertising and Marketing on the Internet : Advertising on the Internet – Chatting online marketing process.

TEXT BOOKS: Frontiers of Electronic Commerce, Ravi Kalakota, Andrew Whinston, PerarsonEducation, New Delhi, 1996.

REFERENCES:

- 1. E-Commerce and its applications, Dr. U.S. Pandey, Rahul Srivastava, SaurabhShukla, S. Chand & Company Ltd., New Delhi, 2008.
- 2. Electronic Commerce, Gary Schneider. P., Cengage Learning US, XII Edition, 2017.
- 3. Electronic Commerce A Managerial Perspective, Efrain Turban, Jae Lee, David King, Michael Chung, H., Perarson Education, New Delhi, 2000.
- 4. Electronic Commerce, Peter Loshin, John R. Vacca, Charles River Media, 2003.
- 5. Electronic Commerce, Principles and Practice, HosseinBidgoli, Academic Press, 2002.
- 6. Electronic Commerce, Elias M. Awad, Prentice Hall, 2002.

E-LEARNING RESOURCES:

- 1. http://nptel.ac.in/courses/106105084/35.
- 2. https://www.tutorialspoint.com/e_commerce/index.htm.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1		1	
	Welcome to Electronic Commerce: Electronic Commerce Framework - Electronic Commerce and MediaConvergence.	5	Lecture
	TheNetworkInfrastructureforElectronic Commerce: Components of I-way –	5	ICT
	Network Access equipment – Global Information Distribution Networks.	5	Lecture
UNIT 11			I
	Network Security and Firewalls: Firewalls and network Security – Data and message Security.	5	Lecture
	Electronic Commerce and World Wide Web: Architectural Framework for Electronic Commerce	5	PPT

- World Wide Web as the Architecture -	5	PPT
Technology behind the Web – Security and the Web.		

UNIT III			
	Electronic Payment Systems: Types of Electronic Payment systems – Digital Token-based Electronic Payment Systems –	6	Lecture
	Smart Cards and Electronic Payment Systems	4	Videos
	Credit card based Electronic Payment Systems – Designing Electronic Payment Systems.	5	Videos
UNIT IV			
	Interorganizational Commerce and EDI – Electronic Data Interchange – EDI: Legal, security and privacy issues. EDI Implementation,	5	Lecture
	MIME and Value-Added Networks – EDI software Implementation	4	Lecture
	- EDI envelope for message transport - Value-Added Network(VAN).	6	Lecture
UNIT V	II		
	Intraorganizational Electronic Commerce: Internal Information System –	4	Lecture
	Workflow automation and coordination – Supply Chain Management (SCM). Corporate Digital Library: Type of Digital Documents.	4	Lecture
	Advertising and Marketing on the Internet : Advertising on the Internet – Chatting online marketing process.	4	Lecture

Course Outcomes (Cos)	Pro	gramm	me Outcomes (POs) Programme Specific Outcomes (PSOs) Mean scores of Cos			Programme Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	3	4	3	2	5	3	3	5	3.6
CO2	5	3	4	2	2	3	5	2	5	3	3.4
CO3	2	4	2	3	4	2	5	2	1	3	2.8
CO4	2	4	5	5	3	3	5	2	1	3	3.3
CO5	3	3	5	2	3	5	5	2	2	2	3.2
	Mean Overall Score									3.26	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Score of COs = <u>Total of Mean Score</u> Total No. of COs			

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
		0.0 %
UNDERSTANDING	30%	30%
	2007	2007
APPLY	20%	20%

Course Designer: Department of Computer Applications

Programme : BCA Semester : III Sub. Code : SUP2 Part III: Skill BasedElective-2 Hours : 2 P/W 30Hrs P/S Credits : 2

TITLE OF THE PAPER: SPSS LAB

Pedagogy	gogy Hours Practical Peer Teaching GD/VIDOES/TUTORIAL						
	2	2	-	-	-		
SYLLABUS	1						
1. Frequer	ncy Table	S					
2. Graphic	al Repres	sentation Of	Data				
3. Measure	es Of Cer	tral Tenden	cies				
4. Method	s Of Disp	persion					
5. Simple	Correlatio	on					
6. Correlat	tion Coef	ficient					
7. Regress	ion Trend	l					
8. Test Of	Significa	ince Large S	ample Test (Z-Te	st)			
9. Test Of	9. Test Of Significance Small Sample Test (T-Test)						
10. Chi-squ	10. Chi-square Test						
11. Testing	Hypothe	sis About Tw	vo Independent M	leans.			

Programme : BCA Semester : IV Sub. Code : U41 Part III: Core-9 Hours : 4P/W 60Hrs P/S Credits :4

TITLE OF THE PAPER:DATA STRUCTURES

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT					
	4	2	1	1	-					
PREAMBLE	:				I					
• Be exp	osed to so	orting and se	arching algorithm	ns & their analysis.						
• To gair	• To gain about linear data structures-List, Stack and Queue.									
• To acq	uire abou	t the nonline	ar data structures	-Tree.						
		COUR	SE OUTCOME		Unit	Hrs P/S				
		COUR			Om	1115175				
At the end of t	he Semes	ter, the Stud	ents will be able t	0						
UNIT 1 CO1:	Understa	nd the sorti	ng and searching	algorithms.	1	12				
UNIT 2 CO2:	Apply an	nd implemen	nt stacks and queu	le.	2	12				
UNIT 3 CO3:	Underst	and the diffe	rent types of link	ed lists.	3	12				
UNIT 4 CO4:	4	12								
UNIT 5 CO5:	5	12								
	7 maryze	unrerent gre		1541.	5	12				

SYLLABUS

UNIT I:

Introduction: Algorithm – Writing structured program, Analyzing algorithm-Divide and conquer – The general method, Binary search, Merge sort, Quick sort, Selection sort.

UNIT II:

Introduction: Arrays – Ordered List – Sparse Matrices -Representation of Arrays- Stacks and Queues – A Mazing problem – Evaluations of expressions.

UNIT III:

Linked list: Singly linked list – linked stacks and queues – polynomial addition – more on linked list – equivalence relations – doubly linked list.

UNIT IV:

Trees: Basic terminology - binary trees - binary tree representations - binary tree traversal -

threaded binary trees – binary tree representation of trees – application of trees -Set Representation. **UNIT V:**

Graphs: Terminology and representations – traversals, spanning trees – shortest paths. **TEXT BOOKS:**

- 3. Fundamentals of Data structures Ellis Horrowitz, SartajSahani, Galgotia Pub., 1998.(Excluding analysis & Lemma)
- Fundamentals of Computer Algorithms Ellis Horrowitz, SartajSahani, SanguthevarRajasekaran, Universities Press – 2nd Edition, 2008.(Excluding analysis & Lemma)

REFERENCES:

- 1. Data structure using C++, VARSHA H. PATIL, Oxford Higher Education/Oxford University Press, First edition, 2012.
- 2. Fundamentals of Data structures In C++, Ellis Horowitz, SartajSahni, Dinesh Mehta, University press, 2007.
- 3. Data Structures using C, Tanaenbaum A.S.,Langram Y. Augestein M.J, Pearson Education, 2004.
- 4. Introduction to the Design and Analysis of Algorithms, AnanyLevitin, Pearson Education 2003.

E-LEARNING RESOURCES:

- 1. https://www.w3schools
- 2. https://www.programiz.com/dsa
- 3. https://nptel.ac.in/courses/106102064/1

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1		1	
	Introduction: Algorithm – Writing structured program, Analyzing algorithm	5	Lecture
	Divide and conquer – The general method, Binary search, Merge sort,	5	Lecture
	Quick sort, Selection sort.	2	ICT
UNIT 11			

BCA – 2020-21 – CBCS Pattern – SMGAC-MDU

Introduction: Arrays – Ordered List	5	Lecture
– Sparse Matrices -		
Representation of Arrays-Stacks and	4	Lecture
Queues –		
A Mazing problem – Evaluations of	3	ICT
expressions		

UNIT III]
	Link	ked list:	Singly	linked	l list – li	nked		5		L	ecture		
	stac	ks and	queues -	_									
	poly	nomial	additio	n – m	ore on li	inked		4			ICT		
	list -	_											
	equi	ivalence	e relatio	ons – d	loubly li	inked		3		L	ecture		
	list.												
UNIT IV													
	Tree	es: Bas	sic tern	ninolog	gy – b	inary		5		L	ecture		
	trees	s – bina	ry tree	repres	entation	s –							
	bina	ry tre	e trav	ersal	– thre	eaded		5			ICT		
	bina	iry t	rees	– t	oinary	tree							
	repr	esentati	ion of tr	rees									
		lication		tı	rees	-Set		2 Videos					
	Rep	resenta	tion.										
UNIT V													
	Gra	phs:	Terr	ninolo	gy	and		5		V	/ideos		
	repr	esentati	ions –										
	trav	ersals, s	spanning	g trees	—			6		Ι	ecture		
	shor	test pat	hs.					1		Ι	ecture		-
Course	Pro	gramme	e Outco	omes (POs)	Р	rogra	amme Sp	ecific O	utcomes (PSOs)	Me	an scores
Outcomes		-					_	_				C	of Cos
(Cos)													
	PO1	PO2	PO3	PO4	PO5	PSO	1	PSO2	PSO3	PSO4	PSO5		
CO1	2	2 4 3 4 3 2						5	3	2	5		3
CO2	2	3	4	2	2	3		5	2	5	3		4

BCA – 2020-21 – CBCS Pattern – SMGAC-MDU

-								1			
CO3	5	4	2	3	4	2	5	2	5	3	2
CO4	4	4	5	5	3	3	5	2	1	3	5
CO5	4	3	5	2	1	5	5	2	3	2	5
	Mean Overall Score								3.32		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

LOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
Cour	a Designer D	anartment of Computer An

Course Designer: Department of Computer Applications

Programme	: BCA	Part III: Core-10				
Semester	: IV	Hours : 4 P/W 60Hrs P/S				
Sub. Code	: U42	Credits :4				

TITLE OF THE PAPER:COMPUTER NETWORKS

Pedagogy	Hours	Lecture	GD/VIDOES/TUTORIAL	ICT					
	4	2	1	-	1				
PREAMBLE	:		1		I				
To Lea	rn about	network mo	dels and transmiss	sion techniques.					
To stud	dy about	Communica	tion types of rout	ing algorithms and internet ac	cessing.				
		COUF	RSE OUTCOME		Unit	Hrs P/S			
At the end of t	the Semes	ter, the Stud	lents will be able t	0					
UNIT 1 CO1:	Discuss	the introduct	tion of networking	g concepts.	1	12			
UNIT 2 CO2:	Analyze	in detail trai	nsmission media .		2	12			
UNIT 3 CO3:	Examine	the layers d	lesign and CRC.		3	12			
UNIT 4 CO4:	UNIT 4 CO4: Recognize the network routing algorithm and their effectiveness. 4 12								
UNIT 5 CO5: Assess the internet domains and its services for any domain. 5 12									
SYLLABUS						1			
UNIT I:									

Introduction: Use of Computer Networks – Network Hardware – Network Software – Reference Models – Example Networks: The Internet, Ethernet.

UNIT II:

Physical Layer: Transmission Media – Wireless Transmission – The Public Switched Telephone Network.

UNIT III:

Data Link Layer: Data Link Layer Design Issues – Error Correction and Detection – Elementary Data Link Protocols.

UNIT IV:

Network Layer: Network Layer Design Issues - Routing Algorithms: Shortest Path Routing,

Flooding, Distance Vector Routing, Broadcasting, Multicast Routing – Congestion Control Algorithms-Quality of Service- Techniques for achieving good quality of service-Traffic shaping-The leaky bucket algorithm-The token bucket algorithm.

UNIT V:

The Transport Layer : Elements of Transport Protocols -The Application Layer: Domain Name System – Electronic Mail – The World Wide Web – Multimedia.

TEXT BOOKS:

Computer Networks , Andrew S. Tanenbaum, 4th Edition, Prentice Hall, India.

REFERENCES:

- 1. Computer Communication & Network , John Fuer, Pitman, Computer System Series.
- 2. Data & Communication Network ,E. Stallings , PHI, 4thEdition.

E-LEARNING RESOURCES:

- 1.<u>http://nptel.ac.in/courses/106105081/</u>
- 2.http://nptel.ac.in/courses/106106091/
- 3.<u>http://nptel.ac.in/courses/106105080/</u>
- 4. https://www.studytonight.com/computer-networks/
- 5. https://swayam.gov.in/courses/4066-computer-networks

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction: Use of Computer Networks – Network Hardware –	4	Lecture
	Network Software – Reference Models –.	4	Lecture
	Example Networks: The Internet, Ethernet	4	Peer Teaching
UNIT 11			

Physical Layer: Transmission Media –	4	Lecture
Wireless Transmission –	4	Videos
The Public Switched Telephone Network.	4	Peer Teaching

UNIT III			
	Data Link Layer: Data Link Layer Design Issues –	4	Videos
	Error Correction and Detection –	4	ICT
	Elementary Data Link Protocols.	4	Lecture
UNIT IV			
	Network Layer: Network Layer Design Issues –	2	Videos
	Routing Algorithms: Shortest Path Routing, Flooding, Distance Vector Routing, Broadcasting, Multicast Routing –	4	Lecture
	Congestion Control Algorithms- Quality of Service- Techniques for achieving good quality of service- Traffic shaping-The leaky bucket algorithm-The token bucket algorithm.	6	Lecture
UNIT V			
	The Transport Layer : Elements of Transport Protocols	4	Lecture
	TheApplicationLayer:DomainNameSystem –	4	ICT
	Electronic Mail – The World Wide Web –Multimedia.	4	Videos

Course Outcomes	Prog	gramme	e Outco	omes (P	Os)	Programme Specific Outcomes (PSOs)					Mean scores of Cos
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	5	3	2	5	3.3
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	5	3	3.5
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	3	2	3.2
	Mean Overall Score									3.32	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of N</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : BCASemester: IVSub. Code: AU4

Part III: Allied-2 Hours : 3 P/W 45Hrs P/S Credits :3

TITLE OF THE PAPER: COMPUTER BASED FINANCIAL ACCOUNTING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	L ICT					
	5	3	1	-	1					
PREAMBLE	PREAMBLE:									
• To ena	ble the stu	udents gain i	nsights into the fu	indamental principles of acco	ounting a	and use them				
in day-	to-day bu	siness scena	rios.							
		COUR	SE OUTCOME		Unit	Hrs P/S				
At the end of t										
UNIT 1 CO1:	Knowin	g the fundan	nentals accounting	<u>.</u>	1	9				
UNIT 2 CO2:	Preparati	on of journa	l, ledger and trial	balance.	2	9				
UNIT 3 CO3:	Understa	nding the ty	pes of subsidiary	books.	3	9				
UNIT 4 CO4:	4	9								
UNIT 5 CO5:	5	9								
SYLLABUS:					1	<u> </u>				

UNIT I:

Nature and Scope of Management Accounting- Meaning- Definition- Scope of Management Accounting- Functions of Management Accounting- Management Accounting Vs Financial Accounting- Management Accounting Vs Cost Accounting- Limitation of Financial Accounting-Advantages of Management Accounting- Limitation of Management Accounting.

UNIT II:

Introduction to Accountancy- Definition- Concepts and Conventions- Types of Accounts and the rules- Preparation of Journal, Ledger, Trail Balance- Subsidiary Books

UNIT III:

Final Accounts- Preparation of Trading Account- Preparation of Profit and Loss account-Preparation of Trading, Profit and Loss account and Balance Sheet with Simple Adjustments (Only Simple Problems)

UNIT IV:

Introduction to Tally: Features of Tally 9 – Company info: Create, Select, Alter and Close or Shut Company – Ledger Creation: Creating, Displaying, Altering and Deleting. F11 – Features and F12 – Configuration.

UNIT V:

Voucher Creation: Receipt, Payment, Contra, Journal, Sales, Purchase, Memo, Display, Alter, Delete, Insert, Statement of Reports: Trail balance, Profit and Loss account, Balance sheet.

TEXT BOOKS:

1. Financial and Management AccountingMADE SIMPLE– Dr.P.S.Boopathi Manickam, P.S.G. Publications,2009, Fifth Edition.

Unit I: Chapter 1 Unit II : Chapter 2 Unit III: Chapter 3

 Tallly (version 9) – C.NellaiKannan, 2007 Unit IV : Pg. Numbers – 5 to 61 Unit V : Pg. Numbers – 62 to 102

REFERENCES:

- 1. Comdex Tally 9 Dr. NamrataAgrawal, Dream Tech Publications
- 2. Tally (Accounting Software) S.Palanivel, Margham Publications, 2010

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Financial Accounting: Meaning, Nature and scope, Limitations –	3	Lecture
	AccountingPrinciples:BasicConceptsandConventions –	3	ICT
	Objectives of accounting – Accounting rules.	3	Lecture

UNIT 11			
	Books and records : Recording of business transactions –	3	Videos
	Types of accounts – Journal –Ledger – Journal Vs Ledger,	4	Lecture
	Subsidiary books – Trial balance.	2	Lecture
UNIT III			
	Final Accounts: Introduction – Trading account –	3	ICT
	Profit and loss account –	4	Videos
	Balance sheet. (Simple problems)	2	Lecture
UNIT IV			
	Introduction to Tally: Features of Tally 9 – Company info: Create, Select, Alter and Close or Shut Company –	3	Lecture
	LedgerCreation:Creating,Displaying,AlteringandDeleting.	4	ICT
	F11 – Features and F12 – Configuration.	2	Lecture
UNIT V			
	VoucherCreation:Receipt,Payment,Contra,Journal,Sales,Purchase,	3	Lecture
	Memo, Display, Alter, Delete, Insert,	2	Videos
	Statement of Reports: Trail balance, Profit and Loss	4	Lecture

account, Balance sheet.	

Course Outcomes	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	2	3	3	5	3.1
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	3	3.1
CO4	4	4	5	5	3	3	2	2	1	3	3.2
CO5	4	3	5	2	1	5	5	2	2	2	3.1
	Mean Overall Score										3.12

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme :BCAPart III: Core 11Semester: IVHours: 4 P/W 60Hrs P/SSub. Code: PU4Credits :4

TITLE OF THE PAPER:DATA STRUCTURE LAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT					
	5	4	_	1	-					
SYLLABUS					1					
1. Linear Sear	ch									
2. Binary Sear	rch									
3. Bubble Sor	t Algorith	nm Impleme	ntation.							
4. Insertion So	ort Algori	ithm Implem	entation.							
5. Merge Sort	Algorith	m Implemer	tation.							
6. Quick Sort	Algorith	m Implemen	tation.							
7. Selection S	ort Algor	ithm Implen	nentation.							
8. Implementi	ng Stack	using an arr	ay.							
9. Implementi	ng Stack	using a link	ed list.							
10. Convert Inf	ïx expres	sion to Post	ix expression usi	ng stack.						
11. Convert Inf	ïx expres	sion to Prefi	x expression usin	g Stack.						
12. Implementi	ng Queu	e as an Array	Ι.							
13. Implement	Queue as	a linked list	•							
14. Binary tree	traversal	s.								
15. Implement Binary Search Tree.										

Programme :BCA Semester : IV Sub. Code : UPA

Part III: Allied Lab Hours : 3 P/W 45Hrs P/S Credits :3 TITLE OF THE PAPER: TALLY LAB

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT					
	3	2	-	1	-					
List of Progr	ams									
I. Company C	Creation									
II. Ledger Cro	eation									
III. Voucher	Creation									
a) Cor	ntra vouche	er								
b) Pay	ment vou	cher								
c) Rec	eipt vouch	ner								
d) Jou	rnal vouch	er								
e) Pur	chase vou	cher								
f) Sale	es counter									
IV. Reports										
a) Day	y book									
b) Tra	il balance									
c) Fin	al Account	S								
d) Pur	chase Reg	ister								
e) Sal	es Register	•								
f) Out	standing R	eceivable								
g) Outstanding Payable										
h) Che	h) Cheque Printing									
i) Ban	i) Bank Reconciliation Statement									

Programme : BC APart III: Core 12Semester: VHours: 5 P/W 75Hrs P/SSub. Code: U51Credits :5TITLE OF THE PAPER: WEB PROGRAMMING WITH PHP

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	2	1	1	1	
PREAMBL	E:					
• To in	troduce the	e web progra	mming with the o	pen source PHP.		
• To lea	arn the pro	gram buildii	ng constructs usin	g SQL and PHP.		
• To lea	arn about c	lient and ser	ver data using op	en source.		-
		COUR	RSE OUTCOME		Unit	Hrs P/S
At the end of	the Semes	ster, the Stud	lents will be able t	0		
UNIT 1 CO and PHP.	1: Underst	and the gene	eral concepts of Pl	HP three-tier architecture	1	15
		e		ators, branching structures	2	15
programs for do/while) Pro		g(if/switch),	and loop structure	es (for, for each, do,		
UNIT 3 CO. OOPS conce	required applications with	3	15			
UNIT 4 CO4	d query database.	4	15			
UNIT 5 CO5 : Understand, develop to web application using PHP and validate them.						15

SYLLABUS UNIT I:

Database applications and the web – The Web – Three tier Architecture, PHP Scripting language – Introducing PHP – Condition and Branches – Loops.

UNIT II:

PHP Scripting Language – Functions – Types – User Defined functions- Arrays, Strings and Advanced Data Manipulation in PHP – Arrays, strings, Regular Expressions, Dates and Times, Integers and Floats.

UNIT III:

Introduction to Object Oriented Programming with PHP - Classes and Objects, Inheritance,

Throwing and Caching Exceptions, SQL and MySQL – Database Basics, My SQL Command Interpreter, Managing Databases and Tables, Inserting, Updating, and Deleting Data, Querying with SQL SELECT, Join Queries.

UNIT IV:

Querying Web Databases – Querying a MySQL Database using PHP, Processing User Input, PEAR Overview, Core Components, Packages, Writing to Web databases- Database Inserts, Updates, and Deletes.

UNIT V:

Issues in Writing Data to Databases, Validation with PHP and Java Script – Validation and Error Reporting Principles. Server-Side Validation with PHP, JavaScript and Client Side Validation.

TEXT BOOKS:

Web Database Applications with PHP and Mysql by Hugh E. Williams & David Lane, II Edition, SPD O' REILLY

REFERENCES:

- 1. PHP, MYSQL and APACHE, Julie . C .Meloni.
- 2. PHP 5 and MYSQL Bible, Joyce park , CharleMorgon

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Database applications and the web – The Web	4	Videos
	Three tier Architecture, PHP Scripting language	5	Lecture
	Introducing PHP – Condition and Branches – Loops.	6	Peer Teaching
UNIT 11			
	PHP Scripting Language – Functions – Types – User Defined functions-	5	Lecture
	Arrays, Strings and Advanced Data Manipulation in PHP–	5	Videos

	Arrays, strings, Regular Expressions, Dates and Times, Integers and Floats.	5	ICT
UNIT III			
	Introduction to Object Oriented Programming with PHP –	5	Videos
	Classes and Objects, Inheritance,	5	Peer Teaching
	Throwing and Caching Exceptions,	5	Lecture
UNIT IV			
	Querying Web Databases – Querying a MySQL Database using PHP, Processing User Input,	5	Lecture
	PEAR Overview, Core Components, Packages,	5	Lecture
	Writing to Web databases- Database Inserts, Updates, and Deletes.	5	Lecture
UNIT V			1
	Issues in Writing Data to Databases, Validation with PHP and Java Script –	5	Lecture
	Validation and Error Reporting Principles. Server-	5	Lecture
	Side Validation with PHP, JavaScript and Client SideValidation.	5	Lecture

ourse Outcomes	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	3	4	3	2	5	3	3	5	3.6
CO2	5	3	4	2	2	3	5	2	5	3	3.4
CO3	2	4	2	3	4	2	5	2	1	3	2.8
CO4	2	4	5	5	3	3	5	2	1	3	3.3
CO5	3	3	5	2	3	5	5	2	2	2	3.2
Mean Overall Score									3.26		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of COs	= <u>Total of X</u> Total No. of Pos		Mean Overall Score of COs = <u>Total of Mean Score</u> Total No. of COs			

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
	D	

Course Designer: Department of Computer Applications

Programme : BCA

Semester : V

Sub. Code : EU51

Part III: Elective 1 Hours : 5 P/W 75Hrs P/S Credits :5

TITLE OF THE DADED, DDOCDAMMING WITH NET

		1111	LE OF THE PAP	'ER: PROGRAMMING W		21
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	2	1	1	1	
PREAMBLE	E:	1	I	1		
• To int	roduce .Nl	ET framewo	rk and its compor	nents.		
• To lea	arn about A	ASP.Net con	cepts and its appli	ications.		
• To inc	culcate the	techniques	to connect clients	and webdata.		
		COUF	SE OUTCOME		Unit	Hrs P/S
At the end of						
UNIT 1 CO1	1	15				
UNIT 2 CO2: Ability to analyze the structure of a .NET.						15
UNIT 3 CO3: Programming skills development for n-tier architecture.						15
UNIT 4 CO4	4	15				
UNIT 5 CO5 : Capable of integrating webpages with database using ADO.Net.						15
SYLLABUS					1	1

UNIT I:

The .NET Framework: The .NET Programming Framework – VB.NET, C# and the .NET Languages – The common language runtime –The .NET Class Library – ASP.NET – Visual Studio.NET. Learning the .NET Languages: The .NET Languages – Data Types – Declaring variables – Scope and accessibility – Variable operations – Object oriented manipulations – conditional structures – loop structures – functions and subroutine.

UNIT II:

Types, Objects and Namespaces: The basics about classes – value types and reference types – advances class programming – understanding namespaces and assemblies. ASP.NET applications: ASP.NET applications – ASP.NET file types –the bin directory – Application updates – Code behind – The Global.asax application file – ASP.NET configuration – The web.configfile .

UNIT III:

Web form fundamentals: A simple Page applet – The page class. Web Controls: Web Controls Classes – Autopostback and web control events.

UNIT IV:

Validation and rich controls: The calendar control – formatting the calendar – restricting dates – the Adrotator – The Advertisement file – Validation – The validation controls – The validation process –A simple validation example – Server side validation – Understanding regular expression – literals and metacharacters– finding a regular expression.

UNIT V:

Overview of ADO.NET: Characteristics of ADO.NET – Disconnected model – native XML – Extended data format – managed code – comparing ADO and ADO.NET. ADO.NET data access: About the ADO.NET examples – Obtaining the sample database – The SQL select statement – A sample select statement – The Where clause – The SQL update statement – The SQL insert statement – The SQL delete statement. TheDatalist, DataGrid and Repeater: comparing the template controls – the DataList – The DataGrid – The Repeater.

TEXT BOOKS:

1. ASP.NET : The Complete Reference, Matthew MacDonald, Tata McGraw-Hill Publishing Company Ltd, NewDelhi 2008.

Reference Books

- 1. ASP.Net VB.Net Web Programming, Matt.J.Crouch Pearson Education.
- 2. ASP.Net for Developers Michael Amundsen Paul Litwin

E-LEARNING RESOURCES:

- 3. http://vb.net-informations.com/framework/framework_tutorials.htm.
- 4. https://www.tutorialspoint.com/vb.net/index.htm.
- 5. https://www.javatpoint.com/asp-net-tutorial.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	The.NETFramework:The.NETProgrammingFramework-VB.NET, C# and the.NETLanguagesThecommon	5	Lecture
	language runtime –		

			-2020-21 - CBCS Pattern - SMGAC-
	The .NET Class Library – ASP.NET – Visual Studio.NET. Learning the .NET Languages:	5	Videos
	The .NET Languages- Data Types -Declaring variables -Scopeand	5	Lecture
	accessibility – Variable operations – Object oriented manipulations – conditional structures – loop structures – functions and subroutine.		
UNIT 11			<u> </u>
	Types, Objects and Namespaces:The basics about classes – valuevaluetypesadvancesclassprogramming– understanding namespacesnamespacesand assemblies. –	6	Lecture
	ASP.NET applications: ASP.NET applications – ASP.NET file types – the bin directory – Application updates – Code behind	6	Lecture

			CA – 2020-21 – CBCS Pattern – SMGAC
	The Global.asax application file – ASP.NET configuration – The web.configfile .	3	Lecture
UNIT III			
	Webformfundamentals:AsimplePageapplet-The pageclass	6	Lecture
	Web Controls: Web Controls Classes –	6	РРТ
	Autopostback and web control events	3	Lecture
UNIT IV			
	Validation and rich controls: The calendar control – formatting the calendar – restricting dates – the Adrotator – The Advertisement file –	5	PPT
	Validation – The validation controls – The validation process –A simple validation example – Server side validation –	5	Lecture
	Understanding regular expression – literals and metacharacters – finding a regular	5	Lecture

BCA – 2020-21 – CBCS Pattern – SMGAC-MDU

Overview of	6	PPT
ADO.NET:		
Characteristics of		
ADO.NET –		
Disconnected model –		
native XML –		
Extended data format		
– managed code –		
comparing ADO and		
ADO.NET.		
ADO.NET data	4	Videos
access: About the		

ADO.NET examples – Obtaining the sample database – The SQL select statement – A sample select statement – The Where clause – The SQL update statement		
– The SQL insert statement – The SQL		
delete statement.		
TheDatalist, DataGrid and comparingRepeater: the templatetemplatecontrolstheDataListDataGrid–TheRepeater.	5	Lecture

Course Outcomes (Cos)	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean scores of Cos		
(COS)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	

BCA – 2020-21 – CBCS Pattern – SMGAC-MDU CO1 3.4 CO2 3.4 CO3 3.4 CO4 3.4 CO5 3.1 Mean Overall Score 3.34

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
Course Designer	Department of (Computer Applications

Course Designer: Department of Computer Applications

Programme : BCA Semester :V Sub. Code : EU51

Part III: Elective 1 Hours : 5 P/W 75Hrs P/S

Credits :5

TITLE OF THE PAPER: ARTIFICIAL NEURAL NETWORKS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	5	2	1	1	1				
PREAMBLE:									
• To stud	dy and des	sign artificia	l neural network a	and its working methodology	•				
• To exp	lore vario	ous neural ne	twork models for	traning various domains.					
		COUR	SE OUTCOME		Unit	Hrs P/S			
At the end of t									
UNIT 1 CO1:	Introduct	tions of learn	ing and training i	neurons.	1	15			
UNIT 2 CO2:	Understa	nding variou	is models of neur	al networks.	2	15			
UNIT 3 CO3:	3	15							
UNIT 4 CO4:	4	15							
UNIT 5 CO5:	UNIT 5 CO5:Implementation Applications of neural network concepts								
SVLLARUS	SVLLARUS								

SYLLABUS

UNIT I:

Introduction: Brain as a neural network – Basic properties of neurons – Artificial Neural Networks. Learning: Learning and training – Learning rules – Stability and plasticity

UNIT II:

Hopfield, Perceptron and Related models: Hop field model – basic model of hop-field network – cellular neural networks – perceptron – Other associative models – Bidirectional Associative memory

UNIT III:

Self Organization Map: Kohenen map – adaptive of learning vector quantization – multilayer self organizing feature map.

UNIT IV:

Feed-Forward back propagation networks: Training of multilayer feed –forward – training aspects and variations of back propagation method – Back propagation of stochastic approximation.

UNIT V:

Hybrid learning Neural Network: counter propagation network – radial basis functional networks. Probabilistic models, fuzzy ART map and recurrent networks – Probabilistic neural

networks.

TEXT BOOKS: Neural Networks Algorithms and Applications, M.AnandaRao, J .Srinivas, Narosa Publishing House, 2010.

REFERENCES:

- 1. Neural networks, James A.Freeman, David N.Skepura.
- 2. Neural Networks Fundamentals with Graphs, Algorithms and Applications, N.K.Bose, P.Liang

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction: Brain as a neural network – Basic properties of neurons	5	PPT
	Artificial Neural Networks. Learning: Learning and training –	7	Lecture
	Learning rules – Stability and plasticity.	3	Lecture
UNIT 11			
	Hopfield, Perceptron and Related models: Hop field model	6	Lecture
	basic model of hop-field network – cellular neural networks – perceptron	6	Lecture
	Other associative models – Bidirectional Associative memory	3	PPT
UNIT III			
	Self Organization Map: Kohenen map –	4	Lecture
	adaptive of learning vector quantization –	5	Lecture
	multilayerself organizing feature map.	6	Lecture

	Feed-Forward back propagation	6	PPT
	networks: Training of multilayer	Ū.	
	feed		
	–forward – training aspects and	3	Lecture
	variations of back propagation		
	method –		
	Back propagation of stochastic	6	Lecture
	approximation.		
JNIT V			1
	Hybrid learning Neural	6	Lecture
	Network: counter propagation		
	network —		
	radial basis functional networks.	6	Lecture
	Probabilistic models, fuzzy ART		
	map and recurrent networks		
	Duch shill stire a second a store also	3	PPT
	Probabilistic neural networks.	3	L 1 1

Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)							Mean scores of Cos			
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	5	3	3	4	3.3
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	2	3
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	2	5	3.4
Mean Overall Score										3.26	

BCA – 2020-21 – CBCS Pattern – SMGAC-MDU

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of X</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
	2070	2070

Programme : BCAPart III: Elective 1Semester : VHours : 5 P/W 75Hrs P/SSub. Code : EU51Credits :5TITLE OF THE PAPER: DIGITAL IMAGE PROCESSING

1 representations of an image. cessing techniques. ysis methodologies.	1									
cessing techniques.										
cessing techniques.										
• •										
• •										
ysis methodologies.										
	Unit	Hrs P/S								
COURSE OUTCOME										
0										
roaches.	1	15								
al passing methodologies.	2	15								
UNIT 3 CO3 : Learn to develop color image processing approaches using Image										
	4	15								
ed in analyzing digital		1								
	images. UNIT 5 CO5: Capable of segmating image based on its boundaries.									

SYLLABUS UNIT I:

Introduction: Fundamental steps in Digital Image Processing – Image sensing and acquisition - Simple image formation - Image Sampling and Quantization – Basic concepts in sampling and quantization – Representing Digital Image.

UNIT II:

Some basic relationships between pixels - Histogram processing – Histogram equalization. Filtering in the frequency domain : Image Smoothing using frequency domain – Ideal Low pass Filter – Butter worth low pass filter – Guassian low pass filter.

UNIT III:

Image Sharpening using frequency domain filters – Ideal high pass filter – butter worth high pass filter – Gaussian high pass filter. Color fundamentals - Color models - Full color image processing

UNIT IV:

Erosion and Dilation - Opening and Closing - Hit or Miss Transformation - Basic Morphological algorithm –Boundary extraction – Hole filling.

UNIT V:

Fundamentals - Point, Line and Edge detection - Region based Segmentation - Segmentation using Morphological Watersheds.

TEXT BOOKS:

Digital Image Processing, Rafael C.Gonzalez, Richard E.Woods, Prentice Hall 3rd Edition, 2008

REFERENCES:

Digital Image Processing Using MATLAB, Rafael C.Gonzalez, Richard E.Woods, Steven L.Eddins, Prentice Hall, 2004.

1. Digital Image Processing, Bernd Jahne, Springer, 5th revised edition.

2. Digital image processing, Jayaraman S, Veerakumar T, Esakkirajan S, McGrawHill, 2009.

3. Digital Image Processing, PoonamYadav, AbhishekYadav, University Science Press, 2010.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1	l	I	
	Introduction: Fundamental steps in Digital Image Processing	6	PPT
	Image sensing and acquisition - Simple image formation - Image Sampling and Quantization	6	Lecture

	Basic concepts in sampling and quantization – Representing Digital Image.	3	Lecture
UNIT 11			
	Some basic relationships between pixels -	7	Videos
	Histogram processing – Histogram equalization. Filtering in the frequency domain :	3	Lecture
	Image Smoothing using frequency domain – Ideal Low pass Filter – Butter worth low pass filter – Guassian low pass filter.	5	PPT
UNIT III			
	ImageSharpeningusingfrequencydomainfiltersIdeal high pass filter-	6	Lecture
	butter worth high pass filter – Gaussian high pass filter.	6	Lecture
	Color fundamentals - Colormodels - Full color imageprocessing.	3	Lecture
UNIT IV			
	Erosion and Dilation - Opening and Closing - Hit or Miss Transformation -	6	PPT
	Basic Morphological algorithm -	6	Lecture
	Boundary extraction – Hole	3	Lecture

	filling.		
UNIT V			
	Fundamentals - Point, Line and Edge detection	6	РРТ
	Region based Segmentation	5	Video
	Segmentation using Morphological Watersheds	4	Lecture

Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)						Mean scores of Cos				
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	4	5	3	3	5	3.6
CO2	2	3	4	2	2	4	5	2	5	3	3.2
CO3	5	4	2	3	4	4	5	2	1	3	3.3
CO4	4	4	5	5	3	2	5	2	1	3	3.4
CO5	4	3	5	2	1	4	5	2	2	2	3
	Mean Overall Score								3.3		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total ofVa</u>	alue	Mean Overall S	Score of COs = <u>To</u>	ital of Mean Score
	Total No. of Pos	& PSOs			Total No. of COs

INTERNAL	EXTERNAL
50%	50%
30%	30%
20%	20%
	50% 30%

rogramme : BCA Semester : V Sub. Code : EUP2 Part III: Elective-2 Hours : 6 P/W 90Hrs P/S Credits :5

TITLE OF THE PAPER: .NET PROGRAMMING LAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	6	5	-	1	-
SYLLABUS					

1) Illustrating various loops

2) Programs to manipulate objects

3) Creation and using name spaces

4) Illustrating function and subroutine concepts

5) Handling global.asax file in web page like showing numbers of visitors of the web page

6) Illustrating web controls of .NET

7) Handling Calendar – Highlighting a specific date, view setting in calendar, setting a schedule on a specific date, restricting calendar.

8) Validating web page using validator controls

9) Implementing Disconnected data model of .ADO.NET

10) Implementing connected data model of ADO.NET

11) Illustrating Data Grid, Data List and Repeater Control

12) Illustration of Regular Expression

13) Performing Server side Validation

14) Handling Literals and meta characters

Programme : BCA Semester : V Sub. Code : EUP2 Part III: Elective-2 Hours : 6 P/W 90Hrs P/S Credits :5

TITLE OF THE PAPER: ARTIFICIAL NEURAL NETWORKUSING MATLAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	6	5	-	1	_				
SYLLABUS									
1) Implem	1) Implementation of Perceptron								
2) Implem	2) Implementation of Hop field network								
3) Implementation of Associative Neural Network model									

- 4) Implementation of Self Organizing Memory(SOM) Neural Network
- 5) Implementation of multi-layer SOM.
- 6) Implementation of simple Feed forward Neural Network
- 7) Implementation of Feed Forward with Back Propagation Training
- 8) Implementation of Counter Propagation Neural Network
- 9) Implementation of Radial Basis Functional Networks
- 10) Implementation of recurrent Neural Network

Programme : BCASemester: VSub. Code: EUP2

Part III: Core/Allied/Elective-2 Hours : 6 P/W 90Hrs P/S Credits :5

TITLE OF THE PAPER: DIGITAL IMAGE PROCESSING USING MATLAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	6	5	-	-				
SYLLABUS								
1) Generat	ing Histo	ogram of give	en Image					
2) Perform	ning Histo	ogram Equal	ization					
3) Smooth	ing an in	nage with						
I)	Ideal	Low pass fil	lter					
II)	Butte	r Worth Lov	v pass Filter					
III)	Gaus	sian Low Pa	ss Filter					
4) Image S	Sharpenin	ng with						
I)	Ideal	High pass fi	lter					
II)	Butte	r Worth Hig	h pass Filter					
III)	Gaus	sian High Pa	ss Filter					
5) Color ir and Gra		cessing like,	various color rep	resentation of the given imag	e RGB, HSI, CMYK			
	ing Eros	ion						
	ing Dila							
	e	orphological	algorithm					
			ne given image					
	-	•	• •					
	10) Detecting points and lines in the given image11) Implementation of Region based segmentation							
12) Segmentation using Morphological Watershed.								
		8r ¹¹⁰¹						

Programme	: BCA	Part III: SBE 3
Semester	: V	Hours : 2P/W 30Hrs P/S
Sub. Code	:SU53	Credits :2

TITLE OF THE PAPER: DATABASE MANAGEMENT SYSTEMS

. .		-				
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	2	1	-		1	
PREAMBLE						
		1	6 6	nd storing of database.		
• To study a	about rela	tional databa	ise design, Constr	aints, DDL, DML, SQL and	triggers.	
• To impart	knowledg	e on Norma	lization.			
		COUR	SE OUTCOME		Unit	Hrs P/S
	4 0	() () ()				
At the end of t	the Semes	ter, the Stud	ents will be able t	0		
UNIT 1 CO1	.Familia	with the fil	e database manag	ement systems and its	1	6
applications.			e	5		
UNIT 2 CO2	: Understa	ind the vario	us models like E-	R model.	2	6
UNIT 3 CO3	· Master th	he basics of	SOL and construc	t queries using SQL.	3	6
01011 5 005	. Widster ti			t queries using 5QL.	5	0
UNIT 4 CO4: Design a relational database schema using SQL for a given						6
problem-doma	ain					
	TT 1	1.1				
	:Understai	nd the conce	pt of concurrency	control of database	5	6
processing						
SVLLABUS						<u> </u>

SYLLABUS

UNIT I:

Overview of database systems: Managing Data – A Historical Perspective – File Systems Versus a DBMS – Advantages of a DBMS – Describing and Storing Data in a DBMS – Queries in a DBMS – Transaction Management – Structure of a DBMS – People Who Work with Databases.

UNIT II:

Introduction to database design: Database Design and ER Diagrams – Entities, Attributes, and Entity Sets – Relationships and Relationship Sets – Additional Features of ER Model – Conceptual Design with the ER Model.

UNIT III:

The relational model: Introduction to the Relational Model – Integrity Constraints over Relations – Enforcing Integrity Constraints – Querying Relational Data – Logical Database Design: ER to

Relational – Introduction to Views – Destroying / Altering Tables and Views **UNIT IV:**

Relational algebra and calculus: Preliminaries – Relational Algebra: Selection and Projection – Set Operations –Renaming – Joins - Division Relational Calculus: Tuple Relational Calculus – Domain Relational Calculus. SQL:QUERIES, CONSTRAINTS, TRIGGERS: The Form of a Basic SQL Query - UNION, INTERSECT, and EXCEPT – Nested Queries – Aggregate Operators – Null Values – Complex Integrity Constraints in SQL – Triggers and Active Databases – Designing Active Databases **UNIT V:**

Schema refinement and normal forms: Introduction to Schema Refinement – Functional Dependencies – Reasoning about FD's – Normal Forms – Properties of Decompositions – Normalization – Schema Refinement in Database Design

TEXT BOOKS:

Database Management Systems – Raghu Ramakrishnan& Johannes Gehrke, McGraw Hill International Edition – Third Edition – 2003

REFERENCES:

- 1. Database Management Systems Alexis leon&mathews Leon, "Leon Vikas Publishing, Chennai, 2002.
- 2. Modern Database Management Frad R. McFadden, Jeffrey A.Hoffer& Mary. B. Prescott, 5th Edition, Pearson Education Asia, 2001.
- Database System Concepts Abraham Silberschatz, Henry F.Korth, S.Sudarshan, McGraw Hill, 2006

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Overview of database systems:	2	Lecture
	Managing Data – A Historical		
	Perspective – File Systems		
	Versus a DBMS —		
	Advantages of a DBMS –	2	Lecture
	Describing and Storing Data in		
	a DBMS – Queries in a DBMS		
	- Transaction Management		
	Structure of a DBMS – People	2	ICT
	Who Work with Databases.		
UNIT 11			

	Introduction to database design: Database Design and.	2	PPT
	ER Diagrams – Entities, Attributes, and Entity Sets – Relationships and Relationship Sets –	2	PPT
	. Additional Features of ER Model – Conceptual Design with the ER Model	2	Lecture
UNIT III			
	The relational model: Introduction to the Relational Model – Integrity Constraints over Relations –	2	Videos
	Enforcing Integrity Constraints – Querying Relational Data – Logical	2	PPT
	Database Design: ER to Relational – Introduction to Views – Destroying / Altering Tables and Views	2	Lecture
UNIT IV			
	Relational algebra and calculus:Preliminaries– RelationalAlgebra:Selection andProjection– Set OperationsRenaming– JoinsPoint– DivisionRelational Calculus:Tuple T –	2	Lecture
	Relational Calculus – Domain Relational Calculus. SQL:QUERIES, CONSTRAINTS, TRIGGERS: The Form of a Basic SQL Query - UNION, INTERSECT, and EXCEP	2	Lecture

	. Nested Queries – Aggregate Operators – Null Values – Complex Integrity Constraints in SQL – Triggers and Active Databases – Designing Active Databases	2	Lecture
UNIT V			
	. Schema refinement and normal forms: Introduction to Schema Refinement –	2	Lecture
	. Functional Dependencies – Reasoning about FD's – Normal Forms –	2	Lecture
	Properties of Decompositions – Normalization – Schema Refinement in Database Design	2	Lecture

Course Outcomes						Mean scores of Cos					
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	4	5	3	3	5	3.6
CO2	4	3	4	2	2	4	5	2	5	3	3.4
CO3	5	4	2	3	4	4	5	2	1	3	3.3
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	4	5	2	2	2	3
Mean Overall Score					3.36						

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = <u>Total of Value</u>			Mean Overall Score of COs = <u>Total of Mean Score</u>		
	Total No. of Pos	s & PSOs			Total No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications.

Programme : BCA Semester : V

Sub. Code :PU5

Part III: Core -13 Hours : 6 P/W 90Hrs P/S Credits :5

TITLE OF THE PAPER: PHP LAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	6	5	-	1	-			
SYLLABUS								
1. Work	ing with	Branching st	atements					
2. Work	ing with	Looping Sta	tements					
3. Work	ing with	1 Dimension	al, 2 Dimensional	l Arrays.				
4. Work	ing with	Strings and S	String handling fu	nctions				
5. Work	ing with	Date and Tir	ne functions					
6. Work	ing with	Regular Exp	ressions					
7. Work	ing with	DDL comma	ands of MYSQL					
8. Work	ing with	DML comm	ands of MYSQL					
9. Work	ing with	SQL Comma	ands of MYSQL					
10. Work	10. Working with PEAR database							
11. Client	11. Client side Validation							
12. Serve	12. Server side validation							
13. Repor	ting error	rs						

Programme : BCA Semester : V Sub. Code :SUP5

Part III: SBE 5 Hours : 2P/W 30Hrs P/S Credits :2

TITLE OF THE PAPER: ORCLE LAB

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	2	1	-	1	-		
SYLLABUS							
1. Working wit	h DDL C	Commands					
2. Working wit							
3. Working wit	h date an	d time hand	ling functions				
4. Working wi	th Const	raints – Notl	Null, Primary Key	, Check, Unique, Foreign Ke	2y		
5. Working wit	h simple	SQL comma	ands		-		
6. Working wit	h GROU	PBY , HAY	VING queries				
7. Working wit	h Aggreg	gate Queries	– COUNT, MIN,	MAX, SUM and AVG			
8. Working wit	h set ope	rations – UN	NION, INTERSEC	CTION and MINUS			
9. Working wit	h OUTE	R JOINS (le	eft outer, right out	er and full outer)			
10. Working w	ith nested	l queries					
11. Fibonacci s	eries gen	eration using	g PL/SQL				
12. Factorial ca	lculation	using PL/SO	2L				
13. Raising But	13. Raising Build in Exceptions						
14. Raising User defined exceptions							
15 Creating and Calling functions							
16. Creating and Calling Procedures							
17. Creating tri	ggers						

Programme : BCA Semester : V Sub. Code :NMU1

Part III: Non Major Elective-1 Hours : 2P/W 30Hrs P/S Credits :2

TITLE OF THE PAPER: COMPUTER FUNDAMENTALS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	2	1	-	1	-		
PREAMBLE	:						
To intr	oduce abo	out compute	r and its various p	arts			
To stuc	ly about v	various input	, output and mem	ory devices which are widely	y used		
To stuce	ly about v	variety of co	mputer software a	nd its functionalities			
		COUR	SE OUTCOME		Unit	Hrs P/S	
At the end of the Semester, the Students will be able to							
UNIT 1 CO1: Gain knowledge on data representation and Binary codes used.						6	
UNIT 2 CO2 : Ability to apply Boolean algebra in circuit design.						6	
UNIT 3 CO3 : Acquaintance of knowledge to design combinational and sequential circuits.					3	6	
UNIT 4 CO4 : Understanding the hardware used in computer arithmetic.						6	
UNIT 5 CO5:	5	6					

SYLLABUS

UNIT I:

Introduction to computers: Types of computers-Characteristics of computers-What computer can't do.

UNIT II:

Classification of digital computer system: Microcomputers-Mini computers-Mainframe computers-Supercomputers-Network computers.

UNIT III:

Anatomy of digital computer: Function and components of a computer-Central processing unit(CPU)-Memory-How the CPU and memory work.

UNIT IV:

Auxiliary storage devices: Hard disk-CD-ROM. Input devices: Keyboard-Mouse-Joystick-Scanners-Digital camera-Magnetic ink character recognition (MICR)-Optical character recognition (OCR)-Optical mark recognition -Bar code reader-Speech input devices –Touch screen-Light pen.Output devices: classification of monitors- Based on color-characteristics of monitor-printerplotter-Sound cards and Speakers.

UNIT V:

Introduction to computer software: Operating systems-Utilities-compilers and interpreters-Word processors-Spreadsheets-Presentation Graphics-Database management systems (DBMS) –Image Processors. Operating Systems: Functions of an operating system-Classification of operating system. **TEXT BOOKS:**

1) Fundamentals of Information Technology, Alexis Leon and Mathews Leon, Vikas Publishers. **REFERENCES:**

- 1) The Internet Book, Douglas E. Comer, Fourth Edition, PHI Learning Pvt. ltd., New Delhi, 2009.
- 2) Using the Internet the Easy Way, Young Kai Seng, Minerva Publications, First Edition, 2000.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction to computers: Types of computers-	2	Peer Teaching
	Characteristics of computers-	2	Lecture
	What computer can't do.	2	ICT
UNIT 11			
	Classification of digital computer system: Microcomputers-	2	PPT
	Mini computers-Mainframe computers-	2	PPT
	Supercomputers-Network computers.	2	Lecture
UNIT III			
	Anatomy of digital computer: Function and components of a computer-	2	Videos
	Central processing unit(CPU)- Memory-	2	PPT

	How the CPU and memory work.	2	Lecture
UNIT IV			I
	Auxiliary storage devices: Hard disk-CD-ROM. Input devices: Keyboard-Mouse-Joystick- Scanners-Digital camera- Magnetic ink character recognition	2	Lecture
	(MICR)-Optical character recognition (OCR)-Optical mark recognition -Bar code reader-Speech input devices – Touch screen-Light pen.	2	Lecture
	Output devices: classification of monitors- Based on color- characteristics of monitor- printer-plotter-Sound cards and Speakers.	2	Lecture
UNIT V			
	Introduction to computer software: Operating systems- Utilities-compilers and interpreters Operating Systems: Functions of an operating system-Classification of operating systems.	2	Lecture
	-Word processors-Spreadsheets- Presentation Graphics-Database management systems (DBMS) –Image Processors.	2	Lecture
	Operating Systems: Functions of an operating system- Classification of operating systems.	2	Lecture

Course Outcomes	Pro	Programme Outcomes (POs)				Prog	(PSOs)	Mean scores of Cos			
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	5	3	3	5	3.4
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	3	3.1
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	2	2	3.1
	Mean Overall Score								3.24		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total ofVa</u>	alue	Mean Overall S	Score of COs = <u>Tc</u>	otal of Mean Score
	Total No. of Pos	& PSOs			Total No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme:BCA

Semester :VI

Part III:Core-14 Hours : 6 P/W 90HrsP/S

Sub.Code :U61

Credits :4

TITLE OF THE PAPER: SOFTWARE ENGINEERING

Pedagogy	lagogy Hours Lecture Peer Teaching GD/VIDOES/TUTORIAL					
	5	2	1	1	1	
PREAMBLE	:		I	<u> </u>		
• To intr	roduce the	software lif	e cycle and devel	opment approaches		
1	olore vario strategies		n techniques, requ	uirement analysis, software de	esigning	and
		COUR	SE OUTCOME		Unit	Hrs P/S
At the end of	the Semes	ter, the Stud	ents will be able t	0		
UNIT 1 CO1	: Acquire	fundamental	knowledge in sol	ftware engineering.	1	18
UNIT 2 CO2	: Estimatir	ng and analy	sing the cost for s	oftware.	2	18
UNIT 3 CO3 analysis, desig	3	18				
UNIT 4 CO4	4	18				
UNIT 5 CO5 software	: Incorpor	ating .testing	g, verification and	l validation techniques into a	5	18

SYLLABUS UNIT I:

Introduction to Software Engineering and Planning: Introduction - definition - some size factors - quality and Productivity factors.Planning a Software Project: Introduction - Defining the problem - Developing a solution strategy - Planning the development process - Planning an organizationalstructur

UNIT II:

Software Cost Estimation: Introduction - Software cost factors - software cost estimation techniques - staffing - level estimation .

UNIT III:

SoftwareRequirementDefinition:Introduction - the software requirement specificationformal specification techniques - languages and processors for requirements.

UNIT IV:

Software Design: Introduction - fundamental design concepts - modules and modularization criteria - design notations - design techniques .

UNIT V:

Verification and Validation Techniques:Introduction - quality assurance - walkthroughs and inspection - unit testing and debugging - system testing -Software Maintenance.

TEXT BOOKS:

1) Software engineering concepts, Richard Fairley, Tata McGraw Hillpublications, 1997.

REFERENCES:

1) Software Engineering, Roger S.Pressman, McGraw Hill Publications, 4thEdition.

2) Software Engineering, Ian Somerville, Addison Wesley PublishingCo.

E-LEARNING RESOURCES:

- 1. nptel.ac.in/courses/106101061
- 2. tutorialspoint.com

		BCA – 2020-21 – CBCS Pattern – SMGAC-MDU					
UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING				
UNIT 1							
	Introduction toSoftwareEngineeringandPlanning:	6	Lecture				
	Planning a Software Project: Introduction - Defining the problem - Developing a solution strategy	6	Lecture				
	Planningthedevelopment process - Planning anorganizationalstructure.	6	Lecture				
UNIT II		I					
	SoftwareCostEstimation:Introduction- Software cost factors-	6	PPT				
	software cost estimation techniques	6	Lecture				
	staffing - level estimation	6	Lecture				
UNIT III			1				
	Software Requirement Definition:Introduction -	6	PPT				
	thesoftware requirement	4	ICT				

UNIT IV	specification - formal specificationtechniques - languages and processors for requirements.	8	Lecture
	Software Design: Introduction -	6	ICT
	fundamental design concepts - modules and modularization criteria -	6	PPT
	design notations - design techniques .	6	Lecture
UNIT V	11		
	Verification and Validation Techniques:Introduction - quality assurance -	5	Lecture
	walkthroughs and inspection	4	
	unit testing and debugging	4	PPT
	system testing - Software Maintenance	5	PPT

Course Outcomes (Cos)	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)							(PSOs)	Mean scores of Cos		
(COS)	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO 2	PSO 3	PSO 4	PSO5	
CO1	2	4	3	4	3	4	5	3	3	5	3.6
CO2	2	3	4	2	2	4	5	2	5	3	3.2
CO3	5	4	2	3	4	4	5	2	1	3	3.3
CO4	4	4	5	5	3	2	5	2	1	3	3.4
CO5	4	3	5	2	1	4	5	2	2	2	3
	Mean Overall Score								3.3		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score ofCO	s = <u>Total ofV</u> Total No. of		Mean Overal <u>Score</u>	I Score of COs =	<u>Total of Mean</u> Total No. of COs

BLOOM'S	INTERNAL	EXTERNAL					
TAXANOMY							
KNOWLEDGE	50%	50%					
UNDERSTANDING	30%	30%					
APPLY	20%	20%					
CourseDesigner:	CourseDesigner: Department of Computer Applications						

CourseDesigner:

Department of ComputerApplications

Programme:BCA Semester :VI

Part III:Elective-3 Hours : 6 P/W 90HrsP/S

Sub.Code :EU63

Credits :5

TITLE OF THE PAPER: ARTIFICIAL INTELLIGENCE

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	5	2	1	1	1			
PREAMBLE:								
• To mak	the sys	tem to think						
• To stud	ly and im	plement vari	ous heuristic sear	chtechniques				
• To reco	• To reconnoitre the knowledge representations and reasoningtechniques							
		COUR	SE OUTCOME		Unit	Hrs P/S		
At the end of the	he Semes	ter, the Stud	ents will be able t	0				
UNIT 1 CO1:	Examine	the problem	is and its solution	S	1	18		
UNIT 2 CO2:	Designat	e the fundan	nentals of knowle	dge representation.	2	18		
UNIT 3 CO3:	3	18						
UNIT 4 CO4:	4	18						
UNIT 5 CO5:	5	18						

SYLLAB US

UNIT I:

What is Artificial Intelligence: The AI problems – The underlying assumptions – what is an AI technique? – The Level of the Model – Criteria for Success. Problems, Problem spaces and Search: Defining the problem as a state space search – production systems – problem characteristics – productive system characteristics – issues in a design of a search programs.

UNIT II:

Heuristic search techniques: generate and test – Hill Climbing – Best First Search – Problem Reduction – Constraint satisfaction – Means Ends Analysis. Knowledge Representation Issues: Representation and mapping – Approaches to Knowledge representation. Using Predicate Logic: Representing simple facts in logic – Representing instance and isa relationships- computable functions and predicates- Resolution- Natural deduction.

UNIT III:

Representing Knowledge using rules: procedural vs declarative knowledge – Logic programming – forward vs backward reasoning – matching – control knowledge. Symbolic reasoning under uncertainty: Introduction to no monotonic reasoning – logics for non monotonic reasoning – implementation issues – augmenting a problem solver-Implementation: Depth first search – Implementation: breadth first search. UNIT IV:

Game playing: Overview – the min-max search procedure – adding alpha beta cutoffs – additional refinements- iterative deepening.

UNIT V:

Learning: What is learning? – Rote Learning – Learning by taking advise – learning in problem solving

learning from examples: Induction – Explanation – Based Learning – Discovery – Analogy –
 Formal Learning theory – Neural net learning and genetic learning.

TEXT BOOKS:

1) Artificial Intelligence, Elaine Rich, Kevin Knight, Tata McGraw Hill Edition, 2nd Edition.

REFERENCES:

- 1 Foundations of Artificial Intelligents and Experts systems, JanakiRaman, Sarukesi
- 2 Artificial Intelligence, Patrick Henry Winston

E-LEARNING RESOURCES:

1. https://pcw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-

artificial intelligence-fall-2010/tutorials.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	What is Artificial	6	Lecture
	Intelligence: The AI problems		
	– The		
	underlying assumptions –		
	what is an AI technique? —		
	productive system		
	characteristics – issues		
	in a design of a		
	searchprograms.		

	The Level of the Model –	6	Lecture
	Criteria for Success.		
	Problems,		
	Problem spaces and		
	Search: Defining the	3	
	problem as a state space		
	search –		
	production systems –	3	Videos
	problem characteristics		
UNIT 11			
	Heuristic search	6	Lecture
	techniques: generate and test		
	– Hill Climbing – Best First		
	Search – Problem Reduction		
	_		
	Constraintsatisfaction		
	– Means Ends Analysis		
	– Means Ends Analysis. Knowledge		
	– Means Ends Analysis. Knowledge		

	DCH = 20	<u> 20-21 – CBCS Pallern – SMGAC-MDC</u>
Representation Issues:	6	ICT
Representation and mapping		
– Approaches to Knowledge		
representation.		
		DD/
Using Predicate Logic:	6	PPT
Representing simple facts in		
logic – Representing instance		
and isa relationships-		
computable functions and		
predicates-		
Resolution- Natural		
deduction.		
UNIT III		

Papraganti	ng Knowledge	6	Lecture
-	ng Knowledge	U	Lecture
	ng rules:		
pro	cedural vs		
declarative	knowledge		
Logicprog	amming	3	
forward vs	backward		
reasoning -	- matching –		
control kno	wledge		
Symbolic 1	easoning under	5	PPT
uncertainty	: Introduction to		
	nicreasoning		
logics for r	•		
-			
monotonic	leasoning		
implement	ation issues		

	<u> </u>		20-21 – CBCS Pattern – SMGAC-MD
	augmenting a problem solver-	4	PPT
	Implementation: Depth first		
	search – Implementation:		
	breadth firstsearch.		
UNIT IV			
	Game playing:	6	Lecture
	Overview – the min- max		
	searchprocedure		
	adding alpha beta cutoffs	6	Lecture
		6	DDT
	additional	6	PPT
	refinements- iterative		
	deepening.		
UNIT V			

Learning: What is learning? – Rote Learning – Learning by taking advise – learning in problemsolving	6	Lecture
learning from examples: Induction – Explanation – Based Learning – Discovery – Analogy	6	Lecture
Formal Learning theory – Neural net learning and genetic learning.	6	Lecture

~	BCA – 2020-21 – CBCS Pattern – SMGA										
Course	Pro	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)					Mean scores				
Outcomes		-					of Cos				
Outcomes											01 005
(\mathbf{C}_{ab})											
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
	FUI	rU2	r05	r04	r05	1301	F302	1303	F304	1303	
CO1	2	4	5	4	5	4	5	3	3	5	4
	2	4	5	4	5	4	5	5	5	5	4
CO2	2	3	4	4	4	4	5	2	5	3	3.6
	2	0	т	-	-	-	0	2	0	0	0.0
2 22											
CO3	5	4	4	3	5	4	5	2	1	3	3.6
	-	-		-	-		-		_	-	
CO4											
CO4	4	4	5	5	4	4	5	2	1	3	3.7
CO5											
	4	3	5	2	4	4	5	2	2	2	3.3
Mean Overall Score											
							3.64				

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = <u>Total of Value</u> Total No. of Pos & PSOs			Mean Overall Sco		al of Mean Score otal No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
	7.0.04	7.0.01
KNOWLEDGE	50%	50%
	20.7	
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department of ComputerApplications

Programm	e:BCA	Part III:El	lective-	3
Semester	:VI	Hours :6P	/W	90 HrsP/S
Sub.Code	:EU63	Credits :5		

TITLE OF THE PAPER: DATA WAREHOUSING ANDMINING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	5	2	1	1	1			
PREAMBLE:	PREAMBLE:							
• To reco	gnize the	e need of hug	ge, voluminous da	tastorage				
• To lear	n about s	toring, acces	sing data from da	tawarehouse				
• To lear	n how to	mine data fr	om warehouse us	ing different methodologies				
		COUR	SE OUTCOME		Unit	Hrs P/S		
At the end of the	At the end of the Semester, the Students will be able to							
UNIT 1 CO1:	1	18						
UNIT 2 CO2: challenges	2	18						
UNIT 3 CO3:	3	18						
UNIT 4 CO4 : Designing and using various classification methods and prediction methods						18		
UNIT 5 CO5:	5	18						

SYLLABUS

UNIT I:

Data Warehousing: Introduction – What is data warehouse? – Definition – Multidimensional datamodel – OLAP operation – Warehouse schema – Data Warehousing Architecture – Warehouse server – Mata data – OLAP engine – Datawarehouse backend process.

UNIT II:

Data mining: introduction – what is data mining – data mining definitions – KDD Vs Data mining - DBMSVs Data mining – Other related areas – DM techniques – Issues and challenges in data mining.

UNIT III:

Association rules: introduction – what is an Associative Rule? – Method to discover

Association Rules – Apriori Algorithm – Dynamic itemset counting algorithm – FP growth algorithm – Border Algorithm. Clustering Techniques: Introduction – clustering paradigms – partitioning algorithms – K medoid algorithms – Hierarchial Clustering – DBSCAN – CURE. UNIT IV:

Classification Based Concept: Basic Concepts – Decision tree induction - Bayes Classification methods: Bayes Theorem – Naïve Bayesian Classification.

UNIT V:

Other Techniques: Introduction – What is Neural Network? – Learning in NN – Unsupervised Learning – Datamining using NN: A case study – Genetic Algorithm – Rough Sets – Support Vector Machines.

TEXT BOOKS:

1. Data Mining Techniques , Arun K. Pujari , University Press. (For Unit I, II, III and V)

Data Mining concepts and techniques, Jawei Han, MichelineKamber, Jian Pei, Margan Kaufmann Publishers – imprint of Elsevier, 3rd Edition. – (For Unit IV only)

REFERENCES:

- 1. Advances in Knowledge Discovery and Data Mining Usama M. Farrad, GeogoryPiatetsky Shapiro, padhrai Smyth and RamasamyUthurusamy, The M.I.T.press.
- 2 The Data Warehouse Life Cycle Toolhit, Ralph Kimball, John Wiley & SonsInc.
- 3. Data warehousing in Action, Sean Kelly, John Wiley & SonsInc.
- Insights into data Mining, Theory and Practice, K.P. Soman, ShyamDiwakar, V. Ajay PHI Publications Eastern Economy Edition 6th Printing, 2012

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Data Warehousing: Introduction – What is data warehouse? – Definition – Multidimensional datamodel – OLAP operation – Warehouse schema–	6	Lecture

	Data Warehousing	6	Videos
	Architecture –		
	Warehouse server –		
	Mata data – OLAP engine –	6	Lecture
	Datawarehouse backend		
	process.		
UNIT 11			
	Data mining:	6	Lecture
	introduction – what is data		
	mining – data mining		
	definitions—		
	KDD Vs Data mining	6	Lecture
	- DBMS Vs Data mining –		
	Other related areas		
	DM techniques – Issues and	6	PPT
	challenges in data mining.		
UNIT III			
	Association rules: introduction	6	Lecture
	– what is an Associative Rule?		
	– Method to discover		
	Association Rules – Apriori		
	Algorithm –		
	Dynamic itemset counting	6	PPT
	algorithm– FP	-	-
	growthalgorithm		
	– BorderAlgorithm.		
	Clustering Techniques:	6	Lecture
	Introduction –		
	clustering paradigms		
	– partitioning		
	algorithms – K		
	medoid algorithms –		

	Hierarchial Clustering – DBSCAN – CURE		
UNIT IV			
	Classification Based Concept: Basic Concepts – Decision tree induction	6	Lecture
	Bayes Classification methods: Bayes Theorem	6	Lecture
	NaïveBayesianClassification.	6	PPT
UNIT V			
	Other Techniques: Introduction – What is Neural Network? – Learning in NN – Unsupervised Learning–	6	Lecture
	Datamining using NN: A case study–	6	PPT
	Genetic Algorithm – Rough Sets – Support Vector Machines.	6	PPT

	r					T				rn – SMGAC-	
Course Dutcomes	Pro	ogrami	ne Outco	omes (POs)	Pro	gramme Sj	pecific (Outcomes	(PSOs)	Mean score of Cos
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	5	4	5	3	3	5	3.8
CO2	2	3	4	2	4	4	5	2	5	3	3.4
CO3	5	4	2	3	5	4	5	2	1	3	3.4
CO4	4	4	5	5	2	2	5	2	1	3	3.3
CO5	4	3	5	2	4	4	5	2	2	2	3.3
	1	1		N	Iean Ov	verall Sco	ore				3.44
Mapping	5	1	-20%		21-40	%	41-60%		61-80%	81-10)0%
Scale			1		2		3		4		5
Relation		(0.0-1.0		1.1-2.0)	2.1-3.0		3.1-4.0	4.1-5	.0
Quality		1	Very Poo	or	Poor		Moderate	;	High	Very	High
Mean Sco	ore of C	Os =	<u>Tot</u>	al ofV	alue		Mean Ove	erall Sco	ore of COs	s = Total of	Mean Score
		Т	'otal No.	of Pos	s & PSC	Ds				Total	No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department Of Computer Applications

Programme:BCA

Semester :VI

Part III:Elective-3 Hours : 6 P/W 90 HrsP/S

Sub.Code :EU63

Credits :5

TITLE OF THE PAPER: SYSTEM SOFTWARE

At the end of the Semester, the Students will be able toImage: Construction of the Semester, the Students will be able toUNIT 1 CO1: . To know about the translation process with various types of instructions and computers11UNIT 2 CO2: . To study about the assembler and its functions21UNIT 3 CO3: Understand and identify the types of loaders and their functions31UNIT 4 CO4: Analyse about macro processors41	Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
 To introduce the low level functioning softwares To present about translators - assemblers and compliers To learn about the working principle of Loaders and Linkers COURSE OUTCOME Unit Hrs PA At the end of the Semester, the Students will be able to UNIT 1 CO1: . To know about the translation process with various types of instructions and computers UNIT 2 CO2: . To study about the assembler and its functions UNIT 3 CO3: Understand and identify the types of loaders and their functions UNIT 4 CO4: Analyse about macro processors 		5	2	1	1	1			
 To present about translators - assemblers andcompliers To learn about the working principle of Loaders andLinkers COURSE OUTCOME At the end of the Semester, the Students will be able to UNIT 1 CO1: . To know about the translation process with various types of 1 UNIT 2 CO2: . To study about the assembler and its functions UNIT 3 CO3: Understand and identify the types of loaders and their functions UNIT 4 CO4: Analyse about macro processors 	PREAMBLE	:		I	1				
 To learn about the working principle of Loaders andLinkers COURSE OUTCOME At the end of the Semester, the Students will be able to UNIT 1 CO1: . To know about the translation process with various types of instructions and computers UNIT 2 CO2: . To study about the assembler and its functions UNIT 3 CO3: Understand and identify the types of loaders and their functions UNIT 4 CO4: Analyse about macro processors 4 	• To intr	oduce the	low level fu	inctioning softwa	res				
COURSE OUTCOMEUnitHrs P/At the end of the Semester, the Students will be able to11UNIT 1 CO1: . To know about the translation process with various types of instructions and computers11UNIT 2 CO2: . To study about the assembler and its functions21UNIT 3 CO3: Understand and identify the types of loaders and their functions31UNIT 4 CO4: Analyse about macro processors41	• To pre	sent abou	t translators	- assemblers and	compliers				
At the end of the Semester, the Students will be able toImage: Construction of the Semester, the Students will be able toUNIT 1 CO1: . To know about the translation process with various types of instructions and computers11UNIT 2 CO2: . To study about the assembler and its functions21UNIT 3 CO3: Understand and identify the types of loaders and their functions31UNIT 4 CO4: Analyse about macro processors41	• To lear	rn about tl	ne working p	principle of Loade	ers andLinkers				
UNIT 1 CO1: . To know about the translation process with various types of instructions and computers 1 1 UNIT 2 CO2: . To study about the assembler and its functions 2 1 UNIT 3 CO3: Understand and identify the types of loaders and their functions 3 1 UNIT 4 CO4: Analyse about macro processors 4 1		Unit	Hrs P/S						
instructions and computers Image: Proceeding of the symptotic symptot symptotic symptotic	At the end of the Semester, the Students will be able to								
UNIT 2 CO2: . To study about the assembler and its functions 2 1 UNIT 3 CO3: Understand and identify the types of loaders and their functions 3 1 UNIT 4 CO4: Analyse about macro processors 4 1	UNIT 1 CO1:	: . To know	w about the	translation proces	s with various types of	1	18		
UNIT 3 CO3: Understand and identify the types of loaders and their functions 3 1 UNIT 4 CO4: Analyse about macro processors 4 1	instructions an	nd comput	ers						
UNIT 4 CO4: Analyse about macro processors 4 1	UNIT 2 CO2:	UNIT 2 CO2: . To study about the assembler and its functions							
	UNIT 3 CO3:	Understa	nd and ident	tify the types of lo	baders and their functions	3	18		
UNIT 5 CO5: Know shout the working principle of compiler 5	UNIT 4 CO4:	Analyse	about macro	processors		4	18		
UNIT 5 CO5 : Know about the working principle of compiler51	UNIT 5 CO5:	Know ab	out the work	king principle of o	compiler	5	18		

SYLLABUS UNIT I:

System Software and Machine Architecture-Simplified Instructional Computer (SIC), SIC/XE, CISC machines and RISC machine.

UNIT II:

Basic Assembler functions – Assembler algorithm and data structures – Machine Dependent Assembler features – Machine Independent Assembler features – one pass assemblers – multi pass assemblers

UNITIII:

Basic Loader functions – Design of Absolute Loader – Bootstrap Loader – Machine Dependent Loader features – Machine Independent Loader features – Loader design options – Linkage editors – Dynamic linking.

UNIT IV:

Basic Macro processor functions – Machine independent macro processor features – Macro processor design options.

UNIT V:

Basic Compiler functions – grammars – lexical analysis – Syntactic analysis – code generation – Machine dependent compiler features – machine Independent compiler features.

1. TEXT BOOKS:

1) System Software an Introduction to System Programming - by Leland L. Beck, Addison – Wesley, III Edition 1999.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1		<u> </u>	
	System Software and Machine Architecture-	6	Lecture
	Simplified Instructional Computer (SIC), SIC/XE,	6	Lecture
	CISC machines and RISC machine.	6	PPT

UNIT 11			
	Basic Assembler functions – Assembler algorithm and data structures –	6	Lecture
	Machine Dependent Assembler features – Machine Independent	6	Lecture
	. Assembler features- one pass assemblers- multi passassemblers	6	Videos
UNIT III	· ·	<u>.</u>	
	BasicLoaderfunctions – Design ofAbsolute Loader – BootstrapLoader –	6	PPT
	Machine Dependent Loader features – Machine Independent	6	Videos
	Loader features – Loader design options – Linkage editors – Dynamic linking	6	PPT
UNIT IV			
	BasicMacroprocessor functions-	6	Videos
	Machine independent macro processor features –	6	PPT
	. Macro processor designoptions.	6	Lecture

	DC11 2020 2	
Basic Compiler	6	Lecture
functions –grammars		
 lexical analysis – Machine 		
dependent		
Syntactic analysis – code generation –	6	Lecture
compiler features – machine Independent compiler features	6	PPT

Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)						Mean scores of Cos				
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	4	5	3	3	5	3.6
CO2	2	3	4	2	2	4	5	2	5	3	3.2
CO3	5	4	2	3	4	4	5	2	1	3	3.3
CO4	4	4	5	5	3	2	5	2	1	3	3.4
CO5	4	3	5	2	1	4	5	2	2	2	3
	Mean Overall Score									3.3	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall S	Score of COs = $\underline{1}$	<u>Fotal of Mean Score</u> Total No. of COs

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department of ComputerApplications

Programme:BCA Semester :VI Part III: SBE -6 Hours : 4 P/W 60HrsP/S

Sub.Code :SU66

Credits :2

TITLE OF THE PAPER: COMPUTER GRAPHICS

Pedagogy	agogy Hours Lecture Peer Teaching GD/VIDOES/TUTORIAL								
	2	2	-	-	-				
PREAMBLE	E:	1	I						
• To kn	ow about t	the basics of	computer graphic	es fundamentals.					
• To tra	in the 2D a	and 3D trans	formations forant	mation.					
	Unit	Hrs P/S							
At the end of	At the end of the Semester, the Students will be able to								
UNIT 1 CO1	1	12							
UNIT 2 CO2 generation alg	2	12							
	UNIT 3 CO3 : Enhance the perspective of modern computer system with modeling, analysis and interpretation of 2D and 3D visual information.								
	UNIT 4 CO4: Able to develop clipping and viewing process								
UNIT 5 CO5	: Gain the	knowledge	of 3D and its tran	nsformations	5	12			

SYLLABUS UNIT I:

A survey of computer graphics: Computer-Aided Design – Presentation Graphics Computer Art – Entertainment – Education and Training. Overview of Graphic Systems: Video Display Devices – Raster Scan Systems - Random Scan Systems.

UNIT II:

Output Primitives: Points and Lines - Line Drawing Algorithms - Circle Generation Algorithm

UNIT III:

Two-Dimensional Geometric Transformations: Basic Transformations – Matrix Representations – Composite Transformations – OtherTransformations UNIT IV:

Two dimensional viewing: The viewing pipeline –clipping operations – point clipping – Line clipping - Cohen Sutherland line clipping only – Polygon clipping - Sutherland Hodgmann polygon clipping only – Curve clipping - Text clipping – Exterior clipping.

UNIT V:

Three dimensional geometric and modeling transformations: Translation – rotation – scaling.

TEXT BOOKS:

1) Computer graphics – Donald Hearn, M.Pauline Baker, PHI, 2ndEdition REFERENCES:

1) Principles of Interactive Computer Graphics , William M. Newman and F. Sproull.

2) Computer Graphics , Steven Harrigton, McGraw Hill InternationalEdition, 2ndEd.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1		I	
	A survey of computer graphics: Computer- Aided Design – Presentation Graphics Computer Art – Entertainment – Education and Training.–	4	Lecture
	Overview of Graphic Systems: Video Display Devices	4	PPT
	Raster Scan Systems - Random Scan Systems.	4	Lecture
UNIT 11		<u> </u>	
	Output Primitives: Points and Lines —	4	Lecture
	Line Drawing Algorithms	4	Lecture
	Circle Generation Algorithm	4	Lecture
UNIT III		1	
	Two-Dimensional Geometric Transformations:–	4	PPT

Basic Transformations – Matrix Representations – Composite Transformations Other Transformations	4	PPT PPT
Composite Transformations Other Transformations		PPT
Transformations Other Transformations		PPT
Other Transformations		PPT
Two dimensional viewing:		PPT P
•	4	
•	A	
•	4	Lecture
The viewing pipeline		
-clipping operations – point	4	Lecture
lipping – Line clipping -		
Cohen Sutherland line		
lipping only – Polygon		
lipping -		
Sutherland Hodgmann	4	Videos
oolygon clipping only		
- Curve clipping - Text		
lipping – Exterior		
lipping.		
Three dimensional geometric	4	Video
andmodel		
ng		
-		
ransformations:	4	PPT
Franslation –		
otation – scaling.	4	Lecture
	The viewing pipeline -clipping operations – point clipping – Line clipping – Cohen Sutherland line clipping only – Polygon clipping - Sutherland Hodgmann polygon clipping only - Curve clipping - Text clipping – Exterior clipping. Three dimensional geometric andmodel ng ransformations: Translation – otation – scaling.	-clipping operations – point 4 clipping – Line clipping - 4 Cohen Sutherland line 6 clipping only – Polygon 6 clipping - 4 Southerland Hodgmann 4 polygon clipping only 4 Curve clipping - Text 6 clipping – Exterior 6 clipping. 4

											
Course	Pro	gramm	ne Outco	mes (P	'Os)	Prog	gramme Sp	pecific O	atcomes ((PSOs)	Mean scores
Outcomes											of Cos
					ļ	1					
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
	101	102	105	104		1301	1302	1505	1504	1305	
							1				
CO1	2	4	3	3	3	4	5	3	3	5	3.5
	-					1 1					
CO2	3	3	4	2	2	4	5	2	5	3	3.3
			-	Ľ							
CO3	5	4	2	3	4	4	5	2	1	3	3.3
					''	1 1					0.0
CO4	4	4	5	5	3	2	5	2	1	3	3.4
		-									0.1
CO5	4	3	5	2	4	4	5	2	2	2	3.3
	-			<u> </u>	-					2	0.0
	Mean Overall Score								2.26		
									3.36		
											<u> </u>

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall S	core of COs = $\underline{1}$	<u>Fotal of Mean Score</u> Total No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
CourseDesigner:	Department of Com	puterApplications

Programme:BCA Semester

:VI

Part III: Non majorElective-2 Hours : 2 P/W 30HrsP/S

Sub.Code :NMU2

Credits :2

TITLE OF THE PAPER: INTERNET AND ITS APPLICATIONS

Pedagogy	Hour s 2	Lecture 1	Peer Teaching	GD/VIDOES/TUTORIA L 1	ICT			
PREAMBLE	E:							
To learn	n the basi	c concepts o	f internet and its	applications.				
• To fam	iliarize or	n internet pro	otocols, E-mail se	ervices, intranet and extranet.				
	COURS	E OUTCON	ИЕ		Un	Hrs P/S		
					it			
At the end of	the Seme	ester, the Stu	dents will be able	e to				
UNIT 1 CO1	UNIT 1 CO1 : learning the basic concepts of computer network and its							
	UNIT 1 CO1: learning the basic concepts of computer network and its 1 6 topologies to accesss 1 6							
UNIT 2 CO2	: introdu	cing commu	nication media ar	nd its principles	2	6		
UNIT 3 CO3	B: Able to	understand	the internet acces	sing methodologies	3	6		
UNIT 4 CO4	4	6						
Clouds using mail services								
UNIT 5 CO5	5	6						
principle and								

SYLLAB US UNIT

I:

Computer Networks: Introduction-overview of network – Communication processors – Modem – Message Switchers - Communication media – Types of networks – Network Topologies – Network protocols – network architecture

UNIT II:

Communication systems: Microwave systems – Communication satellites – Cross link – Component of a satellite - Radar – Fiber optics.

UNIT III:

Internet and World Wide Web: Whats special about internet – Internet Access – Internet Protocols – Internet Addressing – The World Wide Web (WWW) – Web Pages and HTML – Searching the Web. **UNIT IV:**

Electronic Mail: Why use E-Mail? – How private is E-Mail? – How E-Mail Works? – E-Mail Names and Addresses – Mailing Basis – Spamming- Mailing Lists – News Groups.

UNIT V:

Intranets: Introduction – Characteristics of Intranet – Advantages of Intranet- Business Benefits of Intranet – Drawbacks of Intranet – Extranet . Introduction to Multimedia: Multimedia in entertainment – multimedia in education and training – multimedia on the web – multimedia in office work – multimedia servers and databases.

TEXT BOOKS:

1. Fundamentals of Information Technology, Alexis Leon and Mathews Leon, Vikas publishers.

REFERENCES:

- 1. The Internet Complete Reference, Harley Hahn, 2nd Ed.
- 2. Internet in a Nut Shell, Alexis Leon, Mathew Leon, Leon Press, 1st Edition

E-LEARNING RESOURCES:

1. www.pubnub.com/blog/2015-05-27-internet-of-things-101-getting-started-w-raspberry-pi/

2.www.theinternetofthings.eu/what-is-the-internet-of-things

3.www.ibm.com/blogs/bluemix/2015/04/tutorial-using-a-raspberry-pi-python-iot-twilio-

<u>bluemix/</u>

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Computer Networks: Introduction- overview of network – Communication–	2	Lecture

	processors – Modem – Message Switchers - Communication media – Types networks		2	Lecture
	Network Topologies – Network protocols – network architectur		2	PPT
UNIT 11				
	Communication systems: Microwave systems – Communication satellites –	· .		Lecture
	Cross link – Component of a satellite			Lecture
	- Radar – Fiber optics.	/		Videos
UNIT III				
	Internet and World Wide Web: Whats special about internet	· · ·		PPT
	Internet Access – Internet Protocols – Internet Addressing	<u>`</u>		Videos
	The World Wide Web (WWW) – Web Pages and HTML – Searching the Web.			PPT
UNIT IV				
	Electronic Mail: Why use E- Mail? – How private is E- Mail? —	· ·		Videos

	How E-Mail Works? – E-Mail Namesand Addresses – Mailing Basis	2	PPT
	Spamming- Mailing Lists – NewsGroups.	2	Lecture
UNIT V			
	Intranets:Introduction – Characteristics of Intranet – Advantages of Intranet- Business Benefits of Intranet – Drawbacks ofIntranet	2	Lecture
	Extranet . Introduction to Multimedia: Multimedia in entertainment – multimedia in education andtraining	2	Lecture
	multimedia on the web – multimedia in office work – multimedia servers anddatabases.	2	PPT

Course Outco mes	Progr	Programme Outcomes (POs)				Progra	Programme Specific Outcomes (PSOs)				
(Cos)	PO1	PO 2	P O 3	P 0 4	PO 5	PSO 1	PSO 2	PS O3	PS O4	PS O5	
CO1	2	4	3	4	3	2	5	3	3	5	3.4
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	3	3.1
CO4	4	4	5	5	3	4	5	2	1	3	3.6
CO5	4	3	5	2	1	5	5	2	2	2	3.1
	I	Mean	Overall	l Score	; ;		I	I	I		3.26
Mapping 1-20% 21-40%				-40%	41	1-60%	61-8	0%	81-100%		
Scale	1			2		3		4	5		
Relation	on 0.0-1.0 1.1-2.0		2.	2.1-3.0		4.0	4.1-5.0				
Quality	uality Very Poor Poor		M	Moderate High Very H		Very Hig	h				
Mean Score of COs = <u>Total of Value</u> Total No. of Pos & PSOs						М	lean Overa	Ill Score o	of COs =	<u>Total of Me</u> Total No.	

BLOOM'S	INTERNAL	EXTERNAL
TAXANOM		
Y		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department of ComputerApplications