SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN

(Autonomous)

Madurai - 625 002.

DEPARTMENT OF BOTANY

Syllabus for M.Sc. Botany

June 2021 Onwards

						MARKS		
SEM	COURSE CODE	COURSE TITLE	HRS/ WEEK	CREDIT	EXAM HRS			TOTAL
						INT	EXT	
	FA1	Plant Diversity I -Algae, Fungi, Lichens and Bryophytes	6	5	3	25	75	100
	FA2	Plant Diversity II -Pteridophytes, Gymnosperms and Paleobotany	6	5	3	25	75	100
Ι	FA3	Genetics and Evolution	5	4	3	25	75	100
	FL1	Practical Paper - I	8	4	3	40	60	100
	EFA	Elective Paper I - Ecology and Biodiversity	5	5	3	25	75	100
	FB1	Plant Anatomy and Embryology of Angiosperms	6	5	3	25	75	100
	FB2			4	3	25	75	100
II	II FB3 Microbiology and Plant Patholo		5	4	3	25	75	100
	FL2	Practical Paper - II	8	4	3	40	60	100
	EFB	Elective Paper II- Horticulture and Plant breeding	5	5	3	25	75	100
	FC1	Taxonomy of Angiosperms	5	4	3	25	75	100
	FC2	Plant Physiology	5	4	3	25	75	100
III	FC3	Bioinstrumentation and Biostatistics	5	4	3	25	75	100
	FL3	Practical Paper -III	8	4	3	40	60	100
	EFC	Elective Paper III - Plant Tissue Culture	5	5	3	25	75	100
	NMPF	Non-major Elective -Gardening	2	2	3	25	75	100
	FD1	Plant Biotechnology and Bioinformatics	6	5	3	25	75	100
	FD2	Biochemistry and Biophysics	6	4	3	25	75	100
	FL4	Practical Paper - IV	5	4	3	40	60	100

EFD	Elective Paper IV- Applied Botany	5	5	3	25	75	100
FPW	Project	8	4	-	80	20	100

<u>SEMESTER – I</u>

S.No	TITLE OF THE PAPER	CODE	HRS	CREDITS
1	PLANT DIVERSITY –I ALGAE, FUNGI, LICHENS AND BRYOPHYTES	FA1	6	5
2	PLANT DIVERSITY – II PTERIDOPHYTES, GYMNOSPERMS AND PALEOBOTANY	FA2	6	5
3	GENETICS AND EVOLUTION	FA3	5	4
4	PRACTICAL PAPER-I	FL1	8	4

5	ELECTIVE PAPER –I ECOLOGY AND BIODIVERSITY	EFA	5	5
---	---	-----	---	---

<u>SEMESTER – II</u>

S.No	TITLE OF THE PAPER	CODE	HRS	CREDITS
1	PLANT ANATOMY AND EMBRYOLOGY OF ANGIOSPERMS	FB1	6	5
2	CELL AND MOLECULAR BIOLOGY	FB2	6	4
3	MICROBIOLOGY AND PLANT PATHOLOGY	FB3	5	4
4	PRACTICAL PAPER -II	FL2	8	4

5	ELECTIVE PAPER- II HORTICULTURE AND PLANT BREEDING	EFB	5	5
---	--	-----	---	---

<u>SEMESTER – III</u>

S.No	TITLE OF THE PAPER	CODE	HRS	CREDITS
1	TAXONOMY OF ANGIOSPERMS	FC1	5	4
2	PLANT PHYSIOLOGY	FC2	5	4
3	BIOINSTRUMENTATION AND BIOSTATISTICS	FC3	5	4
4	PRACTICAL PAPER - III	FL3	8	4

5	ELECTIVE PAPER- III -PLANT TISSUE CULTURE	EFC	5	5
6	NON-MAJOR ELECTIVE-GARDENING	NMPF	2	2

<u>SEMESTER – IV</u>

S.No	TITLE OF THE PAPER	CODE	HRS	CREDITS
1	PLANT BIOTECHNOLOGY AND BIOINFORMATICS	FD1	6	5
2	BIOCHEMISTRY AND BIOPHYSICS	FD2	6	4

3	PRACTICAL PAPER- IV	FL4	5	4
4	ELECTIVE PAPER - IV APPLIED BOTANY	EFD	5	5
5	PROJECT	FPW	8	4

SEMESTER	CREDITS
1	23
2	22
3	23
4	22
TOTAL	90

Programme : M.Sc Semester : I Sub. Code : FA1 Core Paper I Hours : 6 /wk 90Hrs /sem Credits :5

TITLE OF THE PAPER: PLANT DIVERSITY I - ALGAE, FUNGI, LICHENS AND BRYOPHYTES

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	6	4	-	-	2

PREAMBLE:

- □ To provide practical training as well as theoretical knowledge about different plant groups.
- $\hfill\square$ To improve skills for identifying the various plant groups.
- $\hfill\square$ To create awareness about the different plant groups.
- □ Students are introduced the applications of algae and fungi to human welfare.

COURSE OUTCOME At the end of the Semester, the Students will be able to	Unit	Hrs P/S
UNIT 1 CO1 : understand the different systems of algal classification and recognizes the habitat of algae.	1	18
UNIT 2 CO2: realize the application of algae in human welfare.	2	18
UNIT 3 CO3 : understand the general features of fungi, its classification and identifies its economic importance.	3	18
UNIT 4 CO4 : develop an understanding of the role of lichens in the environment.	4	18
UNIT 5 CO5 : analyse the phylogenetic relationship of bryophytes with other higher groups of plant kingdom.	5	18

SYLLABUS

Unit I:

Classification of Algae (F.E.Fritsch 1945, Bold & Wynne 1978). Criteria used for algal classification. Range of thallus structure , Life cycle patterns of algae , Phylogeny & Evolutionary trends in algae. General account on the structure and reproduction of algae belonging to Cyanophyceae, Chlorophyceae, Bacillariophyceae, Phaeophyceae & Rhodophyceae.

Unit II:

Ecology of Algae: Freshwater Algae, Marine Algae, Soil algae, Symbiotic algae & Parasitic algae. Algae as pollution indicators, algal blooms . Algicides. culture and cultivation of fresh water algae and marine algae-sea weed cultivation, processing and its applications. Economic importance of algae: Food & feed. Agar-agar, carragenin and Diatomaceous earth Iodine, Vitamins , medicine Single cell protein, industrial products.

Unit III:

Fungi: General features, occurrence and distribution, Mode of Nutrition in fungi, culture of fungi, classification of fungi (Alexopoulos & Mims,1979), recent trends in the classification of fungi. General characters of major classes: Myxomycetes, Oomycetes, Zygomycetes,

Ascomycetes, Basidiomycetes and Deuteromycetes.(Thallus organisation, cell structure and fruiting bodies). Ecological and Economic importance of fungi.

Unit IV:

Homothallism and Heterothallism in fungi. Homokaryon and Heterokaryon. Sex hormones and pheromones in fungi. Reproduction - Life cycle types, parasexual cycles, reduction in sexuality in fungi. Spore dispersal mechanisms. Lichens: General features, classification of lichens, distribution, thallus organization, vegetative and sexual reproduction. Role of lichens in soil formation, Ecological and economic importance of lichens.

Unit V:

Bryophytes: General features, distribution and classification of Bryophytes (Rothmaler.1955). Structure, reproduction and life cycle of major groups- Marchantiales, Jungermaniales, Anthocerotales and Polytrichales. Range of vegetative structure, Evolution of gametophytes and sporophytes. Spore dispersal mechanisms in bryophytes- spore germination patterns in Bryophytes. Ecological and economic importance of Bryophytes.

REFERENCE BOOKS:

ALGAE

TEXT BOOKS:

- 1. Sharma, O.P. (2011). Diversity of microbes & Cryptogams Algae, Tata McGraw Hill Education Private Limited, New Delhi
- 2. Kumar ,H.D. (1985) . Introductory Phycology East West press , New Delhi.
- 3. Kumar, H.D and Singh, H.N. (1982) .A text book of Algae. Affiliated East West Press, New Delhi.

REFERENCE BOOKS:

1. Bold ,H.C and Wyne M.J. (1978). Introduction to algae – Structure & reproduction –Prentice hall , New Jersey

2. Fritsch ,F.E. (1935).The Structure & Reproduction of The Algae (Vol1&2)Cambridge University press ,England

3. Venkataraman G.S *et al.*, (1974). Algae form and Function – Today and Tomorrow publishers, New Delhi.

FUNGI:

TEXT BOOKS:

- 1. Sharma, O.P. (2011). Fungi and allied microbes The McGraw-Hill companies , New Delhi
- 2. Alexopoulus, C.J. Mims, CW. (1979). Introductory Mycology, Wiley Eastern ltd., New Delhi
- 3. Dube, H.C. (1990). An Introduction of Fungi. Vikas Publication House Ltd, New Delhi
- 4. Sharma, P.D (2003). The Fungi. Rastogi Publications, Meerut

REFERENCE BOOKS:

- 1. Burnett, J.H. (1971). The fundamentals of Mycology. ELBS Publication, London
- 2. Sundararajan, S. (2004). Practical manual of fungi, Anmol publications Pvt.ltd., New Delhi

LICHENS:

REFERENCE BOOKS:

- 1.Muthukumar, S. and Tarar, J.L. (2006).Lichen Flora of Central India, Eastern book Corporation, New Delhi
- 2. Dharani Dhar Awasthi .(2000). A Handbook of Lichens Vedams eBooks (P) Ltd. New Delhi .
- 3. Hale, M.E. (1983). The Biology of Lichens. Edward Arnold, London

BRYOPHYTES:

TEXT BOOKS:

- 1. Rashid, A. (1998). An introduction to bryophyte. Vikas Publishing Co.New Delhi.
- 2. Vashishta, Sinha A.K, Adarsh Kumar. (2011). Bryophytes, S.Chand & Company ltd., New Delhi **REFERENCE BOOKS:**
- 1 Chopra, R.N and Kumar P.K. (1988). Biology of Bryophytes, John Wiley, New York.
- 2. Prem Puri, P. (1990). Bryophytes: Morphology, Growth and Differentiation. Atmaram and Sons.
- 3. Smith, A.J.E. (1982). Bryophyte Ecology. Chapman and Hall. London
- 4. Watson, E.V. (1970). Structure and life of Bryophytes. Hutchinson and Co, London.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I (18 hours)	·	
	Classification of algae, range of thallus structure, lifecycle patterns of algae.	6	ICT
	Phylogeny and evolutionary trends in algae	3	Chalk and talk
	Structure and reproduction of Cyanophyceae, Chlorophyceae	3	Chalk and talk
	Structure and reproduction of Bacillariophyceae, Pheophyceae and Rhodophyceae	6	Chalk and talk
UNIT II(18 hours)	•	·
	Ecology of algae-freshwater, marine, soil, symbiotic and parasitic	3	ICT
	Algae as pollution indicators- algalblooms, algicides.	3	Chalk and talk
	cultivation of freshwater and marine algae, sea weed cultivation, processing and its application.	6	Chalk and talk

Economic importance of algae-	6	Chalk and talk
food,feed,agar-agar,carragenin,diatomaceous		
earth, vitamins, medicine, single cell protein and industrial		
products.		
UNIT III (18 hours)	•	
Fungi- general features, occurrence, nutrition and culture	3	Chalk and talk
Fungi- classification, ecological and economic importance	3	Chalk and talk
General characters of myxomycetes,oomycetes and	6	ICT
zygomycetes	6	ICT
General characters of ascomycetes, basidiomycetes and deuteromycetes	0	
UNIT IV (18 hours)		
Homothallism, heterothallism, homokaryon, heterokaryon, sex	3	Chalk and talk
hormones and pheromones	5	
Reproduction ,lifecycle types,parasexual cycles,reductionin	6	
sexuality, spore dispersal mechanisms		ICT
Lichens –classification,thallus organization,reproduction	6	
Roleof lichen in soil formation, ecological and economic importance of lichens	3	
UNIT V (18 hours)		
Classification of bryophytes,general features	3	Chalk and talk
Structure, lifecycle and reproduction of marchantiales and	6	ICT
jungermaniales		
Structure, lifecycle and reproduction of anthocerotales and	3	ICT
polytrichales		
Evolution of gametophytes and sporophytes, spore dispersal	3	Chalk and talk
mechanisms		
ecological and economic importance of bryophytes	3	Chalk and talk

Course	Prog	Programme Outcomes (Pos)					Programme Specific Outcomes (PSOs)					Mean			
Outco mes															scores of Cos
(Cos)	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	01 C 05
	1	$\frac{10}{2}$	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	3	3	3	2	3	3	4	3	3	2	3	3	3	4	3.0
CO2	3	3	3	4	3	4	3	4	3	3	3	3	3	4	3.28
CO3	3	3	3	3	3	2	3	4	3	3	3	4	3	3	3.07
CO4	3	3	4	3	3	3	3	3	3	3	4	3	3	4	3.21
CO5	3	3	3	3	3	3	3	3	3	3	3	3	4	4	3.14
	Mean Overall Score							3.14							

Result: The Score for this Course is 3.14 (High relationship)

	Course Designer: Dr.I. Sobha kumari
Programme : M.Sc.	Core Paper II
Semester : I	Hours : 6 hrs /wk 90 hrs /sem
Sub. Code : FA2	Credits : 5

TITLE OF THE PAPER: PLANT DIVERSITY II - PTERIDOPHYTES, GYMNOSPERMS AND PALEOBOTANY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/TUTORIAL	ICT
	6	3	1	1	1

PREAMBLE:

Pteridophytes and Gymnosperms as early effective colonizers of land have in their fold the secrets and strategies that they have adopted to place and sustain themselves in the newer and harsher geo-climatic situations of the primitive and changing earth. Paleobotany deals with fossils and the fossilization processes that account for species that have gone extinct, for want of adequate adaptations to survive.

In the light of the rapid and rash global climate challenges and the avaricious anthropocentric influences thrown open today, it becomes important that this study on early vascular plants is a must and necessity.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: relate to the forms they study in theory and lab and hence shall be	1	20
comfortable in describing and adopting strategies in conserving and managing		
plant resources.		
UNIT 2 CO2 : aesthetically connect with the plant group to identify and develop	2	15
skills in dealing with economically important taxa among this studied plant group		
subscribing to floristic and horticultural significance.		
UNIT 3 CO3: visualize and gain holistic knowledge of gymnosperms, especially	3	20
on anatomical aspects of wood and seed development, and appreciate		
rationalization of using the resource for their own use and commercial purposes		
UNIT 4 CO4: conceive the idea of seeing gymnosperms as dominant elements of	4	15
biota of the past and capture the inside stories of their survival for analysing		

factors that had led to their depletion and extinction that they may effectively		
apply the knowledge in current situation to stem the loss of similar and related		
elements.		
UNIT 5 CO5: comprehensively use the knowledge of handling and studying	5	20
fossils, entrain with cross disciplinary approaches that shall enable them to go for		
career opportunities in contemporary avenues in connected fields of geology, earth		
sciences, geography, sociology and anthropology.		

SYLLABUS

Unit I:

A General account of Pteridophytes and its origin. Classification of Pteridophytes(Smith,1955), Morphology, Anatomy, Reproduction and Evolution of gametophytes and sporophytes of following families: Selaginellaceae, Isoetaceae, Equisetaceae, Marsileaceae, Gleicheniaceae and Azollaceae.

Unit II :

Phylogenetic trends in Pteridophytes, Evolution of stele, Sporangial Organisation,

Heterospory and seed habit, Alternation of generation. Affinities of various classes of Pteridophytes. Economic importance of Pteridophytes.

Unit III :

Classification of Gymnosperms (Sporne K.R, 1956) Comparative study of vegetative, anatomical and reproductive characteristics of major Orders : Cycadales, Coniferales and Gnetales. Economic importance of Gymnosperms.

Unit IV :

General Structure and Interrelationship of Pteridospermales and Pentoxylales. Living fossils : Affinities with Angiosperms & Pteridophytes.

Unit V :

Paleobotany: Geological time scale, Fossilization and types of fossils, Carbon dating, Role of fossils in various fields. Fossil Pteridophytes : *Rhynia, Sphenophyllum, Lepidocarpon.* Fossil Gymnosperms: *Lyginopteris and Lagenostoma*.

PTERIDOPHYTES:

TEXT BOOKS:

1. Vashishta, P.C, Sinha and Anilkumar (2010). Pteridophytes, S.Chand & company Ltd, New Delhi

2. Smith, G.M (1955). Cryptogamic Botany Vol. II, Tata Mcgraw Hill Publishing Co., Ltd., New Delhi.

3. Rasheed, A. (1999). An Introduction to Pteridophyta, Vikas Publishing Co., NewDelhi.

REFERENCE BOOKS:

1. Eames, A.J.(1936). Morphology of Vascular Plants - Lower groups, Tata Mcgraw Hill Publishing company Ltd., New Delhi.

2. Sporne, K.R. (1972). The Morphology of Pteridophytes, B.I. Publications, Madras.

GYMNOSPERMS:

TEXT BOOKS:

1. Sharma, O.P. (1997). Gymnosperms, Pragati Prakashan, Meerut, India.

2. Biswas, C. and Johri, B.M. (2004). The Gymnosperms. Narosa Publishing House, New Delhi.

3. Vashista P.C. (1990) . Gymnosperms, S. Chand & Co. Ltd., New Delhi

REFERENCE BOOKS

1.. Bierhost, D.W. (1971). Morphology of Vascular plants. McMillan Company, NewYork.

2. Chamberlain, C.J. (1934).Gymnosperms: Structure and Evolution. Chicago (Reprinted 1950) NewYork.

PALEOBOTANY

REFERENCE BOOKS:

1. Atchlay W.R & Woodnuff D.S. (1981). Evolution and speciation, Cambridge

University Press, Cambridge.

2. Arnold C.I.A – An Introduction to Paleobotany.

3. Kirkaldy, J.E. (1963). The study of Fossils. Hutchinson Educational, London.

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	

UNIT 1 :	20 hours		
	A General account of	2 hours	Chalk-talk techniques to familiarize and
	Pteridophytes and its origin.		internalize terms, definition and key
	Classification ofpteridophytes		words
	(Smith, 1955)		Use of OHP to present schemes of
			classification
	Anatomy, Reproduction and	3 hours	Use of AV aids, animations and short
	Evolution of gametophytes of		films
	Selaginellaceae		
	Anatomy, Reproduction and	3 hours	Use of AV aids, animations and short
	Evolution of gametophytes of		films
	Isoetaceae		
	Anatomy, Reproduction and	3 hours	Use of AV aids, animations and short
	Evolution of gametophytes of		films
	Equisetaceae		
	Anatomy, Reproduction and	3 hours	Use of AV aids, animations and short
	Evolution of gametophytes of		films
	Marsileaceae		
	Anatomy, Reproduction and	3 hours	Use of AV aids and if there be any need
	Evolution of gametophytes of		animations and short films
	Gleicheniaceae		
	Anatomy, Reproduction and	3 hours	Use of AV aids, peer teaching techniques,
	Evolution of gametophytes of		and if there be any need animations
	Azollaceae.		
UNIT 11:	15 hours	1	1
	Phylogenetic trends in	5 hours	Blackboard use to familiarize and
	Pteridophytes, Evolution of		internalize terms, definitions and key
	stele		words, Use of OHP to present schemes of classification
	Sporangial Organisation,	4 hours	Use of POP models to provide a three
	Heterospory and seed habit		dimensional perspective

Alternation of generation,	4 hours	Power Point Presentation with animations
Affinities of various classes of		and video clips, Peer teaching .
Pteridophytes		
Economic importance of	2 hours	By way of sensitising students to do
Pteridophytes.		surveys and collect appropriate material,
		products and produce for making display
		through charts and museum mounts
UNIT III: 20 hours		I
Classification of	2 hours	Use of OHP to present schemes of
Gymnosperms (Sporne K.R,		classification and peer participation
1956)		through GD
Comparative study of	5 hours	Appraisal through field trips and site
vegetative, anatomical and		study, use of museum mounts and AV
reproductive characteristics of		aids, Peer teaching
Cycadales		
Comparative study of	5 hours	Appraisal through field trips and site
vegetative, anatomical and		study, use of museum mounts and AV
reproductive characteristics of		aids, Peer teaching
Coniferales		
Comparative study of	5 hours	Appraisal through field trips and site
vegetative, anatomical and		study, use of museum mounts and AV
reproductive characteristics of		aids, Peer teaching
Gnetales		
Economic importance of	3 hours	Market Survey Techniques and collecting
Gymnosperms		inputs and raw materials for display
		through charts and museum mounts
UNIT IV: 15 hours		1
General Structure and	5 hours	Use of videos and suitable short films
Interrelationship of		

Pteridospermales and		
Pentoxylales		
Living fossils : Affinities	5 hours	ICT techniques for peer interactions
with Angiosperms		
Living fossils : Affinities with	5 hours	Comparative studies with charts and slides
Pteridophytes.		
UNIT V: 20 hours	•	
Paleobotany: Geological time	2 hours	Use of e-resources, charts, animations and
scale.		short films
Fossilization and types of	2 hours	Inspection of fossils Collection and visits
fossils		to fossil sites
Carbon Dating, Role of fossils	2 hours	Use of OHP and Peer participation
in various fields		through GD
Fossil Pteridophytes : Rhynia	2 hours	Use of POP models to provide a three
		dimensional perspective
Fossil Pteridophytes :	3 hours	AV aids, charts and slides
Sphenophyllum		
Fossil Pteridophytes :	3 hours	AV aids, charts and slides
Lepidocarpon		
Fossil Gymnosperms:	3 hours	AV aids, charts and slides
Lyginopteris		
Fossil Gymnosperms:	3 hours	AV aids, charts and slides
Lagenostoma		

Course Outco	Prog	ramm	e Outc	omes	(Pos)			Progra	mme Sj	pecific	Outcon	nes (PS	Os)		Mean scores
mes															of Cos
(Cos)	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	4	3	3	4	4	4	4	4	4	4	3	4	2	4	3.64
CO2	3	4	4	4	4	4	3	4	3	4	4	4	2	3	3.57

CO3	3	4	4	3	4	4	3	3	2	4	3	4	2	3	3.28
CO4	3	4	3	3	3	4	4	4	3	3	3	3	2	3	3.21
CO5	3	3	3	4	4	3	4	3	2	2	2	4	2	3	3.0
Mean Overall Score												3.34			

Result: The Score for this Course is 3.34 (High relationship)

Course Designer: Dr.G.Grace Lydial Pushpalatha

Programme : M.Sc.Botany Semester : I Sub. Code : FA3 Core Paper III Hours : 5 /wk 75 Hrs /sem Credits :5

TITLE OF THE PAPER: GENETICS AND EVOLUTION

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/TUTORIAL	ICT							
	5	2	1	1	1							
PREAMBLE:	 To kn To un functi To un linked To ana To un 	derstand the oning of gen derstand the l genes alyse the diff	heredity of life, to le ie how it expres mechanism of sex ference between ch d analyse the caus	the study of Genetics have a clear cut knowledge ses determination, and to study hromosomal and extra chror e and effect of mutation and	the effic	acy of sex inheritance						
At the end of th	ne Semes		SE OUTCOME ents will be able to)	Unit	Hrs P/S						
	At the end of the Semester, the Students will be able to Image: Constraint of the study of genetics and study of genetics and study of genetics and study of life Image: Constraint of the study of genetics and study of genetics and study of life Image: Constraint of the study of life Image: Constraint of the study of life Image: Constraint of the study of life Image: Constraint of the study of life Image: Constraint of the study of life Image: Constraint of the study of life Image: Constraint of the study of life											
UNIT 2 CO2:	different	tiate between	independent asso	ortment and linkage.	2	15						

UNIT 3 CO3: Explain the sex determination in plants	3	15
UNIT 4 CO4: Analyse the cause and effect of mutation	4	15
UNIT 5 CO5: Appreciate the gradual change that took place on earth	5	15

SYLLABUS

UNIT I:

Introduction .Mendelism: Law of dominance,Law of segregation ,Law of independent assortment. Back cross, Test cross. Genetic Interaction: complementary genes, supplementary genes, epistasis, duplicate genes, (lethal genes, complete dominance, incomplete dominance, co dominance). Multiple alleles with reference to skin colour in mice coat colour in Rabbit,wings of Drosophila

UNIT II:

Linkage : Linkage in maize : types, theories related to linkage, linkage groups, factors affecting linkage. Crossing over : significance & mechanism of crossing over theories related to crossing over, factors affecting crossing over, chromosomal map.

UNIT III:

Sex determination in plants : Introduction, sex determination in Melandrium, Sex limited and sex linked inheritance - Colour blindness, Haemophilia. Pedigree analysis Cytoplasmic inheritance - plastid inheritance in Mirablis jalapa,Kappa particles in Paramoecium, Male sterility in Maize and applications

UNIT IV:

Mutation – Types, spontaneous, induced. Mechanism of mutations -Chromosomal and gene mutations. Polyploidy : types, induction and role in plant breeding. Population Genetics – Hardy- Weinberg law.

UNIT V:

Theories of organic evolution : Lamarckism , Neo Lamarckism , Darwinism , Neo Darwinism. Modern synthetic theories – Natural selection and speciation. Role of RNA in organic evolution.

TEXT BOOKS:

- 1. Dayanasargar, V. R. (1990). Cytology and Genetics. Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 2. Sharma, A. K. and Sharma, A. (1985). Advances in Chromosome and Cell Genetics. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.

REFERENCE BOOKS :

- 1. Gardner et al. (2004). Principles of Genetics. John Wiley and Sons Inc., Singapore.
- 2. Primrose, S. B. and Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics. 7th ed. Blackwell Science, London.
- 3. Rothwell, N. V. (1983). Genetics. Oxford University Press, London.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1(1	5 hours)		
	Introduction Mendelism: Law of dominance,Law of segregation ,Law of independent assortment. Back cross, Test cross.	5hrs	Group discussion
	Genetic Interaction: complementary gene supplementary genes, epistasis, duplicate genes, (lethal genes, complete dominance, incomplete dominance, co dominances.	5hrs	Lecture method
	Multiple alleles with reference to skin colour in mice coat colour in Rabbit, wings of Drosophila	5hrs	Videos
UNIT II(1	5 hours)	I	
`	Linkage : Linkage in maize : types, theories related to linkage, linkage groups ,factors affecting linkage	5hrs	Lecture method
	Crossing over : significance & mechanism of crossing over theories related to crossing over, factors affecting crossing over,	5hrs	ICT
	chromosomal map.	5hrs	ICT
UNIT III(15 hours)		
	Sex determination in plants : Introduction, sex determination in Melandrium	5hrs	Tutorial
	Sex limited and sex linked inheritance - Colour blindness, Haemophilia. Pedigree analysis	5hrs	ICT
	Cytoplasmic inheritance plastid inheritance in Mirablis jalapa,Kappa particlesin Paramoecium, Male sterility in Maize and applications	5hrs	Group discussion
UNIT IV(1	
	Mutation Types, spontaneous, induced. Mechanism of mutations -Chromosomal and gene mutations	5hrs	Lecture
	Polyploidy : types, induction and role in plant breeding.	5 hrs	Videos
	Population Genetics – Hardy- Weinberg law.	5hrs	

UNIT V(1	5 hours)		
	Theories of organic evolution : Lamarckism , Neo Lamarckism , Darwinism , Neo Darwinism	5hrs	ICT
	Modern synthetic theories – Natural selection and speciation	5hrs	ICT
	Role of RNA in organic evolution.	5hrs	ICT

Course Outco	Prog	gramn	ne Ou	itcome	es (Po	s)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean scores
mes															of Cos
(Cos)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	
CO1	4 3 4 3 3 4 3							3	3	3	3	4	3	4	3.3
CO2	4	3	3	3	3	3	3	3	3	3	2	4	3	3	3.1
CO3	4	3	3	3	3	3	3	2	3	3	3	3	3	3	3
CO4	4	3	3	3	3	3	3	3	3	2	2	3	3	3	2.9
CO5	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3.1
								М	ean Ov	verall S	Score				3.1

Result: The Score for this Course is 3.1 high relationship

Course Designer: Mrs.R.Latha.

Programme : M.Sc Semester : I Sub. Code : FL1 Practical Paper-I Hours : 8 /wk 120 Hrs /sem Credits :4

TITLE OF THE PAPER: PRACTICAL PAPER -I

Pedagogy	Hours	Lab	Peer	GD/VIDOES/TUTORIAL	ICT							
		experimentation	Teaching									
	8	8	-	-	-							
		С	OURSE OUTC	COME								
At the end of t	the Seme	ster, the Students v	will be able to									
□ analyse	analyse ,characterize and identify the different types of Algae.											
unders	tand to d	ifferentiate the typ	es of Fungi									
🗆 identif	y the Lic	hens.										
🗆 identif	fy Bryop	hytes, Pteridophyte	es, Gymnosperm	is & gain knowledge of the f	òssil forms .							
🗆 have p	oroblem s	olving ability in g	enetics and acqu	ire deep understanding of Me	endelian genetics							
and its	applicati	ion	-	-	-							
SYLLABUS:												

Study of the Morphology & Anatomy of the vegetative and reproductive parts of the following:
I Algae:
 a) Cyanophyceae - Nostoc, Oscillatoria b) Chlorophyceae - Spirogyra, Caulerpa, Volvox, Chara.
c) Bacillariophyceae - <i>Diatoms</i>
d) Phaeophyceae - Sargassum, Ectocarpus, Laminaria.
e) Rhodophyceae - Gracilaria, Polysiphonia
II Fungi:
a) Myxomycetes - Plasmodiophora
b) Oomycetes - Saprolegnia, Albugo
c) Zygomycetes - <i>Rhizopus, Mucor</i>
d) Ascomycetes - Aspergillus, Penicillium.
e) Basidiomycetes - Agaricus, Polyporus, Puccinia.
f) Deuteromycetes - <i>Cercospora</i> , <i>Fusarium</i>
III Lichens: Usnea
IV Bryophytes :
a) Marchantiales - Marchantia, Riccia.
b) Jungermaniales - Porella
c) Anthocerotales - Anthoceros
d) Sphagnales - Sphagnum
e) Polytrichales - Polytrichum
V Pteridophytes :
a) Selaginellaceae - Selaginella
b) Isoetaceae - <i>Isoetes</i>
 c) Equisetaceae - Equisetum d) Marsileaceae - Marsilea
e) Gleicheniaceae - <i>Gleichenia</i>
g) Azollaceae - Azolla
VI Gymnosperms :
a) Cycadaceae -Cycas
b) <i>Araucariaceae</i> - <i>Araucaria</i>
c) Podocarpaceae - Podocarpus
d) Cupressaceae - Cupressus
e) Gnetaceae - Gnetum
VII Fossil slides observation:
a) Rhynia
b) Lepidocarpon
c) Sphenophyllum d) Lyginopteris
d) Lyginopteris e) Lagenostoma

e) Lagenostoma.

Genetics :

VIII: Genetics: Solving problems in genetics. Mendelian hypothesis. Epistasis, Complementary, Supplementary, Duplicate factor, Interaction of genes, multiple alleles, Linkage and Crossing over and Hardy-Weinberg law. Three point test cross –chromosome mapping.

Evolution :

IX: Only Spotters related to evolution

X: Spotters related to theory

Course Outco mes	Prog	gramr	ne Ou	itcom	es (Po	s)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean scores of Cos
(Cos)	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	3	3	4	3	3	3	4	3	3	3	3	3	3	4	3.21
CO2	3	3	3	3	3	3	3	3	3	3	3	3	4	3	3.07
CO3	3	4	3	3	4	3	3	3	3	3	3	3	4	4	3.28
CO4	3	3	3	3	4	3	3	3	3	3	3	3	3	2	3.0
CO5	3	3	4	3	4	3	3	3	3	3	3	3	2	3	3.07
				•			Me	ean Ov	erall S	core					3.12

Result: The Score for this Course is 3.12 (High Relationship)

Course Designer: Dr.G.Mangai kasthuri,

Programme : M.Sc., Botany Semester : I Sub. Code : EFA Elective paper I Hours : 5 /wk 75 Hrs /sem Credits : 5

TITLE OF THE PAPER: ECOLOGY AND BIODIVERSITY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	5	2	1	1	1

PREAMBLE:

- □ Understand and appreciate interdependence of life on earth and evaluate and predict changes in environment in future.
- □ Understanding importance of ecological interactions among community.
- □ To create awareness about causes , consequences, prevention and remediation of pollution and sustainable use of earth resources ,there by making healthy environment .
- □ Ability to analyze information from GIS and GPS and evaluate the effects of human on climate management and conservation and sustainable use of biodiversity.
- □ To trace and examine the evolutionary trends and ecological relationship between various forms.

Unit	Hrs
	P/S
1	15
2	15
3	15
4	15
5	15
-	1 2 3

SYLLABUS

Unit I :

Ecology: Introduction ,Concepts and dynamics of ecosystem. Types of ecosystem,

Components of Ecosystem. Food Chain, Food web & energy flow – Tropic levels, ecological pyramids. Biogeochemical cycles (Nitrogen, Phosphorus and Carbon). Productivity Primary and secondary productivity.(GPP & NPP) Methods of measurement of primary productivity.

Unit II:

Basic concepts of Population ecology: Describing a Population size, density, dispersion, age, structure, natality, mortality. Life tables. Population dynamics. Population regulation. Community-Characteristics of a community, composition, structure, origin & development of Community. community dynamics.

Unit III:

Types of forests and forest conservation . Utilization of energy resources- non renewable and renewable, Soil formation, types & profile, erosion & conservation. Water resources-Conservation and management. Environmental Pollution – Air, water, soil, thermal and

radiation, Ecological indicators. Cumulative effect of pollution on global environment. Ozone depletion, Green House effect and their consequences.

Unit IV:

Biodiversity Definition, Types of biodiversity, values of biodiversity-measurements of diversity-remote sensing. Applications of GIS and GPS in environmental studies. Hot spots of biodiversity, Threats to biodiversity -Habitat loss- man & wildlife conflicts. endangered and endemic plant species of India. conservation of biodiversity-*in situ and ex situ* methods.

Unit V

Phytogeography : Principles. Phytogeographical zones of India- Distribution. Continuous, discontinuous-theories of discontinuous distribution, continental drift . Age and area hypothesis. Ecological genetics, Ecotypes, Ecads and Ecolines.

REFERENCES:

ECOLOGY:

TEXT BOOKS:

- 1. Agrawal, K. C. (1987). Environmental Biology. Agro-botanical Publications, India.
- 2. Ambasht, R. S. (1974). A Textbook of Plant Ecology. 3rd ed. Students' Friends Co., Varanasi, India.

3. Vashista, P. C. (1974). A Textbook of Plant Ecology. Vishal Publications, Jullunder. **REFERENCE BOOKS:**

- 1. Billings, W. B. (1965). Plants and the Ecosystem. Wardsworth Publishing Co. Inc., Belmont.
- 2. Jogdand, S. N. (2003). Environmental Biotechnology (Industrial PollutionManagement). Himalaya Publishing House, Delhi.
- 3. Krishnan Kannan (1997). Fundamentals of Environmental Pollution. S. Chand and Co.Ltd., New Delhi.
- 4. Odum, E. P. (1971). Fundamentals of Ecology. W. B. Saunders & Co., Philadelphia, USA.
- 5. Odum, E. P. (1975). Ecology. 2nd ed. Oxford & IBH Publications, New Delhi.
- 6. Smith, J. M. (1974). Models in Ecology. Cambridge University Press, London.

BIODIVERSITY:

TEXT BOOKS:

1.Krishnamurthy, K. V. (2004). An Advanced Textbook on Biodiversity: Principles and Practice. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.

2. Mani, M. S. (1974). Ecology and Biogeography of India. Dr. W. Junk Publishers, The Haque. **REFERENCE BOOKS:**

- 1. Margalef, R. (1968). Perspectives in Ecological Theory. University of Chicago Press, Chicago.
- 2. Frankel, O. H., Brown, A. H. D. and Burdon, J. J. (1995). The Conservation of Plant Diversity, Cambridge University Press, London.
- 3. Heywood, V. H. (1995). Global Biodiversity Assessment. UNEP, Cambridge UniversityPress, London.

4. (Good, R. (1953). The Geography of Flowering Plants.	2nd ed. Longmans	Green & Co.Inc.,London.		
UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING		
UNIT 1 (1	15 hours)	•			
	Ecology:Introduction,Conceptsand dynamics of ecosystem. Types of ecosystem, Components of Ecosystem. Food Chain, Food web & energy flow	7	Lecture Video PPT		
	Tropic levels, ecological pyramids. Biogeochemical cycles (Nitrogen, Phosphorus and Carbon). Productivity Primary and secondary productivity.(GPP & NPP) Methods of measurement of primary productivity.	8	Lecture Video PPT		
UNIT 11(15 hours)				
	Basic concepts of Population ecology: Describing a Population size, density, dispersion, age, structure, natality, mortality.	7	Lecture		
	Life tables. Population dynamics. Population regulation. Community-Characteristics of a community, composition, structure, origin & development of community. community dynamics	8	Lecture		
UNIT III	(15 hours)				
	Types of forests and forest conservation . Utilization of energy resources- non renewal and renewable, Soil formation, types & profile, erosion & conservation. Water resources- Conservation and management	7	Peer Teaching, PPT		
	Environmental Pollution – Air, water, soil, thermal and radiation, Ecological indicators. Cumulative effect of pollution on global environment. Ozone depletion, Green House effect and their consequences	8	Video, PPT		

UNIT IV(15 hours)		
Biodiversity Definition, Types of biodiversity, values of biodiversity-measurements of diversity-remote sensing. Applications of GIS and GPS in environmental studies.	7	Lecture PPT ICT Video, Peer Teaching
Hot spots of biodiversity , Threats to biodiversity -Habitat loss- man & wildlife conflicts. endangered and endemic plant species of India. conservation of biodiversity- <i>in situ and ex situ</i> methods.	8	Lecture PPT ICT Video, Peer Teaching
UNIT V(15 hours)		
PhytogeographyPrinciples.Phytogeographical zones of India- Distribution. Continuous, discontinuous-theories of discontinuous distribution,	8	PPT Video Lecture
continental drift . Age and area hypothesis. Ecological genetics, Ecotypes, Ecads and Ecolines.	7	PPT Video Lecture

Course	Prog	Programme Outcomes (Pos)							Programme Specific Outcomes (PSOs)					5)	Mean
Out															scores
comes		-	-	-	-	-	-		-	_	-	-	-	_	of Cos
	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
(Cos)	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	5	4	4	2	3	4	5	5	4	2	3	4	4	3	3.71
CO2	3	2	3	3	3	3	3	4	2	3	2	3	2	3	2.78
CO3	4	4	4	3	4	4	5	5	3	3	2	4	4	5	3.86
CO4	5	4	4	2	4	5	5	3	4	2	2	4	4	5	3.79
CO5	3	2	3	2	3	3	3	4	2	2	2	3	3	4	2.79
				•	•		Me	ean Ov	erall S	core			•	•	3.39

Result: The Score for this Course is 3.39 (High Relationship)

Course Designer: Dr.V.Pandimadevi

Pro	gramme :	M.Sc.	Core	Paper	:	
a		**			,	

Semester : II

Hours: 6 hrs / wk

/ wk 90 hrs/Sem

Sub. Code : FB1

TITLE OF THE PAPER: PLANT ANATOMY AND EMBRYOLOGY OF ANGIOSPERMS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/TUTORIAL	ICT
	6	3	1	1	1

Credits : 5

PREAMBLE:

As a core paper providing for classical aspects of plant development, this course presents a comprehensive outlook on structural components of land plants. The specific patterns in the internal arrangement of tissues forming a base for understanding the varied functions of plant organs are discussed. A glimpse on the early events of development within the ovarian environment and the process of flowering with a special mention on microsporogenesis, megasprogenesis along with pre and post fertilization changes explaining plant development as the orderly progression events controlled by space and time is presented.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: acquire a holistic understanding of plant development that the	1	20
learner will have skills to experimentally deal with plants and involve in		
entrepreneurial ventures		
UNIT 2 CO2 : understand and appreciate the nuances in internal organization of	2	20
plant organs that they shall develop perspective to experimentally manipulate		
growth		
UNIT 3 CO3: gain knowledge to describe and understand microsporogenesis,	3	20
megasporogenesis and syngamy, and apply the learning to pursue experiments in		
plant breeding and pomology with a conceptual clarity		
UNIT 4 CO4: understand concealed events like embryogenesis and endoderm	4	15
formation and in the process hone skills in microscopy and plant microtechnique		
to turn into a competent technician or an independent researcher		

UNIT 5 CO5: interpret the technical details they had learnt in the course to	5	15
skilfully manipulate the developmental process for seed and fruit production and		
preservation		

SYLLABUS

Unit-I:

General account and theories of organisation of apical meristem of shoot apex and root apex, Meristeme d'attente, Quiescent centre. Structural diversity and phylogenetic trends of specialization of xylem and phloem. Cambium:origin, cellular structure, cell division, storied and non-storied types. Role of Cambium in budding, grafting and wound healing. Trichomes, periderm and lenticels.

Unit-II:

Anatomical characteristics and vascular differentiation in primary and secondary structure of root and stem in Dicot and Monocot, Anomalous secondary growth. Origin of lateral roots, Root-stem transition, Anatomy of Dicot and Monocot leaves. Leaf abscission, stomatal types, nodal anatomy, petiole anatomy, vascularisation of flower and seedling.

Unit-III:

Microsporangium : Microsporogenesis, Microspores : arrangement, morphology, ultrastructure. Microgametogenesis. Pollination:Types,methods to overcome self- pollination, pollen storage. Pollen-Stigma Incompatibility, Methods to overcome incompatibility. Megasporangium : Megagametogenesis, Female gametophyte: Monosporic, Bisporic and Tetrasporic

Unit-IV:

Nutrition of embryo sac and fertilization. Endosperm : Types, Cytology and physiology of endosperms, functions of endosperms. Endosperm haustoria. Embryo development in Dicot and Monocot, Nutrition of embryo.

Unit-V:

Polyembryony - Causes, Apomixis - Causes, Apospory - Their role in plant improvement programmes and seed development. Fruit – Biochemical and physical factors in fruit development structure of pericarp. Parthenocarpy. Culture methods: Prospects and significance of embryo and endosperm culture.

REFERENCES : ANATOMY : TEXT BOOKS:

1.Easu, K. (1953). Plant Anatomy. John Wiley & Sons Inc., New York.

REFERENCE BOOKS:

1.Fahn, A. (1989). Plant Anatomy. Maxwell Pvt. Ltd., Singapore. 14

2. Metcalfe and Chalk (1950). Anatomy of the Dicotyledons and Monocotyledons. Vol. I and II.

Clarendon Press, Oxford, UK.

3. Clowers, F. A. L. (1961). Apical Meristems. Blackwell Scientific Publication, Oxford.

EMBRYOLOGY: TEXT BOOKS:

- 1. Agarwal, S. B. (1990). Embryology of Angiosperms a fundamental approach. Sahitya Bhawan, Agra.
- Bhojwani, S. S. and Bhatnagar, S. P. (1981). Embryology of Angiosperms. Vikas Publishing House Pvt. Ltd., New Delhi.

REFERENCE BOOKS:

- Maheswari, P. (1963). An Introduction to Embryology of Angiosperms. International Society of Plant Morphologies, University of Delhi.
- Raghavan, V. (1976). Experimental Embryogenesis in Vascular Plants. Academic Press, London.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1: 2	0 hours	noons	
	General account and theories of organisation of apical meristem of shoot apex, Meristeme d'attente	3 hours	Chalk–talk techniques to familiarize and internalize terms, definitions and key words
	General account and theories of organisation of apical meristem of root apex, Quiescent centre	3 hours	Use of AV aids, charts and OHP to present the concepts and schemes of plant growth and differentiation

	Structural diversity and phylogenetic		Black board techniques and
	trends of specialization of xylem	3 hours	Power Point Presentation
	Structural diversity and phylogenetic		Presenting video clips and
	trends of specialization of phloem	3 hours	explanations through OHP
	Cambium:origin, cellular structure,		Use of power point presentation
	cell division, storied and non-storied	3 hours	with animation,
	types.		Peer teaching
	Role of Cambium in budding,		Experiential learning with
	grafting and wound healing	2 hours	demonstration and hands-on training
	Trichomes, periderm and lenticels	3 hours	Use of AV aids, charts and
			Peer teaching
UNIT II	: 20 hours		
	Anatomical characteristics and		Explanation through animated
	vascular differentiation in primary	4 hours	projections and presentation,
	and secondary structure of root in		Peer teaching
	Dicot and Monocot		
	Anatomical characteristics and		Personalized learning through
	vascular differentiation in primary	4 hours	sectioning and
	and secondary structure of stem in		micropreparations, Peer
	Dicot and Monocot		teaching
	Anomalous secondary growth.	2 hours	Presentation of slides and charts
	Origin of lateral roots, Root-stem transition,	2 hours	Animations and slide shows
	Anatomy of Dicot and Monocot leaves	3 hours	Comparative description with live specimen, Peer teaching
	Leaf abscission, stomatal types	2 hours	Slide show and Animations

	Nodal anatomy, petiole anatomy,	3 hours	Using POP Model and time
	vascularisation of flower and seedling		lapse movie clips
UNIT III :	20 hours		Į
	Microsporangium :		Explanation using 3-D models
	Microsporogenesis, Microspores:	5 hours	and Peer teaching
	arrangement, morphology,		
	ultrastructure.		
	Microgametogenesis.		Animated description using
	Pollination:Types,	3 hours	ICT
	Methods to overcome self-		Short movie clips and slide
	pollination, pollen storage.		shows
	Pollen-Stigma Incompatibility,	4 hours	
	Methods to overcome incompatibility		
	Megasporangium :		Explanation with charts and
	Megagametogenesis	4 hours	slide, Peer teaching
	Female gametophyte: Monosporic,		Comparative account using
	Bisporic and Tetrasporic	4 hours	models and charts
UNIT IV :	15 hours		
	Nutrition of embryo sac and fertilization	4 hours	Power Point Presentation
	Endosperm : Types, Cytology and physiology of endosperms, functions of endosperms Endosperm haustoria	5 hours	Power Point Presentation with animations and video clips, Peer teaching
	Embryo development in Dicot		Short movie clips and ICT tools
		3 hours	
	Embryo development in Monocot,		Slide show and Short movie
	Nutrition of embryo.	3 hours	clips

UNIT V : 15	hours		
	Polyembryony - Causes, Apomixis - Causes, Apospory - Their role in plant improvement programmes and seed development.	5 hours	Use of OHP to present schemes of classification and GD
	Fruit – Biochemical and physical factors in fruit development structure of pericarp. Parthenocarpy.	4 hours	AV aids and collection of different types of fruits a d seeds for display and making museum mounts
	Culture methods: Prospects and significance of embryo culture.	3 hours	With the support of hands-on training
	Culture methods: Prospects and significance of endosperm culture.	3 hours	Power Point Presentation Peer teaching

Course	Prog	Programme Outcomes (Pos)							Programme Specific Outcomes (PSOs)						Mean
Outcom															scores
es															of Cos
(Cos)	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	02	03	04	05	06	07	
CO1	2	3	3	4	4	3	4	4	4	4	3	4	2	3	3.36
CO2	3	4	3	4	4	4	3	3	4	4	3	4	4	3	3.57
CO3	3	3	4	4	4	4	4	3	2	3	3	3	2	3	3.21
CO4	4	3	4	4	4	4	4	3	4	4	4	4	3	3	3.71
CO5	3	3	4	4	4	4	4	3	4	4	4	4	3	3	3.64
	•			•		•	Mea	n Ove	rall Sc	ore					3.50

Result: The Score for this Course is 3.50 (High Relationship)

Course Designer: Dr.G.Grace Lydial Pushpalatha

Programme	: M.Sc
Semester	: II
Sub. Code	:FB2

Core Paper V Hours : 6 hrs/wk 90 Hrs /sem Credits :4

TITLE OF THE PAPER:_CELL AND MOLECULAR BIOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/ TUTORIAL	ICT
	6	3	1	-	2
DDEAMDIE.					

PREAMBLE:

- 1. To acquaint students with the principles, scientific techniques and applications of cell and molecular biology.
- 2. To expose students the methodologies of chromosome replication and organelles concerned with it.

3.	To introduce students the	biological process	s taking place ins	side the living cell.

et in introduce students the storegreat process taking place instact the intring e	U 11.	
COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: Understand and distinguishes various functions of the cell	1	18
organelles.		
UNIT 2 CO2 : Gain knowledge about chromosomal functions, its replication	2	18
and its role in heredity.		
UNIT 3 CO3 : Understand and pictures the process of transcription in	3	18
prokaryotes.		
UNIT 4 CO4: Differentiate prokaryotic and eukaryotic transcription and	4	18
recalls the enzymes involved in transcription.		
UNIT 5 CO5 : Analyze the different steps involved in translation and the	5	18
organelles involved in the process.		

SYLLABUS

UNIT-I

Prokaryotic and Eukaryotic cell., Structural and ultra structural details: Cell wall - primary and secondary . Plasma membrane : structure, models- Fluid mosaic model and functions, membrane transport:Passive transport - simple diffusion, facilitated diffusion. Active transport - ion pump, calcium ATPase, vesicular transport : Receptor mediated endocytosis. Molecular structure of Chloroplast and Mitochondria.

UNIT II.

Structure and variations in Chromosomes and their significance. Special types of chromosomes : Giant chromosomes and super numerary chromosomes. DNA types , Prokaryotic Replication- Rolling circle and Eukaryotic replication-enzymes, DNA super coiling Meselson-stahl experiment, DNA repair mechanisms – Direct repair, Excision Repair, Mismatch repair, Recombinational repair. RNA types and functions . Genetic code.

UNIT III:

Concept of gene., Transcription in prokaryotes: promoter structure, Initiation – **RNA** polymerase, Elongation – elongation complex, process of RNA synthesis. Termination: rho dependent and rhoIndependent termination, Cell signaling and gene expression Lac operon, Tryp operon

UNIT IV:.

Transcription in eukaryotes: Types, structure and role of RNA polymerases. Structure of Promoter, Enhancers and silencers. General transcription factors and formation of pre-initiation complex, Elongation factors, termination factors, Post-transcriptional events, RNA editing.

UNIT V:.

Translation: Important features of mRNA – ORF, RBS. Fine structure, composition and assembly of prokaryotic and eukaryotic ribosomes. Stages in translation: Initiation – formation of initiation complex in prokaryotes and eukaryotes, initiation factors in prokaryotes and eukaryotes. Elongation – process of polypeptide synthesis, active peptidyl transferase, elongation factors. Termination – process of termination, release factors.

REFERENCES:

CELL BIOLOGY :

TEXT BOOKS:

1.Verma, P. S. and Agarwal, V. K. (1998). Concept of Molecular Biology. S. Chand and Co. Ltd., New Delhi. 2.David Freifelder (2000). Molecular Biology. 2nd ed. Narosa Publishing House, New Delhi.

REFERENCE BOOKS:

1.De Robertis, E. D. P. and De Robertis, E. M. F. (1980). Cell and Molecular Biology. Saunders International Education, Philadelphia.

2.Gomperts, B. D. (1976). The Plasma Membrane: Models for its Structure and Function. Academic Press, New York.

3.Leadbetter, M. C. (1970). Introduction to the Fine Structure of Plant Cells. Springer Verlag. 23

4.Rastogi, S. C., Sharma, V. N. and Anuradha Tandon, V. N. (1993). Concepts in Molecular Biology. Wiley Eastern Ltd., New Delhi.

5.Rost, T. L., Gifford, Jr. and Ernest, M. (1977). Mechanism and Control of Cell Division. Academic Press, New York.

6.Segal, H. L. and Doyle, D. J. (1978). Protein Turnover and Lysosomal Functions. Academic Press, New York.

MOLECULAR BIOLOGY TEXT BOOKS:

1. Rastogi, S. C., Sharma, V. N. and Anuradha Tandon, V. N. (1993). Concepts in Molecular Biology. Wiley Eastern Ltd., New Delhi.

2. Geoffrey M Cooper, Robert E Hausman (2009). *The Cell: A molecular approach* (V Edn). Sinaeur. **REFERENCE BOOKS:**

- 1. Gerald Karp (2008). Cell and Molecular biology: Concepts and experiments (V Edn). John Wiley & Sons.
- 2. Harvey Lodish, Arnold Berk, Lawrence Zipursky, Paul Matsudaira, David Baltimore, James Darnell(2000). *Molecular cell biology* (IV Edn). W H Freeman & Company.
- 3. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). *Molecular biology of the cell* (IV Edn). Garland Science, Taylor and Francis group.
- 4. Robert J Brooker (2009). Genetics: analysis and principles (III Edn). McGraw Hill.
- 5 James D Watson, Tania A Baker, Stephen P Bell, Alexander Gann, Michael Levine, Richard Losick(2009). *Molecular biology of the gene* (V Edn). Pearson.
- 6. Robert F Weaver (2002). Molecular biology (II Edn). McGraw Hill.
- 7. Bruce Alberts, Dennis Bray, Karen Hopkin, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2010). *Essential Cell Biology*. Garland Science.
- 8. Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, Anthony Bretscher, Hidde Ploegh, Paul Matsudaira (2007). *Molecular cell biology* (VI Edn). W H Freeman & Company.
- 9. James D. Watson, Amy A. Caudy, Richard M. Myers, Jan A. Witkowski (2007). *Recombinant DNA*(III Edn). W H Freeman.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1(18 hou	irs)		•
	Bergey's Bacterial classification Prokaryotic and eukaryotic microbes	5	Chalk and talk ICT
	Classification of viruses, ultrastructure,	5	Chalk and talk
	isolation and purification, chemical nature, replication and transmission of viruses	5	Chalk and talk
	Economic importance of viruses, viroids, prions, phytoplasma	3	Chalk and talk
UNIT II(18 hc	purs)		
	Eubacteria, Archaebacteria, Cyanobacteria and Actinomycetes Bacteria–general account,ultra structure	6	ICT
	Nutrition, growth and reproduction	4	Chalk and talk
	Bacterial culture techniques	5	Chalk and talk
	Economic importance of bacteria	3	Chalk and talk
UNIT III(18 h	ours)	1	
	Microbial Food spoilage, Food poisoning	5	Chalk and talk
	Preservation of food	4	Chalk and talk

		water	obial flo ,bacteri gical se	ologica	l exami	ination		ter,	5			ICT			
			adulter ods,adu			types			4			Chalk a	nd tal	k	
UNIT IV	V(18 ho	ours)													
Classification of plant diseases –based on symptoms,causalorganism,host plants affected												ICT Chalk a	nd tal	k	
		Defense mechanism –pre existing and post infectional structural barriers Cellular defense,biochemical preexisting										Chalk a	nd tal	k	
		defen	ise			3	4			Chalk a					
		Post infectional biochemical defense										Chalk a	nd tal	k	
<u>UNIT V</u>	<u>(18 ho</u>	Symp	otoms , disease		organisı	m , dise	ease cy	cle of	6			ICT			
			ention a se,whea		rol met	hods –	tikka		3			Chalk and talk			
		Citru	s canke	r, red ro	ot ofsug	arcane			2 Chalk and talk						
		TMV	,cucum	ber mos	saic				2 Chalk and talk						
		Little	e leaf of	brinjal	, Sesam	um ph	yllody		2 Chalk and talk						
Course Outco	Prog	ramme	Outco	mes (F	Pos)	-		Progr	amme	Spec	ific O	utcomes	s (PSC	Os)	Mean scores of Cos
mes (Cos)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PS O1	PSO 2	PS O3	PSO 4	PSO5	PS O6	PSO 7	
CO1	3	4	3	3	4	3	4	3	3	3	3	3	3	4	3.28
CO2	3	3	4	4	3	3	3	3	3	3	3	3	4	3	3.21
CO3	3	4	4	3	3	3	3	3	3	3	3	3	4	4	3.35
CO4	3	3	3	3	4	3	3	3	3	3	3	3	3	2	3.0
CO5	3	3	3	4	4	3	3	3	3	3	3	3	4	3	3.21
						M	ean O	verall	Score						3.21

Result: The Score for this Course is 3.21(High Relationship)

Course Designer: Dr .I. Sobha kumari

Part III: Core Hours : 5 Hrs/wk 75Hrs/sem

Programme : M.Sc Semester : II

Credits :4

TITLE OF THE PAPER: MICROBIOLOGY AND PLANT PATHOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	5	4	-	-	1		
2. To improv	e skills fo	r identifyir	ng the various dise	al knowledge of microbiolog ease causing pathogens . control measures.	y		
		COU	RSE OUTCOME dents will be able	E	Unit	Hrs P/S	
			eral characters of		1	15	
UNIT 2 CO2: importance	understa	nd the bacto	erial culture techn	iques and the economic	2	15	
UNIT 3 CO3:	understa	nd the micr	obes causing food	l spoilage and water spoilage	3	15	
UNIT 4 CO4 : the plant disea		defense m	echanism perform	ned by plants and classifies	4	15	
unit-I: Bergey Genera nature	ease 's system l features	of Bacteria of Viruses on, transmi	al classification (8 - Classification a	tands remedial measures to th edn.) .Prokaryotic and Euka nd ultrastructure, isolation, pu mportance. viroids and prions	urificatio	n, chemical	

Unit-IV:

Plant pathology: Classification of plant diseases – based on symptoms ,causal organism and host plants affected. Infection process: entry of pathogens ,establishment of pathogen , defense mechanisms –pre-existing structural defense mechanisms-waxes,thick cuticle,and epidermal cell wall –structure and natural openings,internal structural barriers-post infectional structural defense –histological defense(cork layer ,abscission layer,tyloses and gum deposition),cellular defense structures,biochemical defense-preexistingbiochemical defense-inhibitors released by plantin its environment(protocatechuic acid,catechol)and inhibitors present in plant

cells-phenolic compounds-chlorogenic acid),post inflectional defense mechanism-phytoalexins,hypersensitive reactions-defense through antibodies, Antibiosis.

Unit-V:

Plant diseases : symptoms, casual organism, disease cycle and prevention and control methods for the following plant diseases: Fungal disease – Tikka disease of groundnut and wheat rust.Bacterial disease – Red rot of sugarcane and citrus canker. Viral disease – TMV and cucumber mosaic. Phytoplasma disease – Little leaf of brinjal and sesamum phyllody.

REFERENCES: MICROBIOLOGY:

TEXT BOOKS:

- 1. Dubey, R. C. and Maheshwari, D. K. (2007). A Textbook of Microbiology. S. Chand and Co. Ltd., New Delhi.
- 2. Pelczar, M. J., Chan, E. C. S. and Krieg, N. R. (1993). Microbiology. Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 3. Sharma, P. D. (1992). Microbiology. Rastogi & Co., Meerut.

REFERENCE BOOKS:

- 1. Staley, J. T. et al.. (1991). Bergey's Manual of Systematic Bacteriology. Vol. I to IV. Williams & Wilkins, London.
- 2.Darnell, J., Lodish, H., Baltimore, D., 1990, Molecular Cell Biology, Scientific American Books, New York.
- 3. Freifelder, D., Malacinski, G.M., 1987, Essentials of Molecular Biology, John and Bartle Publishers, London.

PLANT PATHOLOGY :

TEXT BOOKS:

- 1. Bilgrami, K. S. and Dube, H. C. (1990). A Textbook of Modern Plant Pathology. Vikas Publishing House Pvt. Ltd., New Delhi.
- 2. Pandey, B. P. (1982). A Textbook of Plant Pathology, Pathogen and Plant Diseases. S. Chand and Co. Ltd., New Delhi.

REFERENCE BOOKS:

- 1. Rangaswamy, G. (1972). Diseases of Crop Plants in India. Prentice Hall of India Pvt. Ltd.
- 2. Smith, K. M. (1957). A Textbook of Plant Virus Diseases. Little Borwn & Co., Boston.
- 3. Cooper, J. I. (1995). Viruses and the Environment. 2nd ed. Chapman & Hall, London.
- 4. Mehrota, R. S. (1994). Plant Pathology. Tata McGraw Hill Publishing Co. Ltd., New Delhi.

UNITS	TOPIC		MODE OF TEACHING
		HOURS	
UNIT 1(15 ho	ours)		
	Ultrastructure of prokaryotic and eukaryotic	5	Chalk and talk
	cell, transduction in		ICT
	prokaryote, cellwall-primary, secondary		
	Plasma membrane structure, fluid mosaic model,	5	Peer discussion
	functions, passive transport, active transport		
			Chalk and talk

	Molecular structure of chloroplast and	5	ICT
	mitochondria	5	Chalk and talk
UNIT II(1			
	Structure and variations in	5	Chalk and talk
	chromosomes, significance, special types of	5	ICT
	chromosomes		
	DNA types,prokaryotic and eukaryotic	5	ICT
	replication		
	DNA supercoiling, meselson-stahl experiment	5	Chalk and talk
	DNA repair mechanisms RNA types, functions, genetic code.		
	KIVA types, functions, genetic code.		
UNIT III(6	ICT
	Transcription in prokaryotes, initiation, elongation, process of RNA synthesis	0	Chalk and talk
	ciongation, process of KIVA synthesis		Chark and tark
	Termination, Rho dependent and Rho		
	independent		
		2	Chalk and talk
	Cell signalling	4	ICT
	Gene expression,Lac operonTry operon.	5	Chalk and talk
	····· ································	-	ICT
	15 hours)		
UNIT IV(Transcription in eukaryotes, types, structure,	6	Chalk and talk
	role of RNA polymerase	0	Chark and tark
		3	ICT
	Structure of promoter, enhancers, silencers	S	Chalk and talk
	Transcription factors, formation of initiation	6	Chalk and talk
	complex, elongation and termination factors.		
	Post transcriptional events, RNA editing.		
	f hours)		
UNIT V(1	Translation, Fine structure, composition and	5	ICT
	assembly of prokaryotic and eukaryotic	5	Chalk and talk
	ribosomes.		

Stages in translation- initiation and elongation factors in prokaryotes ,eukaryotes	5	Chalk and talk Chalk and talk
Elongation –elongation factors, termination-termination factors.	5	Chalk and talk

Course	Prog	gramr	ne Ou	tcom	es (Po	s)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean
Outco															scores
mes															of Cos
(Cos)	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	3	3	2	3	3	3	4	3	3	3	3	2	3	4	3.0
CO2	3	3	3	4	3	4	3	3	4	3	3	3	3	4	3.28
CO3	3	3	3	3	3	2	3	4	3	3	3	4	3	3	3.07
CO4	3	4	3	3	3	3	3	3	3	3	3	4	3	4	3.21
CO5	3	3	3	3	3	3	3	3	3	3	3	3	4	4	3.14
	Me							ean Overall Score					-	3.14	

Result: The Score for this Course is 3.14 (High relationship)

Course Designer: Dr.I.Sobha kumari

Programme : M.Sc

Sub. Code : FL2

Practical paper : II Hours : 8 Hrs/wk 120 Hrs /sem Credits :4

TITLE OF THE PAPER: PRACTICAL PAPER –II

Pedagogy	Hours	Lab	Peer	GD/VIDOES/TUTORIAL	ICT
		experimentation	Teaching		
	8	8	-	-	-

PREAMBLE:

The main objective is to provide basic knowledge of Anatomy, Embryology, Cellbiology, Microbiology and Plant Pathology techniques.

COURSE OUTCOME

At the end of the Semester, the Students will be able to

1.analyse ,characterize and identify Dicot and Monocot primary and secondary structures.

2.understand to differentiate the stages of embryo.

3. identify the cell division stages.

4. handle microbiological techniques

5. develop the ability to analyze plant diseases and identify remedial measures.

Syllabus:

Plant anatomy and Embryology of Angiosperms:

- 1. Internal morphology of Monocot and Dicot root and stem
- 2. Investigation of secondary growth and anomalous secondary growth. (Boerhaavia, Nyctanthus)
- 3. Study of leaf anatomy (measurement of stomatal size).
- 4. Nodal anatomy (Justicea, Neem, Dracaena)
- 5. Study of plant tissues Tracheids, Vessels and fibres (Cucurbita and Bombax)
- 5. Study of pollen morphology and germination.

6. Isolation of plant embryos. Identification of stages – Globular and heart shaped.

(Cucurbitaceae,Brassicaceae)

Cell Biology :

1. Cell biology: squash and smear techniques-Onion root tip(mitosis), Rheo flower buds (meiosis)

2. Microscopic view of cell components in plant cells-viewing cystolith & Raphides, Chloroplast (Hydrilla leaf).

Microbiology :

- 1. Sterilization and culture media preparation.
- 2. Isolation of microbes from soil / milk /food
- 3. Serial dilution and Plating
- 4. Identification by Simple staining and Grams staining and Biochemical tests(bacteria)
- 5. Hanging drop.
- 6. Coliform Test.
- 7. Microbial analysis of milk by methylene blue reduction test.

Plant Pathology :

- 1. Tikka disease of ground nut.
- 2. Citrus canker.
- 3. Tobacco mosaic / Cucumber mosaic.
- 4. Little leaf of brinjal.
- 4. Red rot of sugarcane.
- 5. Section cutting of specimens showing fungal diseases.
- 6. Submission of five Herbarium sheets.
- 7. Campus Walk.

Course Outco mes	Prog	gramr	ne Ou	tcom	es (Po	s)		Prog	ramme	Speci	fic Out	comes	(PSOs	5)	Mean scores of Cos
(Cos)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	01 2 05
CO1	3	3	3	4	3	3	4	3	3	3	3	3	3	4	3.21
CO2	3	3	3	3	3	3	3	3	3	3	3	3	4	3	3.07
CO3	3	3	4	3	4	3	3	3	3	3	3	3	4	4	3.28
CO4	3	3	3	3	4	3	3	3	3	3	3	3	3	2	3.0
CO5	3	3	3	4	4	3	3	3	3	3	3	3	2	3	3.07
	•	•	•	•	•	•	Me	ean Overall Score					•	3.12	

Result: The Score for this Course is 3.12 (High Relationship)

Course Designer :Dr. I.Sobha kumari

Programme : M.Sc., Botany Semester : I Sub. Code : EFB

Elective Paper II Hours : 5 P/W 75 Hrs P/S Credits : 5

TITLE OF THE PAPER: HORTICULTURE AND PLANT BREEDING

	Hours	Lecture	Door Tooohing			ICT				
Pedagogy	5	2	Peer Teaching	GD/VIDOES/TUTORIAL		1				
	5	2	l	1		1				
PREAMBLE:										
-		nt practical k	nowledge on plan	t propagation techniques and	l plant n	ursery				
establishment.										
Discover Theoretical knowledge of Horticulture to establish home garden scientifically.										
Develop entrepreneurial skills in Pomeculture, Olericulture and Floriculture.										
□ Underst	and the f	undamental	mechanisms and p	principles of plant breeding a	nd hered	dity and gene				
express	sion and r	egulations.	_							
	knowled	lge on hybrid	dization technique	es and methods involved in ir	nproven	nent of crop				
plants.		0	1		1	1				
·		COUR	SE OUTCOME		Unit	Hrs P/S				
At the end of th	ne Semest	ter, the Stude	ents will be able to)						
UNIT 1 CO1	: Ident	ify various	plants and tools	used in horticulture and	1	15				
comprehend ve		•	-		1	15				
				g methods and indoor and		1.5				
outdoor garden				2	2	15				
UNIT 3 CO3:	Apprecia	te the art of	flower arrangeme	nt and cultivation of flower,	3	1.5				
vegetables and			C		3	15				
UNIT 4 CO4	1 : To U	nderstand t	he concepts of	plant breeding and crop	4	1.5				
improvement.			1		4	15				
UNIT 5 CO5: Develop knowledge on Hybridization techniques Heterosis and										
Mutation breed	-		-	-	5	15				
SYLLABUS										
Unit-I:										

Unit-I:

Importance and scope of horticulture. Divisions of horticulture. irrigation methods. Plant propagation methods : Cutting- Root, Stem, Leaf cuttings. Layering - Simple, Compound Mound and Air Layering. Grafting – Approach, Tongue, Cleft grafting. budding. T and Chip cutting. Transplanting, potting, Repotting. Containers and tools used in gardening. Irrigation surface, Spray, Drip irrigation. Training and pruning.

Unit-II:

Principles and methods of designing, outdoor garden: hedges, edges, fences, trees, climbers, rockeries, arches, Lawn making and maintenance. Water garden - cultivation of water plants. Indoor gardening : hanging basket, bottle garden and Bonsai. Establishment of kitchen garden principles, selection of crops, basic techniques involved in layout. terrace garden - organic farming – organic manures (farmyard manure, vermi compost, panchakavya) – biopesticides, hydroponics, soilless culture - aeroponics.

Unit-III:

Floriculture: Cultivation of commercial flower crops – Rose and Jasmine. Hi tech horticultural practices – Green House Types Shadenet, Polyhouse Cultivation, Conditioning of cut flowers, Packing. Flower arrangement – Principles and types, Preparation of Bouquet, Dry flower arrangement – Methods of drying, Pressing, Use of dried pressed plant materials. Cultivation of important vegetables - Tomato, Onion and snake gourd. Cultivation of important fruit crops - Mango, Grapes and Guava.

Unit-IV:

Aim, objectives, scope and importance of plant breeding, methods of crop improvement. Centers of Origin Introduction, acclimatization. Mass, Pure line and Clonal selection. Advantages, disadvantages and achievements.

Unit-V:

Hybridization: Objectives, achievements, types and techniques, advantages and disadvantages. Heterosis: effect of hybrid vigour, causes and achievements. Mutation breeding and its applications.

REFERENCES:

TEXT BOOKS:

- 1. Arora, J. S. (1992). Introductory Ornamental Horticulture. Kalyani Publishers, New Delhi.
- 2. Chowdry R.C. (1991) Introduction to plant breeding. Oxford & IBH publishing house, New Delhi.
- 3. Edmond, J. B. *et al.* (1977). Fundamentals of Horticulture. Tata McGraw Hill Publishers Co. Ltd., New Delhi.

REFERENCE BOOKS:

- 1. George Acquaah (2004). Horticulture Principles & practices. Prentice hall of India Pvt. Ltd., New Delhi.
- 2. Kumar N (1977). Introduction to Horticulture. Rajalakshmi Publications. Nagercoil, India.
- 3. Manibushan Rao, K. (1991). Textbook of Horticulture. Macmillan Publishing Co., New York.
- 4. Randhawa (1997) Ornamental Horticulture in India. Today & Tomorrow Publishers, New Delhi.
- 5 Rao, K. M. (2000). Text Book of Horticulture. Macmillan India Ltd., New Delhi.
- 6.Singh B.D (1999) Plant Breeding : Principles & Methods. Kalyani Publishers, Nagercoil, India.
- 7. Vijendra Das L.D (1998) Plant Breeding : Theory & Practice, Oxford & IBH Publishing house,
- New Delhi.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1(15 ho	urs)		
	Importance and scope of horticulture. Divisions of horticulture. irrigation methods. Plant	7	Lecture
	-		ICT

	 propagation methods : Cutting- Root, Stem, Leaf cuttings. Layering – Simple, Compound Mound and Air Layering. Grafting – Approach, Tongue, Cleft grafting. budding. T and Chip cutting. Transplanting, potting, Repotting. Containers and tools used in gardening. Irrigation – surface, Spray, Drip irrigation. Training and pruning. 	8	PPT Lecture ICT PPT
UNIT II(15 ho	l nurs)	1	1
	Principles and methods of designing, outdoor garden: hedges, edges, fences, trees, climbers, rockeries, arches, Lawn making and maintenance. Water garden - cultivation of water plants. Indoor gardening : hanging basket, bottle garden and Bonsai.	7	PPT Lecture
	Establishment of kitchen garden – principles, selection of crops, basic techniques involved in layout. terrace garden – organic farming – organic manures (farmyard manure, vermi compost, panchakavya) – biopesticides, hydroponics, soilless culture - aeroponics.	8	PPT Lecture
UNIT III(15 h	ours)		
	Floriculture: Cultivation of commercial flower crops – Rose and Jasmine. Hi tech horticultural practices – Green House Types Shadenet, Polyhouse Cultivation, Conditioning of cut flowers, Packing.	7	Lecture Video
	Flower arrangement – Principles and types, Preparation of Bouquet, Dry flower arrangement – Methods of drying, Pressing, Use of dried pressed plant materials. Cultivation of important vegetables - Tomato, Onion and snake gourd. Cultivation of important fruit crops - Mango, Grapes and Guava.	8	Lecture Video

	Aim, objectives, scope and importance of plant breeding, Centers of Origin, methods of crop improvement Introduction, acclimatization.,	7	Lecture PPT
	Mass,Pureline and Clonal selection. Advantages, disadvantages and achievements.	8	Lecture PPT
UNIT V(15 ho	burs)		1
``````````````````````````````````````	Hybridization: Objectives, achievements, types and techniques, advantages and disadvantages.	8	ICT Lecture
	Heterosis: effect of hybrid vigour, causes and achievements. Mutation breeding and its applications.	7	ICT Lecture

Course Outcomes (Cos)	Prog	gramr	ne Ou	itcom	es (Po	os)		Programme Specific Outcomes (PSOs)						Mean scores of Cos	
(003)	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	3	4	3	5	4	4	4	5	5	2	5	3	2	2	3.57
CO2	3	5	3	2	3	4	4	5	5	2	5	5	2	3	3.64
CO3	3	5	4	2	3	5	5	4	5	2	5	5	2	2	3.71
CO4	2	3	3	3	4	3	3	5	4	5	3	4	3	4	3.5
CO5	3	3	3	3	4	4	4	5	2	4	2	4	4	4	3.5
	Mean Overall Score											3.58			

Result: The Score for this Course is 3.58 (High Relationship)

Course Designer: Dr. V. Pandimadevi

Programme : M.Sc.Botany Semester : III Sub. Code : FC1 Core Paper VII Hours : 5Hrs/wk 75 Hrs /sem Credits :4

# TITLE OF THE PAPER: TAXONOMY OF ANGIOSPERMS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/TUTORIAL	ICT				
	5	2	1	1	1				
PREAMBLE:         □       To know the etymology of Taxonomy as a science of identifying naming and classifying the plants and understands the history of taxonomy         □       To categorize the organisms that enables easy biological communication         □       To make them understand the evolution of taxonomy from alpha level to omega level         □       To evluvate taxonomy as a tool to study the evolutionary relationship         □       To analyse the differences between familiesof different classes and their economic values.									
At the end of th	ie Semest		SE OUTCOME ents will be able to	)	Unit	Hrs P/S			
UNIT 1 CO1: taxonomy .	tands the history of	1	16/S						
UNIT 2 CO2: aesthetic sense garden Kew)	2	16/S							
UNIT 3 CO3: a taxonomical pro	3	16/S							
UNIT 4 CO4: plants	Correlate	e the evoluti	onary relationship	between various groups of	4	13/8			
		-	owledge about phy	tochemical analysis and	5	14/S			
<ul> <li>economically important plants</li> <li>SYLLABUS</li> <li>UNIT I: (16hrs)         <ul> <li>A brief historical account on the classification of angiosperms up to the present day. Systems of classification: Detailed study of classification of Linnaeus, Bentham and Hooker, Engler and Prantl, Cronquist, APG III system – Merits and demerits. International Code for Botanical Nomenclature, Typification, Principles of priority and their limitations, Effective and valid publication, Author citation, retention, choice and rejection of names. Identification of plants –Dichotomous key(Bracted Key Indented Key)Web identification</li> <li>UNIT II: (16hrs)                 Sources of Taxonomic information : Herbarium, Flora, Monograph and Botanical gardens.</li> </ul> </li> </ul>									
Source				arium, Flora, Monograph ar arium, Flora, Monograph ar					

Modern trends - Anatomy, Embryology, Palynology, Cytology and Phytochemistry in relation to taxonomy.

## UNIT III: (16hrs)

Biosystematics its aim and scope, biosystematic categories, Phenotypic plasticity, Phylogeny terms and concept (Mono, Para, Polyphyly) Turresons work, Taxonomic Hierarchy, Species concept, Numerical Taxonomy, Sero Taxonomy, and Molecular systematics.

## UNIT IV: (13hrs)

Salient features and Economic importance of the following families: Polypetalae -Magnoliaceae, Portulacaceae, Oxalidaceae, Rosaceae, Combretaceae, Lythraceae. Gamopetalae – Oleaceae, Asclepiadaceae, Bignoniaceae, Pedaliaceae, Acanthaceae, Verbenaceae.

# UNIT V: (14hrs)

Salient features and economic importance of the following families : Monochlamydeae – Nyctaginaceae, Amaranthaceae. Monocotyledon - Liliaceae, Commelinaceae, and Cyperaceae.

## **TEXT BOOKS:**

- 1. Pandey, B.P.(1997). Taxonomy of Angiosperms, S.Chand & Co., New Delhi.
- 2. Singh, V. & Jain, K.K. (1989). Taxonomy of Angiosperms Rastogi, Meerut
- 3. Vashista, P.C. (1990). Taxonomy of Angiosperms S.Chand & Co., New Delhi

## **REFERENCE BOOKS:**

- 1. Lawrence, GHM. (1995). The Taxonomy of vascular Plants (Vol I-IV) ,Central Book, Dept., Allahabad
- 2. Heywood VH. (1967). Plant Taxonomy, Edward Arnold, London
- 3. Jeffery C. (1982). An introduction to Plant Taxonomy, J& A Churchill Ltd., London
- 4. Mathew, K.M. (1983). The Flora of Tamil Nadu Carnatic, The Rapinat Herbarium, Trichy
- 5. Sivarajan ,V.V.(1989). Introduction to Principle of Plant Taxonomy, Oxford and IBH, New Delhi.
- 6. Hutchinson, J. (1973). The Families of Flowering plants, Oxford University press, London
- 7. Gamble, J.S., Fisher, L.E.F. (1967). The Flora of The presidency of madras (Vol-III) BSI, Calcutta
- 8. Davis , P.H and Heywood ,V.M. (1965). Principles of Angiosperm Taxonomy ,Oliver and Boyd ,Edinburgh.
- 9. Kress J.W, Wurdack, K.J., E.A C., Zimmer, L.A .Weigt and Janzen D.H. (2005). Use of DNA bar codes to identify flowering plants. Proc. Natl. Acad .Sci USA 102, 8369- 374.
- 10. Stoeckle, M.(2003). Taxonomy ,DNA and the bard code of life .bioscience 53: 796-797.
- 11. Simpson M.G.(2006). Plant systematics, Elsevier Academic Press, USA
- 12. Takhtajan, A.L. (1969). Flowering Plants Origin and dispersal Oliver & Boyed
- 13. Takhtajan A. (1991). Evolutionary trends in flowering plants, Bishen Singh Mahendra Pal Singh, Dehradun.

UNITS	ТОРІС	LECTURE HOURS	MODE OF TEACHING
UNIT 1(16	hours)		
	A brief historical account on the classification of angiosperms up to the present day. Systems of classification: Detailed study of lassification of Linnaeus, Bentham and Hooker, Engler and Prantl, Cronquist, APG III system –	8hrs	Group discussion
	Merits and demerits International Code for Botanical Nomenclature, Typification, Principles of priorityandtheir limitations, Effectiveandvalid Publication	4hrs	Lecture
	Author citation, retention, choice and rejection of names Identification of plants –Dichotomous key (Bracted Key, Indented Key) Web identification	4hrs	Group discussion
UNIT II(1	6 hours)		
	Sources of Taxonomic information : Herbarium, Flora, Monograph and Botanical gardens	7hrs	ICT
	Modern trends - Anatomy, Embryology, Palynology, Cytology and Phytochemistry in relation to taxonomy.	9hrs	Lecture
UNIT III(	1 16 hours)		
	Biosystematics its aim and scope, biosystematic categories, Phenotypic plasticity, Phylogeny terms and concept (Mono, Para, Polyphyly)	8hrs	Tutorial
	Turresons work, Taxonomic Hierarchy, Species concept, Numerical Taxonomy, Sero Taxonomy, and Molecular systematics.	8hrs	ICT

UNIT IV (13 hours)			
the following f Magnoliaceae,	and Economic importance of amilies: Polypetalae - Portulacaceae, Oxalidaceae, abretaceae, Lythraceae	6hrs	Lecture
Oleaceae, Asc Bignoniaceae, Verbenaceae.	lepiadaceae, Pedaliaceae, Acanthaceae,	7hrs	Lecture
UNIT V(14 hours)			
the following f	and economic importance of amilies : Monochlamydeae – ,Amaranthaceae.	7hrs	Lecture
Monocotylede and Cyperace	on - Liliaceae, Commelinaceae, eae.	7hrs	Lecture

Course	Prog	Programme Outcomes (Pos)							ramme	Speci	fic Out	comes	(PSOs	5)	Mean
Outco mes															scores
(Cos)															of Cos
	РО	РО	PO	РО	PO	РО	РО	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	4	3	4	3	4	3	3	4	4	4	3	3	3	3	3.4
CO2	3	3	3	2	4	3	3	4	4	4	3	3	3	3	3.2
CO3	3	3	3	3	3	3	3	4	4	4	3	4	3	3	3.2
CO4	4	3	3	3	4	3	3	3	4	4	3	2	3	3	3.2
CO5	4	3	3	3	3	4	3	4	4	4	4	4	4	3	3.5
						•			•				•		

Result: The Score for this Course is 3.3 (High relationship)

Course Designer Mrs.R.Latha,

Programme :Botany Semester : IV Sub. Code : FC2 Core Paper VIII Hours : 5 Hrs/wk 75 Hrs/sem Credits : 4

#### TITLE OF THE PAPER: PLANT PHYSIOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	4	-		1	
PREAMBLE:	:					
			gical processes a			
				growth and development.		
				primary and secondary meta	bolites.	
			respiratory activi			
$\Box$ To know	w the me	thods used for	or the bio-product	tion of plant secondary metab	olites.	
		COUR	SE OUTCOME		Unit	Hrs P/S
			ents will be able t			
UNIT 1 CO1:	impart	an insight in	to the various wat	er relationship in plants.	1	15
			er levels of learni f nitrogen fixatior	ing about the mineral in plants.	2	15
UNIT 3 CO3: various metabo			1 5	withetic process in plants and	3	15
<b>UNIT 4 CO4</b> : in plants	Acquire	basic knowl	edge about growt	h and respiratory pathways	4	15
UNIT 5 CO5:	Gain kno	wledge in b	iochemical activit	ties of plants.	5	15
SYLLABUS					1	1
UNIT I:						
Water re	lations of	plants : Phy	sicochemical pro	perties of water, chemical pot	ential a	nd

Water relations of plants : Physicochemical properties of water, chemical potential and water potential in the plant, bulk movement of water, soil-plant atmosphere continuum.

Transpiration : Types, cuticular, lenticular and stomatal. Factors affecting transpiration. Stomatal physiology and regulation. Ascent of Sap.

# UNIT II:

Mineral nutrition : Macronutrients and Micronutrients. Modern concepts of mineral salt absorption and translocation. Active and passive absorption of minerals. Mechanism of nitrogen fixation, Physiological role, Nitrogen uptake and assimilation.

## UNIT III:

Photosynthesis: Photophysical and photochemical phase : Light reactions, sequence of photosynthetic pathway - Electron Transport Chain, Photophosphorylation. Pathways of CO₂ fixation in C3,C4-(NAD-ME and NADP-ME) plants and CAM pathway. Factors affecting photosynthesis.

## **UNIT IV:**

Respiration: Aerobic and Anaerobic, fermentation, respiratory quotient, Glycolysis, Kreb's cycle, Oxidative phosphorylation. Factors affecting respiration. Photorespiration .HMP Pathway. Cyanide Resistant Respiration.

## UNIT V:

Plant growth regulators: Auxin ,Gibberellin, Cytokinin, Ethylene and Abscisic acid their physiological role and mode of action. Flowering: Photoperiodism -. Short day plants, Long day plants and Day neutral plants. Role of phytochrome in flowering. Seed dormancy , causes and methods of breaking dormancy .Programmed cell death -Physiological and biochemical changes. Physiological stress-Water and salt-Physiological role and adaptive mechanism.

# **REFERENCES:**

## **TEXT BOOKS:**

 Devlin, R. M. (1969). Plant Physiology. Van Nostrand, Reinhold Co., New York.
 Fang, F. K. (1982). Light Reaction Path of Photosynthesis. Vol. 35. Molecular Biology, Biochemistry and Biophysics. Springer Verlag.
 Jain, V. K. (2007). Fundamentals of Plant Physiology. S. Chand & Co., New Delhi.

# **REFERENCE BOOKS:**

1. Leopold, A. C. (1973). Plant Growth and Development. Tata McGraw Hill Publishing Co. Ltd., New Delhi.

2. Meyer, Anderson and Bonning (1965). Introduction to Plant Physiology. D. Van Nostrand.

3. Noggle, R. and Fritz, G. I. (1989). Introductory Plant Physiology. 2nd ed. Prentice Hall, New Delhi 4. Norton, G. (1978). Plant Proteins. Butterworth, London.

5 Palmer, J. M. (ed.). (1984). The Physiology and Biochemistry of Plant Respiration. Cambridge University Press,UK.

6. Salisbury, F. B. and Ross, E. (1992). Plant Physiology. Wadsworth, Belmont, California, USA.

7. Verma, S. K. (1999). Plant Physiology. S. Chand & Co., New Delhi.

wa bu co Tr Fa reg UNIT II(15 H M M tra Ac Ni UNIT III(15 Ph Li	ater relations of plants Physicochemical properties of ater, chemical potential and water potential in the plant, alk movement of water, soil-plant atmosphere ontinuum. anspiration : Types, cuticular, lenticular and stomatal. actors affecting transpiration. Stomatal physiology and gulation. Ascent of Sap.	HOURS         7         1         7         1         7         1         7         1         7         1         7         7         1         7	TEACHING         Lecture         ICT         Lecture         ICT         Lecture         Lecture         Lecture
Wi wa bu co Tr Fa reg UNIT II(15 H M M tra Ac M Ni UNIT III(15 Ph Li	ater relations of plants Physicochemical properties of ater, chemical potential and water potential in the plant, alk movement of water, soil-plant atmosphere ontinuum. anspiration : Types, cuticular, lenticular and stomatal. actors affecting transpiration. Stomatal physiology and gulation. Ascent of Sap. hours) ineral nutrition : Macronutrients and Micronutrients. odern concepts of mineral salt absorption and anslocation. ctive and passive absorption of minerals. echanism of nitrogen fixation, Physiological role,	1 7 7 1	ICT Lecture Lecture ICT
wa bu co Tr Fa reg UNIT II(15 H M M tra Ac Ni UNIT III(15 Ph Li	ater, chemical potential and water potential in the plant, ilk movement of water, soil-plant atmosphere intinuum. anspiration : Types, cuticular, lenticular and stomatal. actors affecting transpiration. Stomatal physiology and gulation. Ascent of Sap. hours) ineral nutrition : Macronutrients and Micronutrients. odern concepts of mineral salt absorption and anslocation. ctive and passive absorption of minerals. echanism of nitrogen fixation, Physiological role,	1 7 7 1	ICT Lecture Lecture ICT
Fa reg UNIT II(15 H M M tra Ac M Ni UNIT III(15 Ph Li	actors affecting transpiration. Stomatal physiology and gulation. Ascent of Sap. hours) ineral nutrition : Macronutrients and Micronutrients. odern concepts of mineral salt absorption and anslocation. ctive and passive absorption of minerals. echanism of nitrogen fixation, Physiological role,	7 7 1	Lecture Lecture ICT
reg UNIT II(15 H M M tra Ac Ni UNIT III(15 Ph Li	gulation. Ascent of Sap. hours) ineral nutrition : Macronutrients and Micronutrients. odern concepts of mineral salt absorption and anslocation. ctive and passive absorption of minerals. fechanism of nitrogen fixation, Physiological role,	7	Lecture ICT
M M tra Ac M Ni UNIT III(15 Ph Li	ineral nutrition : Macronutrients and Micronutrients. odern concepts of mineral salt absorption and anslocation. ctive and passive absorption of minerals. rechanism of nitrogen fixation, Physiological role,	1	ICT
Mitra Acc Mi Ni UNIT III(15 Ph Li	odern concepts of mineral salt absorption and anslocation. ctive and passive absorption of minerals. echanism of nitrogen fixation, Physiological role,	1	ICT
M Ni UNIT III(15 Ph Li	echanism of nitrogen fixation, Physiological role,		
Ni UNIT III(15 Ph Li		7	Lecture
Ph Li			
Li	hours)	l	ł
L1	notosynthesis: Photophysical and photochemical phase : ght reactions, sequence of photosynthetic pathway - ectron Transport Chain, photophosphorylation	7	Lecture
	Pathways of $CO_2$ fixation in C3,C4-(NAD-ME and ADP-ME) plants and Factors affecting photosynthesis.	7	Lecture
CA	AM pathway.	1	ICT
UNIT IV(15	hours)	·	•
	espiration: Aerobic and Anaerobic, fermentation, spiratory quotient,	7	Lecture
	lycolysis, Kreb's cycle, Oxidative phosphorylation. actors affecting respiration. Photorespiration.	7	Lecture
	MP Pathway. Cyanide Resistant Respiration.	1	ICT

Plant growth regulators: Auxin ,Gibberellin, Cytokinin, Ethylene and Abscisic acid their physiological role and mode of action.	7	Lecture
Flowering: Photoperiodism Short day plants, Long day plants and Day neutral plants.	1	ICT
Role of phytochrome in flowering. Seed dormancy causes and methods of breaking dormancy .Programmed cell death -Physiological and biochemical changes. Physiological stress-Water and salt-Physiological role and adaptive mechanism.	7	Lecture

Course Outco mes	Pro	gramn	ne Ou	tcome	es (Po	s)		Programme Specific Outcomes (PSOs)						5)	Mean scores of Cos
(Cos)	Р	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	0	2	3	4	5	6	7	01	02	03	04	05	06	07	
	1														
CO1	3	3	2	3	4	2	5	2	2	4	3	4	4	4	3.21
CO2	3	3	4	4	4	3	5	4	4	2	3	3	2	2	3.28
CO3	3	3	3	4	4	4	4	3	3	3	4	3	3	3	3.35
CO4	2	2	3	3	3	3	3	5	5	4	4	2	2	3	3.14
CO5	3	3	3	3	3	3	4	5	3	4	4	4	4	3	3.5
											3.29				

Result: The Score for this Course is 3.29 (High Relationship)

Course Designer : Dr.S.M.Jenette Nithia

### **Programme : M.Sc.**

Semester : III

**Core Paper IX** 

Sub. Code : FC3

Hours : 5 hrs/wk 75 hrs/sem

Credits : 4

TITLE OF THE PAPER: BIOINSTRUMENTATION AND BIOSTATISTICS

Pedagogy	Но	Le	Peer	GD/VID	ICT
	urs	ctu	Teachin	EOS/TU	
		re	g	TORIA	
				L	
	5		1	1	1
		2			

# **PREAMBLE:**

- To enable the students to uunderstand the working principles and applications of instruments used in various disciplines of biological sciences.
- □ To study the concepts of various spectroscopic techniques and its instrumentation.
- To learn the basic concepts of separation techniques and its applications.
- To acquire basic information regarding radiochemical analysis along with industrial analyzers.
- $\hfill\square$  To understand the scope & importance of Biostatistics.

COURSE OUTCOME	Unit	Hrs
At the end of the Semester, the Students will be		P/S
,		175
able to		
UNIT 1 CO1: Understand and analyze the	1	15
principle, operation and applications of	_	
various instrumentation techniques used in		
the field of biological research.		
UNIT 2 CO2: Differentiate the principle,	2	15
instrumentation and working mechanism of		
chromatographic and spectroscopic		
instruments.		
<b>UNIT 3 CO3</b> : Elucidate the various separation	3	15
techniques, its instrumentation and applications		
in biology.		
UNIT 4 CO4: Describe the principle and	4	15
working mechanism of various radiation		
detectors and gas analyzers.		
UNIT 5 CO5: Apply statistical tools and	5	15
techniques to biological data for testing		
different hypothesis in their research works		
and understand the technical experimental		
statistics.		
SYLLABUS		
Unit I:		
Microscopy- Resolving power, typ	es Fl	ectron
microscope : TEM, SEM, Phase contrast		
pH metry- pH concept, Conduc		meter
standardization .Buffers –		cetate,
Phosphate, Tris, Glycine, pKa value. Came	era Luc	ıda.
Unit II:		

Centrifugation: Principle, types of rotors, types of centrifuges – Clinical, refrigerated and Ultra centrifuge and their applications. Chromatography: Principles (absorption ,partition ,ion exchange ,affinity), components, methodology and applications of TLC,GC, HPLC.

## Unit III:

Spectroscopy: Principles, components and working mechanism of Colorimetry, Spectrophometer,UV visible and Infra Red (IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and atomic absorption spectroscopy (AAS).

## Unit IV:

Electrophoresis: Principles, procedure and applications: AGE, SDS- PAGE, 2 D Electrophoresis , isoelectrofocusing. Radiometry: Isotopes, measurement of radioactivity: Radioactive counters (Scintillation counter, GM counter), Autoradiography and its applications.

# Unit V:

Biostatistics : Scope .Collection , classification, tabulation and presentation of data –Diagramatic and Graphical, measures of central tendency :mean, median and mode. Standard deviation ,standard error probability analysis , test of significance : 'T' test , Chi-square test . permutation and combination , correlation and Regression analysis, ANOVA,Usage of SPSS.

# **REFERENCES:**

# **TEXT BOOKS:**

1. N. Gurumani 2010. Research Methodology for Biological Sciences. MJP Publishers, Chennai.

2. David T. Plummer 1988. An introduction to practical biochemistry, Tata Mc Graw Hill pub. Co. Ltd, New Delhi.

3.. J. Jeyaraman 1981. Laboratory Manual in Biochemistry. New Age International publishers, New Delhi.

4. S. Palanichamy and M. Shunmugavelu 2009. Research methods in biological sciences. Palani paramout publications, Palani.

## **REFERENCE BOOKS :**

1. Marimuthu, R. (2008). Microscopy and Microtechnique. MJP Publishers, Chennai 2. Wilson K, Walker, J. (1994). Principle and techniques of practical biochemistry,4thed) Cambridge university press, Cambridge 3. Khan, I.A., and Khannum, A., (1994).Fundamentals of Biostatistics, Vikas Pub., Hyderabad 4. Sree Ramulu, V.S., (1988). Thesis Writing, Oxford & IBH Pub., New Delhi. 5. Bryan Bergeron, M.D. (2006). Bioinformatics Computing, Prentice – Hall of India. New Delhi. 6. Stephen Misener and Stephen A. Krawetz. (2000).

Bioinfromatics-Methods and Protocols. Humana Press, Totowa, New Jersey.

7. Kothari, C.R., (1991). Research Methodology – Methods and Techniques, Wiley Eastern Ltd., New Delhi.

8. Zar, J.H. (1984). Biostatistics Analysis, Prentice Hall International, England Cliffs, New Jersey.

UNIT S	TOPIC	LECTU RE HOURS	MODE OF TEACHING		
UNIT 1	: (15 hours ) Microscopy- Resolving power, types: Electron microscope : TEM, SEM, Phase contrast microscope. Camera Lucida.	6 hours	Chalk–talk method; Use of AV aids and videos.		
	pH metry- pH concept, Conductivity meter	4 hours	Peer teaching techniques, Power Point Presentation with animations and video and		

			demonstration of
			the instruments.
	standardization of	5 hours	Use of AV aids
	Buffers – acetate,		and chalk-talk
	phosphate,		method.
	Tris,Glycine, pKa		
	value.		
UNIT II	: (15 hours )		
	Centrifugation:	6 hours	Use of
	Principle, types of		Blackboard and Use of AV aids
	rotors, types of		
	centrifuges –		
	Clinical, refrigerated		
	and Ultra centrifuge		
	and their		
	applications.		
	Chromatography:	3 hours	Peer teaching
	Principles		techniques and
	(absorption ,partition		Power Point Presentation
	,ion exchange		resentation
	,affinity),		
	Components,	6 hours	Use of AV aids,
	methodology and		use of
	applications of		Power Point Presentation with
	TLC,GC, HPLC.		videos and Peer
			teaching
			techniques
UNIT II	I: (15 hours)		
	Spectroscopy:	4 hours	Chalk-talk
	Principles,		method and discussion by
	components and		forming groups.
	L		Lionning Broups.

	working mechanism of Colorimetry, Spectrophometer-U V visible and Infra Red (IR). nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and atomic absorption spectroscopy (AAS).	5 hours 6 hours	Lecture method and use of AV aids, Peer teaching. AV aids, Video animations and Peer teaching techniques.
UNIT IV	/: (15 hours )		
	Electrophoresis: Principles, procedure and applications: AGE, SDS- PAGE.	5 hours	Lecture method and use of videos.
	2 D Electrophoresis , isoelectrofocusing	2 hours	AV aids and chalk-talk method.
	Radiometry: Isotopes, measurement of radioactivity:	5 hours	ICT enabled techniques, peer interactions

Radioactive counters (Scintillation counter, GM counter).Image: Science of a science			I	
counter, GM counter).3 hourschalk-talk technique and use of AV aids.Autoradiography and its applications.3 hourschalk-talk technique and use of AV aids.UNIT V: (15 hours )5UNIT V: (15 hours )3 hoursLecture method,Use of OHP and Peer participation through GDCollection, classification,tabulat ion and presentation of data3 hoursLecture method,Use of OHP and Peer participation through GDOf classification, add of of data2 hoursLecture method,GDmedian and mode.2 hoursLecture method,GDmedian and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursLecture method and Peer participation techniques.Test of significance : 'T' test, Chi-square test.2 hoursLecture method and problem solving methodsprobability analysis, permutation and combination2 hoursAV aids.permutation and combination2 hoursAV aids.		Radioactive counters		
counter).Image: Counter).Image: Counter).Image: Counter).Image: Counter).Autoradiography and its applications.3 hourschalk-talk technique and use of AV aids.UNIT V: (15 hours )Image: Counter).Image: Counter).Biostatistics:Scope.3 hoursLecture method,Use of OHP and Peer participation through GDCollection, classification,tabulat ion and presentation of data -Diagramatic and Graphical.Image: Counter).measures of central tendency:mean, median and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursLecture method,GDTest of significance: test.2 hoursLecture method and Peer participation techniques.Test of significance: test.2 hoursLecture method and Peer participation techniques.Test of significance: test.2 hoursLecture method and Peer participation techniques.probability analysis, permutation and combination2 hoursAV aids.permutation and combination2 hoursAV aids.		(Scintillation		
Autoradiography and its applications.3 hours hourschalk-talk technique and use of AV aids.UNIT V: (15 hours )UNIT V: (15 hours )Iceture method,Use of OHP and Peer participation through GDclassification,tabulat ion and presentation of data -Diagramatic and Graphical.3 hoursLecture method,Use of OHP and Peer participation through GDmeasures of central tendency :mean, median and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursLecture method,GDTest of significance : (T' test, Chi-square test.2 hoursLecture method and Peer participation techniques.Test of significance : (T' test, Chi-square test.2 hoursLecture method and Peer participation techniques.probability analysis, permutation and combination2 hoursAV aids.icombination2 hoursAV aids.		counter, GM		
and its applications.technique and use of AV aids.UNIT V: (15 hours )5 hourstechnique and use of AV aids.UNIT V: (15 hours )3 hoursLecture method,Use of OHP and Peer participation through GDclassification,tabulat ion and presentation of data1 hoursLecture method,Use of OHP and Peer participation through GDofdata1 hoursLecture method,OBofdata1 hoursLecture method,GDofdata1 hoursLecture method,GDmeasures of central tendency :mean, median and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursUse of AV aids and Peer participation techniques.Test of significance : test .2 hoursLecture method and Peer participation techniques.Test of significance : test .2 hoursLecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.permutation and combination2 hoursAV aids.		counter).		
Indents appreations.of AV aids.UNIT V: (15 hours )Biostatistics:Scope. Collection, elassification,tabulat ion and presentation of data Graphical.3 hours I hours Participation through GDMeasures of central tendency :mean, median and mode.2 hours I hoursLecture method,Use of OHP and Peer participation through GDMeasures of central tendency :mean, median and mode.2 hours I hoursLecture method,GDStandard deviation ,standard error2 hours I hoursUse of AV aids and Peer participation techniques.Test of significance : test .2 hours I hoursLecture method and Peer participation techniques.Test of significance : test .2 hours I hoursLecture method and Peer participation techniques.Test of significance : test .2 hours I hoursLecture method and problem solving methodsprobability analysis, permutation and combination2 hoursAV aids.icorrelation and2 hoursAV aids.		Autoradiography	3 hours	
Biostatistics:Scope. Collection, classification,tabulat ion and presentation of Graphical.3 hoursLecture method,Use of OHP and Peer participation through GDmeasures of central tendency :mean, median and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursUse of AV aids and Peer participation techniques.Test of significance : test .2 hoursLecture method,GDTotagramatic and combination2 hoursLecture method,GDStandard deviation ,standard error2 hoursLecture method,GDTest of significance : test .2 hoursLecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and2 hoursAV aids.		and its applications.		-
Biostatistics:Scope. Collection, classification,tabulat ion and presentation of Graphical.3 hoursLecture method,Use of OHP and Peer participation through GDmeasures of central tendency :mean, median and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursUse of AV aids and Peer participation techniques.Test of significance : test .2 hoursLecture method,GDTotagramatic and combination2 hoursLecture method,GDStandard deviation ,standard error2 hoursLecture method,GDTest of significance : test .2 hoursLecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and2 hoursAV aids.				
Collection, classification,tabulat ion and presentation of data -Diagramatic and Graphical.method,Use of OHP and Peer participation through GDmeasures of central tendency :mean, median and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursUse of AV aids and Peer participation techniques.Test of significance : 'T' test , Chi-square test .2 hoursLecture method and Peer participation techniques.probability analysis , permutation and combination2 hoursAV aids.correlation and2 hoursAV aids.	UNIT V	(15 hours )		
Concertion, classification, tabulat ion and presentation of -Diagramatic and Graphical.OHP and Peer participation through GDmeasures of central tendency :mean, median and mode.2 hours rest of significance : 2 hoursLecture method,GDStandard deviation ,standard error2 hours rest of significance : rT' test , Chi-square test .2 hours rest of significance : rest of si		Biostatistics:Scope.	3 hours	Lecture
classification,tabulat ion and presentation of data -Diagramatic and Graphical.participation through GDmeasures of central tendency :mean, median and mode.2 hours test of significance : Test of significance : T' test , Chi-square test .2 hours test of significance : test .Lecture method,GDTest of significance : test .2 hours test .Lecture method and Peer participation techniques.Test of significance : test .2 hours test .Lecture method and Peer participation techniques.Test of significance : test .2 hours test .Lecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and correlation and correlation and2 hoursAV aids.		Collection,		,
ion and presentation of -Diagramatic and Graphical.through GDmeasures of central tendency :mean, median and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursUse of AV aids and Peer participation techniques.Test of significance : 'T' test , Chi-square test .2 hoursLecture method and Peer participation techniques.probability analysis , permutation and combination2 hoursAV aids.correlation and combination2 hoursAV aids.correlation and combination2 hoursAV aids.		classification,tabulat		
-Diagramaticand Graphical.Lecture method,GDmeasures of central tendency :mean, median and mode.2 hoursLecture method,GDStandard deviation ,standard error2 hoursUse of AV aids and Peer participation techniques.Test of significance : 'T' test , Chi-square test .2 hoursLecture method and Peer participation techniques.probability analysis , permutation and combination2 hoursAV aids.correlation and2 hoursAV aids.correlation and correlation and2 hoursAV aids.		ion and presentation		1 1
Graphical.Image: Complexity of the comple		of data		
measures of central tendency :mean, median and mode.2 hours nethod,GDLecture method,GDStandard deviation ,standard error2 hoursUse of AV aids and Peer participation techniques.Test of significance : (T' test , Chi-square test .2 hoursLecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and correlation and correlation and2 hoursAV aids.		–Diagramatic and		
tendency :mean, median and mode.method,GDStandard deviation ,standard error2 hoursUse of AV aids and Peer participation techniques.Test of significance : 'T' test , Chi-square test .2 hoursLecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and correlation and2 hoursAV aids.		Graphical.		
IntentionIntentionIntentionmedian and mode.Image: Standard deviation2 hoursUse of AV aidsstandard error2 hoursImage: Standard errorImage: Standard errorstandard errorImage: Standard error2 hoursImage: Standard errorTest of significance :2 hoursImage: Standard errorImage: Standard errorTest of significance :2 hoursImage: Standard errorImage: Standard error'T' test , Chi-square2 hoursImage: Standard errorImage: Standard error'T' test , Chi-square2 hoursImage: Standard errorImage: Standard error'T' test , Chi-square2 hoursAV aids.probability analysis ,2 hoursAV aids.permutation andImage: Standard errorImage: Standard errorcombinationImage: Standard errorAV aids.		measures of central	2 hours	
Standard deviation ,standard error2 hours and Peer participation techniques.Test of significance : 'T' test , Chi-square test .2 hoursLecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and correlation and2 hoursAV aids.		tendency :mean,		method,GD
,standard errorand Peer participation techniques.Test of significance : 'T' test , Chi-square test .2 hours Lecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and correlation and2 hoursAV aids.		median and mode.		
,standard errorparticipation techniques.Test of significance : 'T' test , Chi-square test .2 hoursLecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and correlation and2 hoursAV aids.		Standard deviation	2 hours	
Image: Construct of significance : 'T' test , Chi-square test .2 hours techniques.Lecture method and problem solving methodsprobability analysis , permutation and combination2 hoursAV aids.correlation and correlation and2 hoursAV aids.		,standard error		
Test of significance : 'T' test , Chi-square test .2 hours hours and problem solving methodsprobability analysis , permutation and combination2 hours AV aids.correlation and correlation and2 hoursAV aids.				
If test, emisquare test.solving methodsprobability analysis, permutation and combination2 hoursAV aids.Correlation and correlation and2 hoursAV aids.		Test of significance :	2 hours	-
test .rest .AV aids.probability analysis , permutation and combination2 hoursAV aids.combination2 hoursAV aids.		'T' test, Chi-square		-
permutation and combination correlation and 2 hours AV aids.		test .		solving methods
combination       correlation and       2 hours       AV aids.		probability analysis,	2 hours	AV aids.
correlation and     2 hours     AV aids.		permutation and		
		combination		
Regression analysis		correlation and	2 hours	AV aids.
		Regression analysis		

	AN SPS:	NOVA, S.	Usage,	e of	2 ho	ours	grou	p techn	hrough peer p techniques AV aids.						
Course	Prog	ramm	e Outo	comes	(Pos)	)		Progra	amme S	pecific	Outcon	nes (PSO	Os)		Mean
Outco															scores
mes															of Cos
(Cos)	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	4	3	3	4	4	3	4	3	4	4	3	3	3	4	3.50
CO2	3	4	4	4	4	4	3	3	3	4	4	4	3	3	3.57
CO3	3	4	3	3	4	4	3	3	3	4	3	3	3	3	3.28
CO4	3	4	3	3	3	4	4	3	3	4	3	3	3	3	3.28
CO5	4	3	4	3	3	3	4	3	2	2	3	4	2	3	3.07
		Mean Overall Score													3.34

Result: The Score for this Course is 3.34 (High relationship)

Course Designer: Mrs.M.P. Sivasankari.

Programme : M.Sc Botany Semester : III Sub. Code : FL3 Practical Paper III Hours : 8 Hrs/wk 120 Hrs /sem Credits : 4

# TITLE OF THE PAPER: PRACTICAL PAPER - III

Pedagogy	Hours	Lab	Peer	GD/VIDOES/TUTORIAL	ICT							
		experimentation	Teaching									
	8	8	-	-	-							
PREAMBLE		<b></b>										
$\Box$ To Ac	equire ski	ills in carrying out	experiments rela	ated to taxonomy, biochemistr	ry and biophysics							
and bio	oinstrume	entation and biosta	tistics.									
□ To provide hands on experience in plant identification techniques.												
$\Box$ To lear	m the ana	lytical techniques	used in the study	y of biomolecules and experi	mentally study							
the enz	zyme acti	vities.										
🗆 To ena	□ To enable the students to gain a comprehensive understanding of various concepts used in plant											
physio	logical sy	ystems through sim	ple experiments	3.								
To trai	in the stu	idents to gain kno	wledge about th	he principles of instrumentat	tion in biological							
researc	ch.											
		С	OURSE OUTC	COME								
At the end of t	the Seme	ster, the Students v										
		,		struct and use keys for identif	fication of the							
respective plan		-	1	ý								
CO2: identify	commor	plant families bas	ed on the morph	ological features.								
				erstanding its principle and a	oply statistical							
tools in their r	esearch.		-									
CO4: analyze	biochem	ical and physiolog	ical phenomenor	n and carry out experiments i	n biological							
research pertai	ining to p	hysiology.										
CO5:impart sl	kill to stu	dents to be able to	work in R & D	and quality control laborator	ies and to to use							
modern instru	mentation	n and classical tech	miques.									
Syllabus:												

- 1. Morphology of flowering plants: General description and traits of taxonomic interest.
- 2. Studying phenology of selected tree species in the campus.
- 3.. Herbarium preparation of plants -
- 4. Analysis of plant characters- polypetalae- gamopetalae, monochlamydeae and monocot
- 5. Field Trip.
- 6. Dichotomous Key
- 7. Verification of Beer's Law.
- 8. Chromatography-TLC
- 9. Absorption Spectrum of Chlorophyll pigment.
- 10. Preparation of buffer Acetate buffer and Phosphate buffer.
- 11. pH Titration curve.
- 12. Estimation of proline and phenol in plant tissues under different environmental and physiological stress.
- 13. Chlorophyll Estimation.
- 14. Isolation of chloroplast and Estimation of Photosystem II activity.
- 15. Measurement of Water Potential.
- 16. Problems related to chi square ,correlation, regression and ANOVA.

Course	Prog	ramm	e Out	come	s (Pos	)		Prog	ramme	e Speci	fic Out	comes	(PSOs	5)	Mean
Outco															scores
mes															of Cos
(Cos)	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	02	03	04	05	06	07	
CO1	3	3	4	2	3	4	5	3	3	4	4	4	3	2	3.4
CO2	4	3	4	3	5	5	3	3	4	3	4	4	4	3	3.7
CO3	4	3	4	4	3	4	3	3	3	3	3	3	3	3	3.3
CO4	2 4 4 3 3 3 3						3	4	4	4	4	4	4	4	3.6
CO5	3	3	3	4	3	3	3	2	2	3	3	3	2	3	2.9

Mean Overall Score

Result: The Score for this Course is 3.38 (High Relationship)

Course Designer: Mrs.M.P.Sivasankari

Programme : M.ScElective Paper IIISemester : IIIHours : 5 Hrs/wk 75 Hrs /semSub. Code : EFCCredits :5

## TITLE OF THE PAPER:_PLANT TISSUE CULTURE

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	5	3	-	-	2

### **PREAMBLE:**

- 1. To acquaint students with the principles, technical requirement, scientific and commercial applications of plant tissue and cell culture.
- 2. To expose students to supporting methodologies of plant tissue and cell culture, micropropagation techniques,
- 3. To introduce students the applications of tissue and cell culture to plant improvement.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to	1	15
<b>UNIT 1 CO1</b> : Understand the basic knowledge about tissue culture techniques,		15
medium, sterilization and able to analyse the requisite for tissue culture Laboratory		
organization.		
<b>UNIT 2 CO2</b> : isolate single cells from plant tissue and and gain knowledge to grow	2	15
single cells by various techniques based on the requirement.		
<b>UNIT 3 CO3</b> : Understand the fundamentals of totipotency plant tissue culture	3	15
techniques and apply the technique of micropropagation such as somatic		
embryogenesis, organogenesis and the production of synthetic seeds and its		
significance		
UNIT 4 CO4: gain theoretical and practical knowledge about invitro production of	4	15
plants		
UNIT 5 CO5: design and develop the protocols for enhanced production of	5	15
bioactive compounds in cell suspension culture		

# SYLLABUS

# UNIT I:

Introduction: History and Scope .Concepts of basic techniques in plant tissue culture: Laboratory requirements and organization, Sterilization methods -filter, heat and chemical. Media preparationinorganic nutrients, organic supplements, carbon source, gelling agents growth regulators Composition of important culture media (MS, Whites and Gamborg's media).

# UNIT II:

Cell, tissue and organ culture : Isolation of single cells, selection and types of cells, tissue explants and organs for culture - Paper raft nurse technique, Plating method, Microchamber techniques, cell suspension cultures : batch, continuous, chemostat culture . Synchronization of suspension culture, cellular totipotency, Totipotency of epidermal and crown gall cells.

# UNIT III

Micropropagation - Clonal propagation of elite germplasm, organogenesis -formation of shoots and root Role of growth regulators and other factors, somaclonal and gametoclonal variations. Somatic embryogenesis – Process of somatic embryogenesis, structure, factors affecting embryogenesis, synthetic seeds

# UNIT IV:

Haploid production : Androgenesis, gynogenesis . Techniques of anther culture , diploidisation , factorsinfluencing androgenesis, utilization of haploids in plant breeding. In vitro pollination - ovule and ovaryculture, importance, techniques overcoming incompatibility barriers, embryo rescue. Protoplast culture:Isolation of protoplasts - mechanical and enzymatic, culture of protoplasts. Protoplast fusion: Methods and selection of somatic hybrids, cybrids.

# UNIT V:

Classification of secondary metabolites, in vitro production of secondary metabolites. Immobilized cellcultures and biotransformation, elicitors and hairy root culture. Cryopreservation and gene bank : Modes of preservation, application and limitations. Application of tissue culture in forestry, Horticulture, Agriculture.

# TEXT BOOKS:.

1.Kalyan Kumar, De. (1992). An Introduction to Plant Tissue Culture. New Central Book Agency, Calcutta.

2.Ramawat, K. G. (2000). Plant Biotechnology. S. Chand & Co., New Delhi.

3. Razdan, M. K. (2004). Introduction to Plant Tissue Culture. 2nd ed. Oxford & IBH Publishing Co. Pvt. Ltd.,

# **REFERENCE BOOKS:**

1. Reinert, J. and Bajaj, Y. P. S. (1977). Plant Cell Tissue and Organ Culture: A

2Laboratory Manual, Narosa Publishing House, New Delhi.

3. Vasil, I. K. (1986). Cell Culture and somatic Cell Genetics of Plants. 3 Volumes. Academic Press Inc.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1(15 hour	s)		
	History and Scope .Concepts of basic	3	Chalk and talk
	techniques in plant tissue culture		
	Sterilization methods -filter, heat and	4	ICT
	chemical. Media preparation		
	inorganic nutrients, organic supplements,		
	carbon source, gelling agents growth regulators	4	Chalk and talk
	Composition of important culture media	4	Peer discussion
	(MS, Whites and Gamborg's media).		Chalk and talk
UNIT II(15 hou	rs)		
	Isolation of single cells, selection and types	4	Chalk and talk
	of cells, tissue explants and organs for		
	culture -		
	Paper raft nurse technique, Plating method,	3	ICT
	Microchamber techniques, cell	2	Challs and talls
	suspension cultures : batch, continuous, chemostat culture.	2	Chalk and talk
	Synchronization of suspension culture	2	Chalk and talk
	cellular totipotency, Totipotency of	2	
	epidermal and crown gall cells.	4	Chalk and talk
UNIT III(15 ho			
	Clonal propagation of elite germplasm,	2	Chalk and talk
	organogenesis -formation of shoots and root	2	
	Role of growth regulators and other factors	<i>∠</i>	
	somaclonal and gametoclonal variations	4	ICT
	Somatic embryogenesis – Process of somatic	4	Chalk and talk
	embryogenesis, structure		ICT
	factors affecting embryogenesis, synthetic	3	Chalk and talk
	seeds		
UNIT IV(15 ho			

			anth influ	er cul iencir	ture,	diploi rogen	disati esis,	on , fa	nniques ctors tion of		4		ICT Chalk and talk			
			imp	ortanc	e, tecl	nniqu	es ov	ercomi	varycul ing rescue.		4		Cha	lk and	d talk	
Protoplast culture:Isolation of protoplasts - mechanical and enzymatic, culture of protoplasts. Protoplast fusion: Methods and selection of somatic hybrids, cybrids											3		Cha ICT		l talk	
UNIT V			<u>  Cybi</u>	145							+					
Classification of secondary metabolites, in 4 vitro production of secondary metabolites													Cha	lk and	d talk	
			biot	ransfo	zed ce ormatio	on, eli	icitors				3			Chalk and talk		
					root			1 1			3		Cha	lk and	d talk	
									: Mode mitatio		2		Cha	Chalk and talk		
					on of t are, Ag			re in fo	orestry,		3		Chalk and talk			
Course Outco	Prog	gramn	ne Ou	tcome	es (Pos	5)		Prog	ramme	e Speci	cific Outcomes (PSOs)					
mes (Cos)	PO 1	PO 2	PO 3	PO 4	PO5	PO 6	PO 7	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PS O7	Mean scores of Cos	
CO1	3	4	4	3	3	3	4	3	3	3	3	3	3	4	3.28	
CO2	3	3	4	4	3	3	3	3	3	3	3	3	4	3	3.21	
CO3	3	4	3	3 3 4 3 3 3 3 3							3	3	4	4	3.35	
CO4	3	3	3	3 3 4 3 3 3 3 3								3	3	2	3.0	
CO5	3	3	4	3	4	3	3	3	3	3	3	3	4	3	3.21	
	1	1	ı	1	1	1	1	1	Me	an Ov	erall Sc	ore	<u> </u>	1	3.21	

Result: The Score for this Course is 3.21(High Relationship)

Course Designer: Dr.G.Mangai kasthuri

Programme : M.Sc Semester : III Sub. Code : NMPF Non major Elective Paper Hours : 2 Hrs/wk 30Hrs /sem Credits : 2

## TITLE OF THE PAPER:_GARDENING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT						
	2	1	-	-	1						
PREAMBLE:											
$\Box$ To provide	e practical	training as	well as theoretica	l knowledge about garden and	l mainte	enance.					
$\Box$ To improv	e skills fo	or growing fr	esh vegetables w	vithout use of any pesticide.							
□ To create awareness about kitchen gardening.											
Students are introduced to the methods of plant propagation ,preparation of soil ,landscape construction											
	COURSE OUTCOME										
At the end of t	he Semes	ter, the Stud	ents will be able t	0							
	UNIT 1 CO1: understand the concept of gardening ,knowledge ,different feature and techniques of gardening (types ,methods and tools )										
UNIT 2 CO2: work-related sl	1	the gardenin	g skills , as well a	as personal, social and	2	6					
UNIT 3 CO3: appreciates the	3	6									
	UNIT 4 CO4: develop a keen understanding of home garden, growing fresh a vegetables without use of any pesticide.										

UNIT 5 CO5: appreciate the importance of embarking on employment, create 5 awareness to the society about the role of organic farming

# 6

#### **SYLLABUS UNIT I:**

Introduction - History of gardening . Types of gardens :Outdoor gardening - design and preparation of garden - Containers, suitable soil, transplanting, potting, repotting, setting out. Irrigation – Surface, Drip.

#### **UNIT II:**

Ornamental Gardening : garden components - Lawns, Topiary, Rockery, Hedges. Pruning objectives and types of pruning (pinching, heading back) - thinning out. Indoor gardening hanging basket terrarium, bonsai

## **UNIT III:**

Propagation – by seeds (brief), Vegetative propagation : Cuttage – root, stem, leaf. Layerage – Simple, Compound, and Air layering. Budding - T and Patch budding. Grafting - Tongue, Cleft grafting

## **UNIT IV:**

Terrace Garden – Importance, Containers commonly used, suitable plants. Kitchen gardening importance, layout, suitable plants and cropping patterns.

## **UNIT V:**

Manures - Types, FYM, Panchakavya, Fish Gunabajalam, Management of Garden waste -Composting, importance. Women Enterpreneurship and value addition.

#### **TEXT BOOKS:**

1. Manibhushan Rao K. (1991) Text book of Horticulture. University of Madras, Madras.

2. Kumar Dr. N. (2010) Introduction to Horticulture. New Delhi

#### **REFERENCE BOOKS:**

1. Sheela V. L. (1959) Horticulture .College of Agriculture, Thiruvananthapuram

2. Hudson T. Hartmann, Dale E. Kester, Fred T. Davies, Jr, Robert L. Geneve (2002) Plant Propagation : Principles and Practices.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I(6hou	urs)		
	History of gardening Types of gardens :Outdoor gardening – design and preparation of garden - Containers	3	Chalk and talk

	suitable soil, transplanting, potting,	2	ICT
	repotting, setting out		
	Irrigation – Surface, Drip.	1	Chalk and talk
UNIT II(6ho	urs)		
	Ornamental Gardening : garden	3	Chalk and talk
	components – Lawns, Topiary,		ICT
	Rockery, Hedges		
	Pruning –objectives and types of	2	Chalk and talk
	pruning (pinching, heading back) –		
	thinning out.		
	Indoor gardening – hanging basket	1	Chalk and talk
	terrarium, bonsai		
UNIT III(6hc	ours)		
		1	1
	Propagation – by seeds (brief),	2	ICT
	Vegetative propagation : Cuttage –		
	root, stem, leaf.		
	Layerage - Simple, Compound, and Air	2	ICT
	layering.		
	Budding - T and Patch budding.	2	Chalk and talk
	Grafting – Tongue, Cleft grafting		ICT
UNIT IV(6ho	purs)		
	Terrace Garden – Importance,	2	Chalk and talk
	Containers commonly used, suitable		
	plants		
	Kitchen gardening :importance,	4	
	layout, suitable plants and cropping		ICT
	patterns		
UNIT V(6ho	•	1	1
	Types, FYM, Panchakavya, Fish	1	Chalk and talk
	Gunabajalam		
	Management of Garden waste -	2	Chalk and talk
	Composting, importance.		
	Women Enterpreneurship and value	3	ICT
	addition		

Course	Programme Outcomes (Pos)						Prog	Programme Specific Outcomes (PSOs)					5)	Mean	
Outco													scores		
mes													of Cos		
(Cos)	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	1	2	3	4	5	6	7	01	02	03	04	05	06	07	
CO1	3	3	3	2	3	3	4	3	3	3	3	2	3	4	3.0
CO2	3	3	3	4	3	4	3	4	3	3	3	3	3	4	3.28
CO3	3	3	3	3	3	2	3	4	3	3	3	4	3	3	3.07
CO4	4	3	3	3	3	3	3	3	3	3	4	3	3	4	3.21
CO5	3	3	3	3	3	3	3	3	3	3	3	3	4	4	3.14
	Mean Overall Score									3.14					

Result: The Score for this Course is 3.14 (High relationship)

Course Designer: Dr.G.Mangai kasthuri

Programme : M.Sc Botany Semester : IV Sub. Code : FD1 Core Paper X Hours : 6 Hrs/wk 90Hrs/sem Credits :5

# TITLE OF THE PAPER: PLANT BIOTECHNOLOGY AND BIOINFORMATICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	6	4	-	-	2				
PREAMBLE:									
biotech D To fam: transfor	nology at iliarize th mation.	molecular l e students o	evel. n various differen	plinary and multidisciplinary t types of vectors used in ger	netic engineering and				
□ Unders	□ Understanding the molecular techniques involved in structure and functions of								
nano-bi	omolecul	les in eukary	votes.						

- □ Intended to provide an overview and current developments in different areas of gene cloning in eukaryotes.
- $\hfill\square$  To discuss the application of various bioinformatics tool.

COURSE OUTCOME At the end of the Semester, the Students will be able to	Unit	Hrs P/S
UNIT 1 CO1: understand different tools in biotechnology.	1	18
<b>UNIT 2 CO2</b> : know various types of vector used during gene transfer in plants.	2	18
<b>UNIT 3 CO3</b> : Understand the processes involved in plant genome organization.	3	18
UNIT 4 CO4: Understand Gene cloning in eukaryotes and cloning strategies .	4	18
<b>UNIT 5 CO5</b> : Understand and explain about databases and bioinformatics tools.	5	18

#### SYLLABUS UNIT I:

Biotechnology : Interdisciplinary and multidisciplinary approach. Tools of Genetic Engineering- restriction enzymes – types – exonuclease and endonuclease – S1 nuclease, ligase, alkaline phosphatase, reverse transcriptase, DNA polymerase, T4 kinase, terminal transferase, adaptors and linkers.

## UNIT II:

Vectors : plasmid – types, properties, uses of plasmids, pBR322, PUC vectors, organization of Ti plasmid in Agrobacterium tumifaciens, Ti plasmid mediated gene transfer, bacteriophage vector-phage insertion vector, replacement vector (EMBL3) M13, cosmids, phagemids, BAC, YAC, CaMV, shuttle and expression vectors.

# UNIT III:

Gene cloning in eukaryotes –Gene transfer mechanism : particle bombardment, liposome mediated gene transfer, electroporation, microinjection.Nucleotide sequencing : Maxam Gilbert and Sanger method. Cloning strategies: Basic methods , rDNA technology , Genomic and cDNA library, transfer of recombinant DNA into bacterial cell. Hybridization techniques: PCR, RAPD,RFLP. Blotting techniques. Southern, Northern and Western - rocedure and applications.

# UNIT IV:

Plant genome organization: Structural features of plant genome, organisation of chloroplast genome, mitochondrial genome, heat shock proteins, cytoplasmic male sterility, regulation of gene expression in plant development, reporter gene, selectable markers.

#### UNIT V:

Introduction to bioinformatics: Databases and bioinformatic tools .Classification of

biological data bases: Nucleic acid sequence databases: GeneBank, EMBL. Protein sequence databases: SWISS-PROT, PDB. Genome Databases at NCBI. Sequence analysis: Basic concepts of sequence similarity, identity and homology. Sequence-based Database Searches: BLAST and FASTA algorithms. Pairwise and Multiple sequence alignments- Applications. Bibliographic data bases: PubMed, Medline.

#### REFERENCES: PLANT BIOTECHNOLOGY TEXT BOOKS:

- 1. Robert F Weaver (2002). Molecular biology (II Edn). McGraw Hill.
- 2. S S Bhojwani, M K Razdan (1996). Plant tissue culture: Theory and Practice. Elsevier.

#### **REFERENCE BOOKS:**

- 1. William J Thieman, Michael A Palladino (2009). *Introduction to biotechnology* (II Edn). Pearson.
- 2. T A Brown (2002). Genomes (II Edn). Bios.
- 3. R A Dixon, R A Gonzales (2004). *Plant cell culture, a practical approach* (II Edn). Oxford University Press.
- 4. T A Brown (1995). Gene cloning: an introduction (III Edn). Stanley Thomas (Publishers) Ltd.
- 5. S B Primrose (1999). Molecular biotechnology (II Edn). Panima Publishing Corporation.
- 6. Bernard R Glick, Jack J Pasternak, Cheryl L Pattein (2010). *Molecular biotechnology, principles and applications of recombinant DNA*. ASM press.

# **BIOINFORMATICS:**

#### **TEXT BOOKS:**

- 1. Introduction to Bioinformatics T.K. Attwood, D.J.P. Smith and S. Phukan, Pearson Education
- 2. Trends in Bioinformatics P. Shanmughavel, Scientific Book Center.

#### **REFERENCE BOOKS:**

- 1. David W Mount (2001). *Bioinformatics: Sequence and genome analysis*. CBS publishers & Distributors.
- 2. Paul G Higgs, Teresa K Attwood (2005). *Bioinformatics and molecular evolution*. Blackwell Publishing
- 3. C W Sensen (2002). Genomics and Bioinformatics. Wiley VCH.
- 4. Orpita Bosu, Simminder Kaur Thukral (2007). *Bioinformatics: Databases tools and algorithms*.Oxford University press.
- 5. Teresa K Attwood, David J Parry-Smith, Simiron Phukan (2007). *Introduction to Bioinformatics*. Pearson Education.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I(18	3 hours)		
	Interdisciplinary and multidisciplinary approach. Tools of Genetic Engineering	6	Lecture

restriction enzymes – types – exonuclease and	8	ICT
endonuclease – S1 nuclease, ligase, alkaline phosphatase, reverse transcriptase, DNA		
polymerase, T4 kinase, terminal transferase,		
adaptors and linkers	4	Lecture
UNIT II(18 hours)		1
Vectors : plasmid – types, properties, uses of plasmids, pBR322, PUC vectors, organization of Ti plasmid in Agrobacterium tumifaciens	6	Lecture
Ti plasmid mediated gene transfer, bacteriophage vector-phage insertion vector, replacement vector (EMBL3) M13, cosmids,	6	Lecture
cosmids, phagemids, BAC, YAC, CaMV, shuttle and expression vectors.	6	Lecture
UNIT III(18 hours)		
Gene cloning in eukaryotes –Gene transfer mechanism : particle bombardment, liposome mediated gene transfer, electroporation, microinjection.Nucleotide sequencing : Maxam Gilbert and Sanger method. Cloning strategies: Basic methods,	6	Lecture
rDNA technology, Genomic and cDNA library, transfer of recombinant DNA into bacterial cell.	4	ICT
Hybridization techniques: PCR, RAPD,RFLP. Blotting techniques. Southern, Northern and Western -procedure and applications.	8	Lecture
UNIT IV(18 hours)		
Plant genome organization: Structural features of plant genome, organisation of chloroplast genome, mitochondrial genome,	8	Lecture
Heat shock proteins, cytoplasmic male sterility, regulation of gene expression in plant development,	6	Lecture
Reporter gene, selectable markers	4	Lecture
UNIT V(18 hours)		
Introduction to bioinformatics: Databases and bioinformatic tools .Classification of biological data bases: Nucleic acid sequence databases: GeneBank, EMBL	7	Lecture
GeneBank, EMBL. Protein sequence databases: SWISS-PROT, PDB. Genome Databases at	8	Lecture

NCBI. Sequence analysis: Basic concepts of sequence similarity, identity and homology.		
Sequence-based Database Searches: BLAST and FASTA algorithms. Pairwise and Multiple sequence alignments- Applications. Bibliographic data bases: PubMed, Medline.	3	ICT

Course	Programme Outcomes (Pos)						Programme Specific Outcomes (PSOs)						Mean		
Outco															scores of
mes															Cos
(Cos)	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
()	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	5	4	5	4	2	5	5	4	4	4	4	5	3	3	4.07
CO2	3	4	3	3	3	3	3	4	4	5	3	3	3	3	3.35
CO3	3	3	3	3	4	4	5	5	5	2	3	2	3	3	3.42
CO4	4	4	4	2	2	3	3	4	5	4	3	2	4	5	3.50
CO5	3	4	5	3	4	3	3	3	3	4	4	2	2	2	3.21
	Mean Overall Score									3.51					

Result: The Score for this Course is 3.51 (High Relationship)

Course Designer : Dr.S.M.Janetta Nithia

Programme : M.Sc.Botany Semester : IV Sub. Code : FD2

Core Paper XI Hours : 6 Hrs/wk 90 Hrs /sem Credits :5

## TITLE OF THE PAPER: BIOCHEMISTRY AND BIOPHYSICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/TUTORIAL	ICT				
	6	2	1	1	2				
PREAMBLE:									
□ To know	□ To know about the various kinds of bonds that hold the atoms together and identifies the five								
classes of polymeric biomolecules and their monomeric building blocks.									

- □ List and name the 20 amino acids that commonly occur in proteins and classify them. Describe the various bonds and forces that contribute to the conformation of proteins.
- $\hfill\square$  To understand the structure and functions of fats and process of metabolism.
- □ Understands how an enzyme functions as a catalyst Explain Michaelis-Menton kinetics.
- □ To analyse the principles of bioenergetics; define and explain briefly the role of entropy, and enthalpy in biochemical reactions. Define and explain gibbs free energy, standard free energy .

COURSE OUTCOME	Unit	Hrs
At the end of the Semester, the Students will be able to		P/S
<b>UNIT 1 CO1</b> : mention the five classes of polymeric biomolecules and their	1	18/S
building blocks, able to differentiate various kinds of bonds.		
<b>UNIT 2 CO2 :</b> list and name the 20 amino acids that commonly occur in proteins and	2	18/S
classify them. Describe the various bonds and forces that contribute to		
the conformation of proteins.		
<b>UNIT 3 CO3:</b> explain the structure of lipids and how they are metabolized.	3	18/S
<b>UNIT 4 CO4</b> : explain Michaelis-Menton kinetics and be able to apply the	4	18/S
Michaelis-Menton equation to calculate velocity, maximum		
velocity (Vmax) and the Michaelis-Menton constant Km.		
<b>UNIT 5 CO5</b> : define and explain briefly the role of entropy, and enthalpy in	5	18/S
biochemical reactions demonstrate knowledge and		
understanding of the molecular machinery of living cells.		
SYLLABUS		
UNIT I:		
Structure of atoms, molecules and chemical bonds. Chemistry of biological		
molecules.Carbohydrates: Classification . Structure and properties of mono, di,		
oligo and polysaccharides. Amino acids – general structure, properties and		
classification. Non protein amino acids and nonstandard amino acids. Essential and		
non essential amino acids.		
UNIT II:		
General structure of protein – classification – chemical bonds involved in protein		
structure -primary secondary, tertiary, quaternary structure Ramachandran Plot.		
UNIT III:		
Lipids : Classification, general structure and properties of acyl lipids and		
phosphates. Saturated fatty acids, unsaturated fatty acids. Biosynthesis of fatty		
acids. Phytochemical analysis. A general account of alkaloids and flavonoids.		

# UNIT IV:

Enzymes- Nomenclature, classification, mode of action, Energy kinetics-km value, coenzymes & isoenzymes.

#### UNIT V:

Bioenergetics, Energy and work. Laws of Thermodynamics. Energy transductions in biological systems. Redox potential, Redox couples, ATP bioenergetics, Order of

reactions. Photobiology: Dual nature of light, characteristics of solar radiation, solar energy - Efficiency of atoms - Absorption spectra in molecules, energy states, De- excitation.	
REFERENCES:	
BIOCHEMISTRY:	
<b>TEXT BOOKS</b> : 1.Cohn, E. E. and Stumpf, P. K. (1994). Outlines of Biochemistry. Wiley Eastern Ltd., New Delhi.	
2.Keshav Trehan (1987). Biochemistry. Wiley Eastern Ltd., New Delhi.	
REFERENCE BOOKS:	
1. Blonstein, A. B. and King, P. J. (1987). A Genetic Approach to Plant Biochemistry. Narosa, New Delhi.	
2. Brett, C. T. and Hillman, J. R. (ed.) (1985). Biochemistry of Plant Cells Walls. Cambridge University Press, UK.	
<ol> <li>Goodwin, F. W. and Mercer, F. I. (1983). Introduction to Plant Biochemistry. 2nd ed. Pergamon Press, New York.</li> </ol>	
<ul> <li>4. Lehinger, A. L. <i>et al.</i> (1993). Principles of Biochemistry. CBS Publishers, New Delhi.</li> <li>5. Stryer, L. (1995). Biochemistry. 4th ed. W. H. Freeman Co., New York.</li> </ul>	
BIOPHYSICS:	
TEXT BOOKS:	
1.Casey, E. J. (1962). Biophysics: Concepts and Mechanics. Van Nostrand Reinhold Co. and East-West Press, New Delhi.	
2. Salil Bose, S. (1982). Elementary Biophysics. Vijaya Printers, Madurai.	
REFERENCE BOOKS:	
1. Lehinger, A. L. (1971). Bioenergetics: The Molecular Basis of Biological Energy Transformation. Addison Wiley.	
2.Stryer, L. (1995). Biochemistry. 4th ed. W. H. Freeman Co., New York.	

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I (18	hours)		
	Structure of atoms, molecules and chemical bonds, Chemistry of biological molecules.	6hrs	Group discussion
	Carbohydrates: Classification . Structure and properties of mono, di, oligo and polysaccharides.	6hrs	Lecture method

Amino acids – general structure, properties and classification. Non protein amino acids and nonstandard amino acids. Essential and non essential amino acids.	6hrs	ICT
UNIT II(18 hours)		
General structure of protein – classification – chemical bonds involved in protein structure.	9hrs	ICT
primary secondary , tertiary , quaternary structure, Ramachandran Plot.	9hrs	Lecture method
UNIT III (18 hours)		
Lipids : Classification, general structure and properties of acyl lipids and phosphates.	6hrs	Tutorial
Saturated fatty acids, unsaturated fatty acids. Biosynthesis of fatty acids	6hrs	ICT
Phytochemical analysis. A general account of alkaloids and flavonoids.	6hrs	Group discussion
UNIT IV (18 hours)		
Enzymes- Nomenclature, classification.	6hrs	Lecture method
mode of action, Energy kinetics-km value,	6 hrs	ICT
coenzymes & isoenzymes.	6hrs	ICT
UNIT V (18 hours)		
Bioenergetics, Energy and work. Laws of Thermodynamics. Energy transductions in biological systems. Redox potential, Redox couples	6hrs	ICT
ATP bioenergetics, Order of reactions. Photobiology: Dual nature of light, characteristics of solar radiation, solar energy	6hrs	ICT
- Efficiency of atoms - Absorption spectra in molecules, energy states, De- excitation.	6hrs	ICT

Course	Prog	gramn	ne Ou	tcome	es (Po	s)		Programme Specific Outcomes (PSOs)						5)	Mean
Outco															scores
mes															of Cos
(Cos)	Р	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	0	2	3	4	5	6	7	01	02	03	04	05	06	07	
	1														
CO1	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3.1
CO2	3	3	3	3	3	3	3	3	3	3	3	3	4	4	3.1
CO3	4	3	3	3	3	3	3	3	3	4	3	3	3	3	3.1
CO4	4	3	3	3	3	3	2	2	3	3	3	3	3	4	3.0
CO5	3	3	3	4	3	3	3	2	3	3	3	3	3	3	3.0
															3.1

Result: The Score for this Course is 3.1 (Moderate Relationship)

Course Designer: Mrs.R.Latha

Programme : M.Sc Botany Semester : IV Sub. Code : FL4

#### Practical paper IV Hours : 5 Hrs/wk 75 Hrs/sem Credits : 4

# TITLE OF THE PAPER: PRACTICAL PAPER - IV

Pedagogy	Hours	Lab	Peer	GD/VIDOES/TUTORIAL	ICT						
10008085	liouis	experimentation									
	5	5	-	-	-						
PREAMBLE											
1. To provide practical, "hands-on" experience in some of the techniques of cell culture, that are											
fundamental to many areas of biotechnology											
2. To gain experience in critical thinking and experimental design to address interesting problems in											
biology or biotechnology.											
3.Develop an	3.Develop an information strategy on new technologies on biotechnology.										
4. Students sh	ould be a	ble to use basic la	boratory skills a	nd apparatus to obtain reprod	ucible data from						
biochemica	l experin	nents.									
5. Provide and	l demons	trate knowledge an	nd understanding	g of the principles and basic r	nechanisms of						
metabolic co	ontrol and	d enzymatic activit	y.								
		C	OURSE OUTO	COME							
		ster, the Students y									
CO1: analyze			-	e culture lab techniques that a	are basic						
CO2: davalar		nentals to biotechn		ological phenomena through							
		fic methods.	KIIIG SKIIIS III OI	ological pilenomena unough							
CO3: acquire		d knowledge in bi	otechnological e	experiments.							
				to plan and carry out experim	ients						
CO5: Underst	and quar	ntification and esti	mation of carbo	hydrates, Proteins and Fats.							
SYLLABU	<u>s</u>										
STEERDO	0										
1. Organizing	Plant Tis	sue Culture Lab.									
2. Preparation	of Tissu	e Culture Media									
3. Callus initi	ation usi	ng different explar	nts viz, leaf, shoo	ot, node.							
4. Separation	of Protein	n by PAGE.									
			• • ·	~ 1							

5. Isolation of Genomic DNA and separation using Agarose Gel.

6. Protein visualization using Rasmol (supply structure of a few proteins downloaded from PDB).

7. Multiple sequence alignment using CLUSTAL X (give DNA or protein sequence).

8. Phylogenetic analysis by Phylip (give some protein or DNA sequence data).

- 9. Exploring NCBI database system, querying the PUBMED and GenBank databases ,EBI. server and searching the EMBL Nucleotide database, Exploring & Querying SWISSPROT.
- 10. Measurement of enzyme activity Amylase, Peroxidase.
- 11. Factors affecting enzyme activity- substrate concentration, pH and temperature.
- 12. Quantitative and Qualitative estimation of carbohydrates, Proteins and Fats.

Course	Pro	gramr	ne Ou	tcome	es (Po	s)		Programme Specific Outcomes (PSOs)						5)	Mean
Outco															scores
mes														of Cos	
(Cos)	Р	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS	PS	PS	PS	
	0	2	3	4	5	6	7	01	02	03	04	05	06	07	
	1														
CO1	3	3	3	2	3	4	5	3	3	4	4	4	4	2	3.35
CO2	4	4	4	3	5	5	3	3	3	3	4	4	4	3	3.71
CO3	4	4	4	4	4	4	3	3	3	3	3	3	3	3	3.42
CO4	2	4	4	3	3	3	3	4	4	4	4	4	4	4	3.57
CO5	3	3	3	3	3	3	3	2	2	3	3	3	2	3	2.78
	Me								verall S	core					3.36

Result: The Score for this Course is 3.36 (High Relationship)

Course Designer: Dr.S.M.Janetta Nithia.

#### Elective Paper IV Hours : 5 Hrs/wk 75 Hrs /sem Credits : 5

#### TITLE OF THE PAPER: APPLIED BOTANY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT					
	5	3	1		1					
<b>PREAMBLE:</b>										
□ To enable the students to know about the various microbes used as biofertilizers										
□ To emphasize the importance and application of various bioinoculants.										
□ To help to understand the symbiotic and non-symbiotic association of plant –microbe interaction										
□ To help the students to acquire the basic knowledge, develop suitable skills involved in										
mushro	om cultiv	vation and m	otivates entreprer	neurship in an individual.						
□ To enable the students to acquire knowledge on biopesticides used in the management of plant										
pathogens.										
	Unit	Hrs P/S								
At the end of the	ne Semes	ter, the stude	ents will be able to	0						
<b>UNIT 1 CO1</b> :	Learn the	e scope and i	mportance of var	ious biofertilizers.	1	15				
<b>UNIT 2 CO2</b> :	Recognis	se the charac	teristics, identific	ation, cultural methods and	2	15				
	maintena	nce of Rhize	obium,Azospirillu	im, Azotobacter and						
	Phosphol	oacter.								
UNIT 3 CO3:	Know ab	out Mycorrł	niza – VAM assoc	iation, types, occurrence,	3	15				
сс	ollection,	isolation and	d inoculum produ	ction.						
UNIT 4 CO4:	Gain kno	wledge abou	ut the nutritional,	medicinal and cultivation	4	15				
	aspects of edible mushrooms.									
UNIT 5 CO5:	Get acqu	ainted with a	method of large so	cale production of	5	15				
biopesticides and its importance.										
SYLLABUS										

#### Unit-I:

Biofertilizers : Introduction, scope. General account of Biofertilizer organisms -Cyanobacteria (BGA), Bacteria and Mycorrhizae. Cyanobacteria (BGA) as biofertilizers – *Anabaena and Nostoc. Azolla – Anabaena as* biofertilizers, Isolation of cyanobacteria, Mass cultivation, Field application.

#### Unit-II:

Bacterial biofertilizers: Introduction and scope. Isolation, characterization, mass

production and application of *Azospirillum, Azotobacter, Phosphobacteria* and *Rhizobium*. Phosphate solubilization and application.

#### Unit-III:

Mycorrhizal fungi as biofertilizers : general account of Ecto, Endo and Arbuscular mycorrhizae (AM). Methods of collection, preparation of inoculums, Culture of mycorrhizae in Modified Melin - Norkrans(MMN) agar medium, Cultural characteristics of Ecto mycorrhizal fungi. Techniques of Ectomycorrhizal inoculum, Endo mycorrohizae of orchids. Isolation and method of inoculation of Arbuscular mycorrhizae (AM), Legume - AM interactions.

#### Unit-IV:

Mushroom Technology - Scope and importance - Edible and Poisonous Mushrooms. Nutritive value of edible mushrooms, Structure of basidiocarp - *Agaricus*. Recipessoup, cutlet, vegetable curry, samosa, omlette and pickle. Cultivation of button mushroom (*Agaricus bisporus*) and oyster mushroom (*Pleurotus sajorcaju*) by Polythene bag method. Preparation of mother spawn, Cultivation technology – Substrates, composting technology, bed & polythene bag preparation, spawning - casing - Cropping -Mushroom production – Harvest, Storage and preservation.

#### Unit-V:

Definition, scope and importance of biopesticides – types and applications. Plant incorporated protectants, Herbal- Azdirachtine, Pyrethrin ; Bacteria- *Bacillus thuringiensis* ; Virus- Nuclear polyhedrosis virus; Fungi – Trichoderma, Beauveriana bassiana - isolation, mass production and applications.

# **REFERENCES:**

## **TEXT BOOKS:**

- 1. Dubey, R. C. (2008). A Textbook of Biotechnology. S. Chand & Co., New Delhi.
- Subba Rao, N. S. (1982). Advances in Agricultural Microbiology. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
- Subba Rao, N. S. (2002). Soil Microbiology. 4th ed. Soil Microorganisms and Plant Growth. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi. Publishing Co. Pvt. Ltd., New Delhi.
- 4. Pathak, V. N. and Yadav, N. (1998). Mushroom Production and Processing Technology. Agrobios, Jodhpur.
- 5. Tripathi, D. P. (2005). Mushroom Cultivation. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.

#### **REFERENCE BOOKS:**

- 1. Schwintzer, C. R. and Tjepkema, J. D. (1990). The Biology of *Frankia* and *Actinorhizal* Plants. Academic Press Inc., San Diego, USA.
- 2. Stewart, W. D. P. and Gallon, J. R. (1980). Nitrogen Fixation. Academic Press, New York.
- 3. Subba Rao, N. S. and Dommergues, Y. R. (1998). Microbial Interactions in Agriculture

and Forestry. Vol. I, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.

- 4. Verma, A. (1999). Mycorrhiza. Springer Verlag, Berlin.
- 5. Wallanda, T. et al. (1997). Mycorrhizae. Backley's Publishers, The Netherlands.
- 6. Alice, D., Muthusamy and Yesuraja, M. (1999). Mushroom Culture. Agricultural College, Research Institute Publications, Madurai.
- 7. Marimuthu, T. *et al.* (1991). Oster Mushroom. Department of Plant Pathology. Tamil Nadu Agricultural University, Coimbatore.
- 8. Nita Bhal. (2000). Handbook on Mushrooms. 2nd ed. Vol. I and II. Oxford and IBH
- 9. Tewari Pankaj Kapoor, S. C. (1988). Mushroom Cultivation. Mittal Publication, New
  - Delhi.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I (	15 hours)	•	
	Biofertilizers : Introduction, scope. Generalaccount ofBiofertilizerorganisms -Cyanobacteria(BGA),BacteriaandMycorrhizae.	6	Lecture method, Use of AV aids.
	Cyanobacteria (BGA) as biofertilizers – Anabaena and Nostoc. Azolla – Anabaena as biofertilizers	6	Chalk and Talk technique, Peer teaching techniques.
	Isolation of cyanobacteria, Mass cultivation, Field application	3	Lecture method and PPT.
UNIT II	(15 hours)		
	Bacterial biofertilizers: Introduction and scope. Isolation, characterization, mass production and application of <i>Azospirillum</i> .	5	Lecture method and PPT.
	Isolation, characterization, mass production and application of <i>Azotobacter</i> .	4	Lecture method, Use of AV aids.
	Isolation, characterization, mass production and application of <i>Phosphobacteria</i> and	6	Chalk and Talk technique, Peer teaching techniques.

<i>Rhizobium</i> . Phosphate solubilization and application.		
UNIT III (15 hours)		
Mycorrhizal fungi as biofertilizers : general account of Ecto, Endo and Arbuscular mycorrhizae (AM).	4	Lecture method, Use of AV aids.
Methods of collection, preparation of         inoculums, Culture of mycorrhizae in         Modified Melin - Norkrans(MMN) agar         medium,Cultural characteristics of Ecto         mycorrhizal fungi.	5	Chalk and Talk technique, Peer teaching techniques.
Techniques of Ectomycorrhizal inoculum, Endo mycorrohizae of orchids. Isolation and method of inoculation of Arbuscular mycorrhizae (AM), Legume - AM interactions.	6	Lecture method , Use of AV aids and PPT.
UNIT IV (15 hours)		
Mushroom Technology - Scope and importance - Edible and Poisonous Mushrooms.Nutritive value of edible mushrooms, Structure of basidiocarp - Agaricus.	5	Lecture method, peer teaching techniques and PPT.
Recipies-soup, cutlet, vegetable curry, samosa, omlette and pickle. Cultivation of button mushroom (Agaricus bisporus) and oyster mushroom (Pleurotus sajorcaju) by Polythene bag method.	5	Lecture method, Use of AV aids.
Preparation of mother spawn, Cultivation technology – Substrates, composting	5	Chalk and Talk technique, Peer teaching techniques.

technology, bed & polythene bag preparation, spawning - casing - Cropping -Mushroom production – Harvest, Storage and preservation		
UNIT V (15 hours)		
Definition, scope and importance of	5	Lecture method, peer
biopesticides – types and applications. Plant		teaching techniques and
incorporated protectants.		PPT.
Herbal- Azdirachtine, Pyrethrin ; Bacteria-	5	Lecture method, Use of
Bacillus thuringiensis ; Virus- Nuclear		AV aids.
polyhedrosis virus;		
Fungi – Trichoderma, Beauveriana bassiana -	5	Chalk and Talk technique,
isolation, mass production and applications.		Peer teaching techniques.

Course	Prog	gramr	ne Ou	tcome	es (Po	s)		Programme Specific Outcomes (PSOs)						5)	Mean
Outco															scores
mes															of Cos
(Cos)	РО	PO	PO	РО	PO	РО	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CO1	4	3	2	3	4	3	5	2	2	4	3	4	4	4	3.36
CO2	3	3	4	4	4	3	5	4	3	2	3	3	2	3	3.29
CO3	3	3	3	4	4	4	4	3	3	3	4	3	3	3	3.36
CO4	3	2	4	3	4	3	3	5	5	3	4	2	3	3	3.36
CO5	4	3	4	3	3	3	4	5	3	4	4	4	4	3	3.64
	Mean Overall Score										3.40				

Result: The Score for this Course is 3.40 (High Relationship)

Course Designer: Mrs.M.P. Sivasankari

Programme: BotanySemester: IVSub. Code: FPW

Hours : 8 P/W 120 Hrs P/S Credits : 4

#### TITLE OF THE PAPER: PROJECT

The project needs to be completed by working across the regular teaching hours and under the supervision of the faculty .Students may also be allowed to do their project work in a research or industrial organization on recommendation. The Final evaluation of the Project work is based on submission of the dissertation and Viva-voice. At the end , student may be in a position to design a minor project.