

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI – 625 002.

DEPARTMENT OF COMPUTER APPLICATIONS

BACHELOR OF COMPUTER APPLICATIONS

SYLLABUS TO BE INTRODUCED FOR THE ACADEMIC YEAR 2022 - 2023

OUTCOME BASED EDUCATION

UNDER C.B.C.S.

SRI MEENAKSHI GOVT ARTS COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF COMPUTER APPLICATIONS

(Academic year 2019-20 onwards)

DEPARMENT NAME: COMPUTER APPLICATIONS

INTRODUCTION

The Department of Computer Applications blossomed in the year 1998 offering Master of Computer Applications course approved by AICTE. The B.C.A course was started in the academic year 2018-19. The Department has an enterprising faculty team of 3 Assistant Professors, 2 Guest faculties and 1 Programmer. It has more than 100 research publications to its credit. They contribute and share their knowledge to academic community through Invited Talks and Paper presentations in National / International Conferences. The Department takes continuous efforts in upgrading the course content and enhancing student's skills.

COURSES OFFERED:

- B.C.A
- M.C.A
- M.Phil. COMPUTER APPLICATIONS VISION

Enabling Students to become enterprising Academicians, Young Entrepreneurs and Responsible Citizens.

MISSION

Imparting Quality Knowledge and Essential Virtues Treading Towards Holistic Development.

PROGRAMME OUTCOME OF B.C.A

At the end of the Degree programme the students will be able to:

- PO1: Able to design and develop reliable software applications for social needs and excel in IT enabled services.
- PO2: Able to analyze and identify the customer requirements in multidisciplinary domains, create high level design and implement robust software applications using latest technological skills.(A)

PO3: Proficient in successfully designing innovative solutions for solving real life business problems and addressing business development issues with a passion for quality, competency and holistic approach (C)

- PO4: Perform professionally with social, cultural and ethical responsibility as an individual as well as in multifaceted teams with positive attitude. (S)
- PO5: Capable of adapting to new technologies and constantly upgrade their skills with an attitude towards independent and lifelong learning. (P)

PROGRAMME SPECIFIC OUTCOME(PSO)

- PSO1: Enhance Professional Skills
- PSO2: Attain the ability to Design and Develop computer applications,
- PSO3: Evaluate and recognize potential risks and provide innovative solutions.
- PSO4 : Acquire Successful Entrepreneurship skills
- PSO5: Explore technical knowledge in diverse areas of Computer applications and experience an environment conducive in cultivating skills for higher studies.

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS), MADURAI-2

DEPARTMENT OF COMPUTER APPLICATIONS

PROGRAMME : B.C.A

SEMESTER-I

Part	Course Type	CODE	Title of the Course	Hrs/	Credits	Exam Hrs	Ν	Iarks	
				Wee			Int	Ext	Total
				k					
Ι	LC	U221A1 /U221H1	Tamil/Hindi	6	3	3	25	75	100
Π	ELC	U222A1	English	6	3	3	25	75	100
III	CC–I	U22CU1	Core I – Programming in C	6	5	3	25	75	100
III	CC– II	U22CU2P	CoreI Practical - Programming in C Lab	6	3	3	40	60	100
III	AC-I	U22AUU1	Discrete Mathematics	4	3	3	25	75	100
IV	AEC	U22AE1	Value Education	2	2	3	25	75	100
	То	otal		30	19				600

SEMESTER-II

Part	Course Type	CODE	TitleoftheCourse	Hrs/Week	Credits	Exam Hrs	N	Iarks	
							Int	Ext	Total
Ι	LC	U221A2 /U221H2	Tamil/Hindi	6	3	3	25	75	100
Π	ELC	U222A2	English	6	3	3	25	75	100
III	CC– III	U22CU3	Core III – OOP with C++	6	5	3	25	75	100
III	CC– IV	U22CU4P	Core IV Practical – C++ Lab	3	3	3	40	60	100
III	CC-V	U22CU5P	First Allied Practical - SPSS Lab	3	4	3	40	60	100
III	AC-II	U22AUU2	Probability and Statistics	4	3	3	25	75	100
IV	AEC	U22AE2	Environmental Studies - EVS	2	2	3	25	75	100
	То	tal		30	23				700

SEMESTER-III

Part	Course Type	CODE	Title of the Course	Hrs/	Credits	Exam		Marks	
	rype		-	Week		Hrs	Int	Ext	Total
Ι	LC	U221A3 /U221H3	Tamil/Hindi	6	3	3	25	75	100
Π	ELC	U222A3	English	6	3	3	25	75	100
III	CCVI	U22CU6	Core V - JAVA	6	5	3	25	75	100
III	CCVII	U22CU7P	Core V Practical – JAVA Lab	3	3	3	40	60	100
		U22AUU3	E-Commerce						
III	AC–III			4	3	3	25	75	100
IV	NMEC-I	U22NMU1	Computer Fundamentals	2	2	3	25	75	100
IV			Extension Activity		1		100	-	100
	Tot	al		30	20				700

SEMESTER-IV

Part	Course	CODE	Title of the Course	Hrs/	Credits	Exam	Ma	ırks	
	Туре			Week		Hrs	Int	Ext	Total
Ι	LC	U221A4 /U221H4	Tamil/Hindi	6	3	3	25	75	100
Π	ELC	U222A4	English	6	3	3	25	75	100
III	CC-VIII	U22CU8	Core VII – Data Structure	4	4	3	25	75	100
III	CC– IX	U22CU9	Core VIII – Digital Principal & Computer Organization	3	3	3	40	60	100
III	CC-X	U22U10P	Tally lab	3	4	3	40	60	100
III	AC-IV	U22AU U4	CBFA	4	3	3	25	75	100
IV	NMEC-II	U22NMU2	Internet and Its Applications	2	2	3	25	75	100
IV	SEC-I	U22SEU1P	Practical – Oracle	2	2	3	40	60	100
	r	Total		30	24				800

SEMESTER-V

Part	Course	CODE	Title of the Course	Hrs/	Credit	Exam	Mark	S	
	Туре			Week	S	Hrs	Int	Ext	Total
III	CC– XI	U22CU11	Core IX – Operating system	5	5	3	25	75	100
III	CC– XII	U22CU12	Core X – Computer Networks	5	5	3	25	75	100
III	CC– XIII	U22CU13	Core XI - PHP	5	5	3	25	75	100
III	CC– XIV	U22CU14P	Practical (Core IX, X and XI) – PHP Lab	6	4	3	40	60	100
III	DSEC–I	U22DSU1A	Major Based Elective I – OOAD	5	5	3	25	75	100
		U22DSU1B	Artificial Intelligence						
		U22DSU1C	System software						
IV	SEC-II	U22SEU2P	Skill Enhancement Course II Practical – . NET Lab	2	2	3	40	60	100
IV	SEC-III	U22SEU3	Skill Enhancement Course III - Computer Graphics	2	2	2	40	60	100
		Total		30	28				700

SEMESTER-VI

Part	Course	CODE	Title of the Course	Hrs/	Credit	Exam	Mark	S	
	Туре			Week	S	Hrs	Int	Ext	Tota 1
III	CC– XV	U22CU15	Core XIII – Software Engineering	6	5	3	25	75	100
III	CC– XVI	U22CU16	Core IV – Data Mining	6	5	3	25	75	100
III	CC– XVII	U22CUPW	Practical (Core XIII and XIV) - Project	6	4	3	40	60	100
III	DSEC-II	U22DSU2A	Major Based Elective II – Mobile Network	4	4	3	25	75	100
		U22DSU2B	Artificial Neural Network						
		U22DSU2C	Digital Image Processing						
III	DSEC-III	U22DSU3AP	Major Based Elective III – Client Server Lab	4	4	3	25	75	100
		U22DSU3BP	Artificial Neural Network Lab						
		U22DSU3CP	Digital Image Processing Lab						
III	GEC I	U22GEU1A	Generic Elective Course - HRM	2	2	3	25	75	100
		U22GEU1B	Management Information System						
V	AEC III	U22AE3	Ability Enhancement Course (General Knowledge) - GK	2	2	3	25	75	100
			Total	30	26				700

COURSES OFFERED BY THE DEPARTMENT OF Computer Applications

Part	Course Type	Title of the Course	Hrs/	Credits	Exam		Marks	
	Type		Week		Hrs	Int	Ext	Total
III	AC-I	Discrete Mathematics	4	3	3	25	75	100
III	AC-II	Probability and Statistics	4	3	3	25	75	100
III	AC-III	– E-Commerce	4	3	3	25	75	100
III	AC-IV	CBFA	4	3	3	25	75	100

Department Specific Elective Course (DSEC) -3

Part	Course Type	Title of the Course	Hrs/	Credits	Exam		Marks	
	1)pc		Week		Hrs	Int	Ext	Total
III	DSEC1	 Object Oriented Analysis and Design (OOAD) Artificial Intelligence (AI) System Software (SS) 	4	5	3	25	75	100
III	DSEC2	 Mobile Computing Artificial Neural Network (ANN) Digital Image Processing (DIP) 	3	4	3	25	75	100
III	DSEC3	 Client Server Lab Artificial Neural Network Lab Digital Image Processing Lab 	4	4	3	40	60	100

Part	Course	Title of the Course	Hrs/	Credits	Exam	Marks		
	Туре		Week		Hrs	Int	Ext	Total
III	GEC1	Human Resource management	2	2	3	25	75	100

Part	Course	Title of the Course		Hrs/	Credits	Exam	Marks		
	Туре			Week		Hrs	Int	Ext	Total
IV	SEC-I	Skill Enhancement	Practical – Oracle			-		-	100
		Course II	Lab	2	2	3	40	60	
IV	SEC-III	Skill Enhancement Course II Computer Graphics	I -	2	2	2	40	60	100
IV	SEC-III	Skill Enhancement Course	Practical					-	100
			.NET lab	2	2	3	40	60	

COURSE STRUCTURE ABSTRACT FOR B.C.A. PROGRAMME

Part	Course		Total No	Hours	Credit	Marks
			of			
			Paper			
			S			
Ι	Language Cours	e(LC)	4	24	12	400
II	English Languag	ge Course(ELC)	4	24	12	400
III	Core Course(CC	⁽)	17	73	72	1500
III	Allied Course (AC)	4	28	12	600
III	Department Spec (DSEC)	cific Elective Course	3	13	13	300
III	Generic Elective	Course (GEC)	1	2	2	100
IV	Non Major Elec	tive Course(NMEC)	2	4	4	200
IV	Skill Enhanceme	ent Course (SEC)	3	6	6	300
IV	Ability Enhancement	Value Education	1	2	2	100
IV	Course (AEC)	Environmental Studies	1	2	2	100
IV	(AEC)	General Knowledge	1	2	2	100
V	NCC/NSS/Exter	sion Activities	-1	-	1	100
	Total		42	180	140	4200
Extra	Credit Courses*					

Value Added Course	1	2	100
Self-Study Course (SSC)	1	2	100
Total	44	144	4400

Extra Credit Courses* - to be discussed

Value Added Courses

S.No	Name of the	Number of Hrs	Credit	Beneficiary
	Course			
1.	Web	30	2	BCA
	programming			students
2.	Multimedia	30	2	Other
	Application			major
3.	Python	30	2	BCA
	programming			students
4.	Digital	30	2	Other
	marketing			major

Self-study courses

Management Information System
 Soft Skills

I. QUESTION PAPER PATTERN FOR EXTERNAL EXAMINATION

1. Core, Major Elective and Allied Papers

Section - A	5 compulsory questions (1 question from each unit)	5 X 2 = 10 Marks
Section - B	5 questions to be answered under 'either – or' pattern (2 questions from each unit)	5 X 5 = 25 Marks
Section - C	5 questions to be answered under either or pattern (two from each unit)	5 X 8 = 40 Marks
	Total	75 Marks

2. Skill Based Elective Papers

Section - A	5 questions to be answered under 'either – or' pattern (2 question from each unit)	5 X 15 =75 Marks
	Total	75 Marks

3. Non Major Elective Papers

Section - A	25 compulsory questions (5 Multiple Choice Questions from each unit)	25 X 1 = 25 Marks
Section - B	5 questions to be answered under 'either – or' pattern (2 questions from each unit)	5 X 10 = 50 Marks
	Total	75 Marks

II. EVALUATION PATTERN

1. Theory Paper

Internal

Test	20
Quiz/Assignment	5
Total	25

Internal	-	25
External	-	75
Total	-	100

2. Practical Paper

Internal

Record	10
Viva-Voce	10
Internal Practical Exam	20
Total	40

Internal - 40 External - 60 Total - 100

3. Project

Internal Assessment	20
Viva-Voce	80

Total

100

III. PASSING MINIMUM

External				Project Dessing		Internal
Theory - Passing Minimum		Practical - Passing Minimum		Project - Passing Minimum		Passing Minimum
35% (27 Marks)	Aggregate of 40 Marks in Total	35% (21 Marks)	Aggregate of 40 Marks in Total	35% (28 Marks)	Aggregate of 40 Marks in Total	No

Programme : BCA			
Semester	: I		
Sub. Code	: U22CU1		

Part III: Core Hours : 6 P/W 75 Hrs P/S Credits : 5

TITLE OF THE PAPER: PROGRAMMING IN C

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	2	1	1	1	
	PREAMBLE:					
	To inculcate in students necessary programming skills and to design, code and implement cprograms. To learn the Files and Pointer concepts in C language.					
COURSE OUTCOME				Unit	Hrs P/S	
At the end of the Semester, the Students will be able to						
UNIT 1 CO1 : Understand programming concepts by learning algorithms and flowcharts.				1	15	
UNIT 2 CO2 : Obtain knowledge about the basics of C Programming.				2	15	
UNIT 3 CO3: Apply different operations in an array.					3	15

UNIT 4 CO4: Understand use of function, pointers, structures and unions.	4	15
UNIT 5 CO5: Acquire knowledge about the basics of file handling mechanism	5	15

L.

1

SYLLABUS UNIT I:

Overview of C:History of C – Importance of C – Basic Structure of C Programs – Programming Style – Character Set – C Tokens – Keywords and Identifiers – Constants, Variables and Data Types – Declaration of Variables – Defining Symbolic Constants – Declaring a variable as a constant – overflow and underflow of data – Operators and Expressions: Arithmetic, relational, logical, assignment operators – increment and decrement operators, conditional operators, bitwise operators, special operators – Arithmetic Expressions- Evaluation of Expressions – Precedence of Arithmetic Operators – Type Conversions in Expressions – Operator Precedence and Associativity.

UNIT II: Managing I/O Operations: Reading and Writing a Character – Formatted Input, Output – Decision Making and Branching: if statement - if else statement - nesting of if else statements - else if ladder – switch statement – the ?: operator – goto statement – the while statement – do statement – the for statement – jumps in loops.

UNIT III: Arrays: One-Dimensional Arrays – Declaration, Initialization – Two-Dimensional Arrays

Multi-dimensional Arrays – Dynamic Arrays – Initialization. Strings: Declaration, Initialization of string variables – reading and writing strings – string handling functions. **UNIT IV:**

User-defined functions: need – multi-function programs – elements of user defined functions – definition – return values and their types – function calls, declaration, category – all types of arguments and return values – nesting of functions – recursion – passing arrays, strings to functions – scope visibility and life time of variables. Structures and Unions: Defining a structure – declaring a structure variable – accessing structure members – initialization – copying and comparing – operation on individual members – array of structures – arrays within structures – structures within structures – structures and functions – unions – size of structures – bit fields.

UNIT V:

Pointers:Accessing the address of a variable – declaring, initialization of pointer variables – accessing a variable through its pointer – chain of pointers – pointer increments and scale factors – pointers and character strings – pointers as function arguments – pointers and structures. Files: Defining, opening, closing a file – IO Operations on files – Error handling during IO operations – command line arguments.

TEXT BOOKS:

Programming in ANSI C, E.Balagurusamy, 6th Edition, McGraw Hill Education (India) Pvt. Ltd., 2017.

Unit I: Chapter 1, Chapter 2, Chapter 3 Unit II: Chapters 4, Chapter 5, Chapter 6 Unit III: Chapter 7, Chapter 8 Unit IV: Chapter 9, Chapter 10 Unit V: Chapter 11, Chapter 12

REFERENCES:

- 1. B. Gottfried, "Schaum's Outline of Programming with C", 3rd Edition, Tata McGraw Hill, 2010.
- 2. J.R. Hanly and E.B. Koffman, "Problem Solving and Program Design in C", 6th Edition, Pearson Education, 2009.
- 3. Programming with ANSI and Turbo C, Ashok N.Kamthane , Pearson Education, 2006
- 4. H. Schildt, C: The Complete Reference, 4th Edition, TMH Edition, 2000.
- 5. Kanetkar Y., Let us C, BPB Pub., New Delhi, 1999.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Overview of C:History of C – Importance of C – Basic Structure of C Programs – Programming Style – Character Set – C Tokens – Keywords and Identifiers	5	Lecture

	Structures and Unions: Defining a structure – declaring a structure variable – accessing structure members – initialization –	5	Videos
	User-defined functions: need – multi-function programs – elements of user defined functions – definition – return values and their types – function calls, declaration, category – all types of arguments and return values – nesting of functions – recursion – passing arrays, strings to functions – scope visibility and life time of variables.	5	Lecture
UNIT IV	User defined functions, need multi-function	5	Lastres
	reading and writing strings – string handling functions	4	ICT
	Strings: Declaration, Initialization of string variables –	5	Lecture
	Arrays:One-Dimensional Arrays – Declaration, Initialization – Two-Dimensional Arrays – Multi- dimensional Arrays – Dynamic Arrays – Initialization.	6	Lecture
UNIT III			
	the ?: operator – goto statement – the while statement – do statement – the for statement – jumps in loops.	5	Videos
	Decision Making and Branching: if statement - if else statement - nesting of if else statements - else if ladder – switch statement –	5	Lecture and ICT
	Managing I/O Operations:Reading and Writing a Character – Formatted Input, Output	5	Peer teaching
UNIT 11	1		I
	Evaluation of Expressions – Precedence of Arithmetic Operators – Type Conversions in Expressions – Operator Precedence and Associativity.	5	Lecture
	OperatorsandExpressions:Arithmetic, relational, logical, assignment operators – increment and decrement operators, conditional operators, bitwise operators, special operators – Arithmetic Expressions-	5	Lecture
	 Constants, Variables and Data Types – Declaration of Variables – Defining Symbolic Constants – Declaring a variable as a constant – overflow and underflow of data 		

	copying and comparing – operation on individual members – array of structures – arrays within structures – structures within structures – structures and functions – unions – size of structures – bit fields.	5	PPT
UNIT V			
	Pointers: Accessing the address of a variable – declaring, initialization of pointer variables – accessing a variable through its pointer – chain of pointers – pointer increments and scale factors – pointers and character strings – pointers as function arguments – pointers and structures.	5	Lecture
	Files: Defining, opening, closing a file – IO Operations on files –	5	ICT
	Error handling during IO operations – command line arguments.	5	Lecture

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO2	PSO3	PSO4	PSO5	
CO1	5	4	5	1	2	4	5	2	3	5	3.6
CO2	4	3	2	4	2	4	2	2	5	3	3.1
CO3	5	4	4	3	3	4	5	2	1	3	3.4
CO4	5	4	4	2	4	4	5	2	1	3	3.4
CO5	5	3	4	2	2	4	5	2	2	2	3.1
Mean Overall Score 3.32								3.32			
Mapping 1-20% 21-40% 41-60% 61-80% 81-100%)0%			

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
$Mean Score of COs = \underline{Total of Value}$			Mean Overall Score of $COs = Total of Mean Score$			
	Total No. of Pos	s & PSOs	Total No. of COs			

BLOOM"S TAXANOMY	INTERNAL	EXTERNAL		
KNOWLEDGE	50%	50%		
UNDERSTANDING	30%	30%		
APPLY	20%	20%		
Course Designer:	Department of	Department of Computer Applications		

Programme : BCA Semester : I Sub. Code : U22AUU1

Part III: Allied-1 Hours : 4 P/W 75 Hrs P/S Credits :3

TITLE OF THE PAPER: DISCRETE MATHEMATICS

Pedagogy	Hours	Lecture	ICT						
	4	4	-	-		-			
PREAMBLE:									
То е	To equip the students with applications of discrete mathematics in the field of computer								
science. To cov	ver sets, le	ogic, provin	g techniques, com	binatorial functions, relations a	and Graph	theory.			
		COU	RSE OUTCOME	E	Unit	Hrs P/S			
At the end of th									
UNIT 1 CO1:		oolean algeb orld of com		hat simplifies communication	1	15			
UNIT 2 CO2:	Use form	al logic, and	l will be able to ic	lentify interesting outcomes	2	15			
UNIT 3 CO3:	3	15							
UNIT 4 CO4 : Summarize principles of counting and will be able to grasp patterns in data that follows fixed set of rules.						15			
UNIT 5 CO5:	5	15							
					1	1			

SYLLABUS

UNIT I:

Set Theory: Introduction – Sets – Notation and Description of Sets – Subsets – Venn – Euler Diagrams – Operation on sets – Properties of set operations – Verification of basic laws and algebra by Venn diagram.

UNIT II:

Relations and Functions: Relations – Representation of a relation – Operations on relations – equivalence relation – Closures & Warshalls Algorithm – Partial order Relation – Hasse Diagrams – Lattice.

UNIT III:

Logic: Introduction – IF statements – Connectives – Truth table of a formula – Tautology – Tautological implications and Equivalence of formulae – Quantifiers.

UNIT IV:

Recurrence relations and Generating functions: Recurrence relation – an introduction – Polynomial and their evaluations – Recurrence relations – Solutions of finite order homogeneous (linear) relations – Solutions of non-homogeneous relations – Generating functions (for all the theorem consider the statements without proofs).

UNIT V:

Introduction: What is a graph – Application of graphs – Finite and infinite graphs – Incidence and degree – Isolated vertex, Pendant vertex and null graph. Paths and circuits : Isomorphism – Sub graphs – A puzzle with multicolored cubes – walks, paths and circuits – Connected graphs, disconnected graphs and components – Euler Graphs – Operations on graph – Hamiltonian paths and circuits (Excluding theorems) – The travelling salesman problem. Trees and fundamental circuits: Trees – Some properties of trees (Theorem 3.1, 3.2, 3.3 only) - Pendant vertices in a tree – Distance and centers in a tree (Theorem 3.9 only).

TEXT BOOKS:

- 1. Discrete Mathematics M.Venkataraman, N.Sridharan and N.Chandrasekaran The National Publishing Company, May 2009.
- Graph Theory with applications to Engineering and Computer Science, NarsinghDeo, Prentice Hall of India Pvt. Limited, 1999 UnitI :Text Book 1 - Chapter 1.1 to 1.8

Unit II: Text Book 1 - Chapter 2 (2.2 to 2.6), 10.1

Unit III: Text Book 1 - Chapter 9 (9.1 to 9.3, 9.6 to 9.8, 9.15)

Unit IV: Text Book 1 - Chapter 5.1 to 5.6

Unit V: Text Book 2. Chapter 1.1 – 1.5, 2.1 – 2.7, 2.9(Excluding Theorems), 2.10, 3.1 – 3.2 (Theorem 3.1,3.2,3.3 only), 3.3,3.4(Theorem 3.9 only)

REFERENCES:

- 1. B. Gottfried, "Schaum's Outline of Programming with C", 3rd Edition, Tata McGraw Hill, 2010.
- 2. J.R. Hanly and E.B. Koffman, "Problem Solving and Program Design in C", 6th Edition, Pearson Education, 2009.
- 3. Programming with ANSI and Turbo C, Ashok N.Kamthane , Pearson Education, 2006
- 4. H. Schildt, C: The Complete Reference, 4th Edition, TMH Edition, 2000.
- 5. Kanetkar Y., Let us C, BPB Pub., New Delhi, 1999.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1	I		
	Set Theory: Introduction – Sets – Notation and Description of Sets – Subsets–	5	Lecture
	 Venn – Euler Diagrams – Operation on sets – Properties of set operations 	5	Lecture
	Verification of basic laws and algebra by Venn diagram.	5	Lecture
UNIT 11		I	I
	Relations and Functions: Relations – Representation of a relation —.	5	Lecture
	Operations on relations – equivalence relation – Closures &Warshalls Algorithm	5	Lecture
	Partial order Relation – Hasse Diagrams – Lattices	5	Lecture
UNIT III			
	Logic: Introduction – IF statements – Connectives	5	Lecture
	Truth table of a formula – Tautology	5	Lecture
	Tautological implications and Equivalence of formulae – Quantifiers.	5	Lecture
UNIT IV	<u> </u>		
	Recurrence relations and Generating functions: Recurrence relation – an introduction – Polynomial and their evaluations —	5	Lecture
	Recurrence relations – Solutions of finite order homogeneous (linear) relations – Solutions of non- homogeneous relations	5	Lecture
	Generating functions (for all the theorem consider the statements without proofs).	5	Lecture
UNIT V	•	•	
	Introduction: What is a graph – Application of graphs – Finite and infinite graphs – Incidence and degree	5	Lecture

– Isolated vertex, Pendant vertex and null graph.		
Paths and circuits : Isomorphism – Sub graphs – A puzzle with multicolored cubes – walks, paths and circuits – Connected graphs, disconnected graphs and components – Euler Graphs – Operations on graph – Hamiltonian paths and circuits (Excluding theorems) – The travelling salesman problem.	5	Lecture
Treesand fundamental circuits: Trees – Some properties of trees (Theorem 3.1, 3.2, 3.3 only) - Pendant vertices in a tree – Distance and centers in a tree (Theorem 3.9 only).	5	Lecture

Course Outcomes (Cos)	Programme Outcomes (POs)				ogramme Outcomes (POs) Programme Specific Outcomes (PSOs)					Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	5	4	5	4	2	4	5	3	3	5	4
CO2	4	3	4	4	2	4	5	2	5	3	3.6
CO3	4	4	5	3	5	4	5	2	1	3	3.6
CO4	5	4	4	5	4	4	5	2	1	3	3.7
CO5	5	3	4	2	4	4	5	2	2	2	3.3
Mean Overall Score							3.64				

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO	$Ps = \frac{\text{Total of}}{\text{Total No. of Po}}$		Mean Overall Sc	ore of COs = $\frac{\text{Tota}}{\text{Tc}}$	al of Mean Score otal No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : BCA

Part III: Core-2

Semester : I Sub. Code U22CU2P Hours : 6 P/W 75Hrs P/S Credits : 3

TITLE OF THE PAPER: PROGRAMMING IN C LAB

Pedagogy	Hours	Practicals	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	6	4	-	1	-
SYLLABUS					
1. Write	a program	in C to find	the maximum an	d minimum element in an arr	ay. (user input)
2. Write	a program	in C to print	all unique eleme	ents in an array. (user input)	
	a Program functions)		ck Whether a stri	ng is Palindrome or Not (with	nout using default
4. Write	a program	in C to men	u driven program	for string manipulation using	g switch case
5. Write	a program	in C to Sum	of digit		
6. Write	a program	in C to chec	k a given number	r Armstrong or not.	
7. Write	a program	in C to print	Pascal triangle u	ipto n rows.	
Sampl	e Input: 5	-	-	-	
Sampl	e Output:				
	1				
	1				
	11				
	121				
	1331				
1	4641				
8. Write	a program	in C to conv	vert decimal num	ber to binary number using th	e function
9. Write	a program	in C to searce	ch an element usi	ng linear search technique.	
10. Write	a program	in C to add	two Matrices and	display matrix format with r	esult
11. Write	a program	in C to print	Fibonacci Series	s using recursion.	
	1 0	-	ementation of Di	•	
	1 0			vowels and consonants in a st	ring using a pointer.
	1 0			mation in a text file	
			•	es from an unsigned int using	
	a program trix B)	in C for mu	ltiplication of two	o matrices (User input: row, c	olumn, Matrix
17. Write	a program	in C to Find	ing the No. of ch	aracters, words and lines fror	n a given text file
18. Write	a program	in C to copy	a file in another	name.	
19. Write	a program	in C to Bina	ry Search		
20 Write	o program	in C to road	and write inform	ation of an employee using s	tructure

20. Write a program in C to read and write information of an employee using structure

21.Write a Program in C to design Log In screen, check username and password using structure.

Programme : B.C.A Semester : II Sub. Code : U22CU3

Part III: Core 3 Hours : 6 P/W 60Hrs P/S Credits : 5

TITLE OF THE PAPER: OBJECT ORIENTED PROGRAMMING WITH C++

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT						
	6	2	1	1	-						
	PREAMBLE: To develop knowledge in object oriented programming concepts. To design Programs in C++.										
		COUR	SE OUTCOME		Unit	Hrs P/S					
At the end of t	he Semes	ter, the Stud	ents will be able t	0							
UNIT 1 CO1:	Design p	rograms wit	h object and class	es.	1	12					
UNIT 2 CO2:		he significat developmen	nce of object orien t.	nted concepts for	2	12					
UNIT 3 CO3:	Apply O	oject Oriente	ed Programming (Concepts.	3	12					
UNIT 4 CO4:	4	12									
UNIT 5 CO5:	UNIT 5 CO5 : Design the application software using C++.										

SYLLABUS

UNIT I:

Software Crisis – Software Evolution – Basic Concepts of Object-Oriented Programming – Benefits of OOP – Object-Oriented Languages - Applications of OOP – Application of C++ - Structure of a C++ Program – Tokens – Keywords – Identifiers – Basic Data Types – User-defined Data types – Derived data types – Symbolic constants – Type compatibility – Declaration of variables – Dynamic initialization of variables –Reference variables – Operators in C++ - Manipulators – Type cast operator – Expressions and their types-Implicit conversions – Control structures – The main function – Function prototyping – inline functions – Function overloading.

UNIT II:

Specifying a class – Defining member functions – Making an outside function inline – Nesting of member functions – Private member functions – Array within a class – Memory allocation for objects – Static data members – Static member functions – Array of objects - Objects as function arguments – Friendly functions – Returning objects – Constant member functions – Constructors – Parameterized constructor – Multiple constructors in a class – Constructors with default arguments – Dynamic initialization of objects – Copy constructor – Destructors.

UNIT III:

Defining operator overloading – Overloading unary operators – Overloading binary operators – Overloading binary operators using friend function – Rules for overloading operators - Defining derived classes – Single inheritance – Making a private member inheritable – Multilevel inheritance –

Multiple inheritance – Hierarchical inheritance – Hybrid inheritance - Virtual base classes – Constructors in derived class – Member classes: Nesting of classes.

UNIT IV:

Pointer to objects – this pointer – Pointers to derived classes – Virtual functions –Pure virtual functions – C++ Stream classes – Unformatted I/O operations –Managing output with manipulator

UNIT V:

Classes of file stream operations – Opening and Closing files – Detecting end of file – More about open() function – File modes, File pointers and their manipulation – Sequential input and output operations – Command-line arguments- Templates: class templates and function templates.

TEXT BOOKS:

Object Oriented Programming with C++, E. Balagurusamy, McGraw Hill Education (India) Private Limited, New Delhi, *Sixth Edition*-2013

REFERENCES:

- 1. C++ The Complete Reference, Herbert Schildt, TMH, 1998.
- 2. C++ How to Program, Paul Deitel, Harvey Deitel, PHI, Ninth edition (2014).
- 3. Ashok N.Kamthane, Object Oriented Programming with ANSI & Turbo C ++, Pearson Education, 2006.
- 4. Object-Oriented Programming Using C++, Alok Kumar Jagadev, Amiya Kumar Rath and SatchidanandaDehuri, Prentice-Hall of India Private Limited, New Delhi, 2007.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Software Crisis – Software Evolution – Basic Concepts of Object-Oriented Programming – Benefits of OOP – Object-Oriented Languages - Applications of OOP – Application of C++	4	Lecture
	- Structure of a C++ Program – Tokens – Keywords – Identifiers – Basic Data Types – User-defined Data types – Derived data types – Symbolic constants – Type compatibility – Declaration of variables – Dynamic initialization	4	Peer Teaching

	of variables –Reference variables		
	Operators in C++ - Manipulators – Type cast operator – Expressions and their types-Implicit conversions – Control structures – The main function – Function prototyping – inline functions – Function overloading.	4	Lecture
UNIT 11			
	Specifying a class – Defining member functions – Making an outside function inline – Nesting of member functions – Private member functions – Array within a class – Memory allocation for objects – Static data members – Static member functions	4	Lecture
	Array of objects - Objects as function arguments – Friendly functions – Returning objects – Constant member functions	4	Lecture
	Constructors – Parameterized constructor – Multiple constructors in a class – Constructors with default arguments – Dynamic initialization of objects – Copy constructor – Destructors.	4	Lecture
UNIT III	5 17		
	Defining operator overloading – Overloading unary operators – Overloading binary operators – Overloading binary operators using friend function – Rules for overloading operators	4	Lecture
	Defining derived classes – Single inheritance – Making a private member inheritable – Multilevel inheritance – Multiple inheritance – Hierarchical inheritance – Hybrid inheritance -	5	Lecture
	Virtual base classes – Constructors in derived class – Member classes: Nesting of classes.	3	Lecture
UNIT IV			
	Pointer to objects – this pointer – Pointers to derived classes –	5	Videos
	Virtual functions – Pure virtual functions –	3	Lecture

	C++ Stream classes – Unformatted I/O operations – Managing output with manipulators.	4	Lecture
UNIT V			
	Classes of file stream operations – Opening and Closing files – Detecting end of file – More about open() function –	4	Lecture
	File modes, File pointers and their manipulation – Sequential input and output operations – Command-line arguments-	4	PPT
	Templates: class templates and function templates.	4	Lecture

Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)								Mean scores of		
(Cos)											Cos
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	4	3	3	2	4	5	3	3	5	3.5
CO2	4	3	2	2	3	4	5	2	5	3	3.3
CO3	2	4	4	3	5	4	5	2	1	3	3.3
CO4	5	4	3	5	4	2	5	2	1	3	3.4
CO5 5 3 4 2 4 4 5 2 2 2 2										3.3	
	Mean Overall Score										

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of	f COs = <u>Total</u> Total No. of	<u>of Valu</u> e Pos & PSOs	Mean Overall S	Score of $COs = \frac{1}{2}$	Total of Mean Score Total No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
Course Designer:	Departme	ent of Computer Applications

29

Part III: Allied – 1

Programme : BCA

Semester : II Hours : 3 P/W 75 Hrs P/S Sub. Code : U22AUU2 Credits : 3 TITLE OF THE PAPER: PROBABILITY AND STATISTICS Pedagogy Hours Lecture Peer Teaching GD/VIDOES/TUTORIAL ICT

Pedagogy	Hours	Lecture	Peer Teaching	ICT			
	5	5	-				
PREAMBLI	E:						
To	o impart th	e basices of	Probability and st	atistical.			
		COLU			TT •	U D/0	
		COUR	SE OUTCOME		Unit	Hrs P/S	
At the end of	the Semes	ter, the Stud	lents will be able t	0			
UNIT 1 CO	-		ncept of Probabili	ty and Conditional	1	15	
	probabili	ty.					
UNIT 2 CO2	2: Summar	ize the conc	ept of random vari	iables, expectations and	2	15	
	moment	generating f	unctions.				
UNIT 3 CO3	UNIT 3 CO3: Discuss about some standard distributions.						
UNIT 4 CO4	4	15					
UNIT 5 COS	5: Understa	ind the conc	ept of testing of h	ypothesis.	5	15	

SYLLABUS

UNIT I:

Mean Medium, Mode, Standard Deviation, Mean Deviation, and Quartile Deviation.

UNIT II:

Curve Fitting – Principle of Least Square – Fitting a Straight Line – Fitting a Second Degree Parabola – Fitting Exponential Curve.

UNIT III:

Correlation – Rank Correlation – Regression – Correlation Coefficient for a Vicariate – Frequency Distribution.

UNIT IV:

Probability – Conditional Probability – Random Variables – Discrete Random Variables – Continuous Random Variables – Mathematical Expectations – Moment Generating Functions.

UNIT V:

Some Special Distribution – Binomial Distribution – Poisson distribution – Normal Distribution.

TEXT BOOKS:

Statistics, S. Arumugam and A. ThangapandiIssac, New Gamma Publishing House.

REFERENCES:

- 1. KishorS.Trivedi Probability and statistics with reliability queuing and Computer Science Applications Prentice Hall of India(P) Ltd., New Delhi 1997.
- 2. S. Arumugam Statistics, Gamma Publishers, Palayankotai, 1997.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT 1		•	
	Mean Medium, Mode,.	5	Lecture
	Standard Deviation,	5	Lecture
	Mean Deviation, and Quartile Deviation	5	Lecture
UNIT 11		•	
	Curve Fitting – Principle of Least Square – Fitting a Straight Line –.	5	Lecture
	Fitting a Second Degree Parabola	5	Lecture
	– Fitting Exponential Curve	5	Lecture
UNIT III		•	•
	Correlation – Rank Correlation –	5	Lecture
	Regression –	5	Lecture
	Correlation Coefficient for a Vicariate – Frequency Distribution.	5	Lecture
UNIT IV			
	Probability – Conditional Probability – Random Variables —	5	Lecture
	.Discrete Random Variables – Continuous Random Variables	5	Lecture
	Mathematical Expectations – Moment Generating Functions	5	Lecture
UNIT V		1	
	Some Special Distribution – Binomial Distribution –	5	Lecture
	Poisson distribution	6	Lecture
	Normal Distribution.	4	Lecture

Course Outcomes (Cos)	Programme Outcomes (POs) Programme Specific				Programme Specific Outcomes (PSOs)						
	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO2	PSO3	PSO4	PSO5	
CO1	3	4	3	4	2	2	5	3	3	5	3.4
CO2	4	3	2	2	2	3	5	2	5	3	3.1
CO3	2	4	4	3	5	2	5	2	1	3	3.1
CO4	5	4	3	5	4	3	5	2	1	3	3.5
CO5 5 3 1 2 4 5 5 2 2 2 2									3.1		
	Mean Overall Score										3.2

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of N</u> Total No. of Pos		Mean Overall Sco		al of Mean Score otal No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPL	20%	20%

Course Designer: Department of Computer Applications.

Programme : B.C.A

Semester : II

Part III: Core-5 Hours : 3 P/W 60Hrs P/S

: Sub. Code U22CU4P

22CU4P Credits :3 TITLE OF THE PAPER: PROGRAMMING IN C++ LAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	4	3	-	1	-
SYLLABUS					
1. Gener	ate prime i	numbers betw	ween the given tw	o numbers.	
2. Perfor	m arithme	tic operation	s using Inline fund	ction.	
3. Accep	t a three di	igit number a	and display it in w	ords.(Example 123 should be	printed out as One
Two T	Three)				
4. Find t	he sum of	given numbe	rs using function	with default arguments.	
5. Swap	two values	s using metho	ods of passing arg	uments in function	
6. Prepar	e a studen	t Record usin	ng class and objec	t.	
7. Find t	he area of	geometric sh	apes using function	on overloading.	
8. Illustra	ate the con	cept of Frier	d function.		
9. Demo	nstrate def	ault construc	tor or no argumer	nt constructor.	
10. Demo	nstrate par	ameterized c	onstructor.		
11. Demo	nstrate cop	y constructo	r.		
12. Demo	nstrate con	structor over	rloading.		
13. Demo	nstrate des	tructors.			
14. Demo	nstrate con	structor usin	g "this" pointer.		
15. Demo	nstrate con	structor with	n default argumen	ts.	
16. Progra	ım using n	nanipulators.			
17. Perfor	m operator	r overloading	g for Unary minus	, unary increment and unary of	decrement
18. Conca	tenate two	strings using	g the concept of B	inary operator overloading.	
19. Perfor	m addition	and subtrac	tion of complex n	umbers using Binary Overloa	ding.
20. Create	student m	ark sheet usi	ng single inherita	nce.	
21. Prepar	e employe	e informatio	n using multiple i	nheritance.	
22. Proces	ss employe	e details using	ng hierarchical inh	neritance.	
-		-	tual functions.		
24. Implei	ment the co	oncept of vir	tual base class.		
	-		using function te	-	
26. Search	the key e	lement in the	given set of num	bers using class template.	
	e	list using bi	•		
		f objects in a			
	-		mmand-line argur		
30. Imple	nent a file	handling con	ncept using seque	ntial access.	
31. Imple	nent file h	andling conc	ept using random	access	

Programme : BCA Semester : II Sub. Code : U22CU5P

Part III: Skill BasedElective-2 Hours : 4 P/W 30Hrs P/S Credits : 4

TITLE OF THE PAPER: SPSS LAB

Pedagogy	Hours	Practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	2	2	-	-	-		
SYLLABUS	SYLLABUS						
1. Frequency Tables							
2. Graphic	2. Graphical Representation Of Data						
3. Measures Of Central Tendencies							
4. Methods Of Dispersion							
5. Simple Correlation							
6. Correlation Coefficient							
7. Regression Trend							
8. Test Of Significance Large Sample Test (Z-Test)							
9. Test Of Significance Small Sample Test (T-Test)							
10. Chi-square Test							
11. Testing Hypothesis About Two Independent Means.							

Programme : BCAPart III: Core-7Semester : IIIHours : 6 P/W 60Hrs P/SSub. Code : U22CU6Credits : 5TITLE OF THE PAPER: PROGRAMMING IN JAVA

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	4	2	1	1	-	
PREAMBLE:	:					
• To imp	art knowl	edge in Plat	form Independent	t programming language Java	ι.	
• To exp	• To explore Package and Applet concepts.					
• To enh	• To enhance the knowledge in Multithread and Graphics concepts.					
COURSE OUTCOME					Unit	Hrs P/S
At the end of the Semester, the Students will be able to						
UNIT 1 CO1 : Develop Java application using OOP concepts with appropriate program structure.					1	12
UNIT 2 CO2 : Understand the concepts of polymorphism and inheritance.					2	12
UNIT 3 CO3 : Develop packages and interfaces in a Java program.					3	12
UNIT 4 CO4: Implement exception handling in java.				4	12	
UNIT 5 CO5 : To design an applet program using AWT.					5	12

SYLLABUS

UNIT I:

JavaEvolution: Java Features – How Java differs from C and C++ – Java and Internet – Java and World Wide Web – Web Browsers – Hardware and Software Requirements – Java Environment. Overview of Java Language: Simple Java Program – Java Program Structure – Java Tokens – Java Statements – Implementing a Java Program – Java Virtual Machine – Command Line Arguments. Constants – Variables – Data types – Declaration of Variables – Giving Values to variables – Scope of Variables – Symbolic Constants – Type Casting. Operators and Expressions: Arithmetic Operators – Relational Operators – Logical Operators – Assignment Operators – Increment and Decrement Operators – Conditional Operators – Bitwise Operators – Special Operators – Arithmetic Expressions – Evaluation of Expressions – Precedence of Arithmetic Operators – Operator Precedence and Associativity – Mathematical Functions. Decision Making and Branching: Decision Making with If statement – Simple If Statement – If else Statement – Nesting If Else Statement – the ElseIf Ladder – The switch Statement – The ?: operator. Decision Making and Looping: The while statement – The do statement – The for statement – Jumps in Loops.

UNIT II:

Class, Objects and Methods: Defining a Class – Fields Declaration – Methods Declaration – Creating Objects – Accessing class members – Constructors – Methods Overloading – Static Members – Nesting of Methods – Inheritance – Overriding Methods – Final Variables and Methods – Final Classes – Finalizer Methods – Abstract Methods and Classes – Visibility Control. Arrays, Strings and Vectors: One – dimensional Arrays – creating an Array – Two dimensional Arrays – Strings – Vectors – Wrapper Classes – Enumerated Types. Interfaces: Multiple Inheritance : Defining Interfaces – Extending Interfaces – Implementing Interfaces – Accessing Interface Variables.

UNIT III:

Packages: Java API Packages – Using system Packages – Naming Conventions – Creating Packages – Accessing a Package – Using a Package – Adding a Class to a Package – Hiding Classes – Static Import. Multithreaded Programming: Creating Threads – Extending the Thread Class – Stopping and Blocking a Thread – Life Cycle of a Thread – Using Thread Methods – Thread Exceptions – Thread Priority – Synchronization – Implementing the Runnable Interface.

UNIT IV:

Managing Errors and Exceptions: Types of Errors – Exceptions – Syntax of Exception Handling Code – Multiple Catch Statements – Using Finally Statement – Throwing our own Exceptions – Using Exceptions for debugging. Applet Programming: How Applets differ from Applications – Preparing to write Applets – Building Applet Code – Applet Life Cycle – Creating an executable Applet – Designing a WebPage – Applet Tag – Adding Applet to HTML file – Running the Applet.

UNIT V:

Graphics Programming: The Graphics Class – Lines and Rectangles – Circles and Ellipses, Drawing Arcs – Drawing Polygons – Line Graphs – Using Control Loops in Applets – Drawing Bar Charts. Managing Input/Output Files in Java: Concept of Streams – Stream Classes – Byte Stream Classes – Character Stream Classes – Using Streams – Other Useful I/O Classes – Using the file Class – I/O Exceptions – Creation of Files – Reading / Writing Characters – Reading / Writing Bytes – Handling Primitive Data Types – Concatenating and Buffering Files – Random Access Files – Interactive Input and Output.

TEXT BOOKS:

Programming with Java, E.Balagurusamy, A primer, Tata McGraw Hill, Fourth Edition, 2008. **REFERENCES:**

- 1. Object Oriented Programming Through JAVA- P.Radha Krishna, University Press, 2007.
- 2. Java and Object-Oriented Programming Paradigm, Debasish Jana, Prentice Hall of India Private Limited, New Delhi, 2008. Edition, July 2014 Reprint.
- 3. The Complete Reference, Java2, Herbert Schildt, Tata McGraw Hill, Fifth Edition, 2002.
- 4. Introduction to Java Programming ,K.Somasundaram, Jaico Publications, 2013.
- 5. Core Java Vol. I Fundamentals, Cay S. Horstmann, Pearson Education; Tenth edition, 2016.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	JavaEvolution: Java Features – How Java differs from C and C++ – Java and Internet – Java and World Wide Web – Web Browsers – Hardware and Software Requirements – Java Environment.	5	Lecture
	Overview of Java Language: Simple Java Program –Java Program Structure – Java Tokens – JavaStatements – Implementing a Java Program – JavaVirtual Machine – Command Line Arguments.Constants – Variables – Data types – Declaration ofVariables – Giving Values to variables – Scope ofVariables – Symbolic Constants – Type Casting.	4	PPT
	Operators and Expressions: Arithmetic Operators – Relational Operators – Logical Operators – Assignment Operators – Increment and Decrement Operators – Conditional Operators – Bitwise Operators – Special Operators – Arithmetic Expressions – Evaluation of Expressions – Precedence of Arithmetic Operators – Operator Precedence and Associativity – Mathematical Functions. Decision Making and Branching: Decision Making with If statement – Simple If Statement – If else Statement – Nesting If Else Statement – the ElseIf Ladder – The switch Statement – The ?: operator. Decision Making and Looping: The while statement – The do statement – The for statement – Jumps in Loops.		Peer Teaching
UNIT 11			
	Class, Objects and Methods: Defining a Class – Fields Declaration – Methods Declaration – Creating Objects – Accessing class members – Constructors – Methods Overloading – Static Members – Nesting of Methods – Inheritance – Overriding Methods – Final Variables and Methods – Final Classes – Finalizer Methods – Abstract Methods and Classes – Visibility Control.	4	Lecture
	Arrays, Strings and Vectors: One – dimensional Arrays – creating an Array – Two dimensional Arrays –	4	Peer Teaching

			-
	Strings – Vectors – Wrapper Classes – Enumerated Types.		
	Interfaces: Multiple Inheritance : Defining Interfaces – Extending Interfaces – Implementing Interfaces – Accessing Interface Variables.	4	Lecture
UNIT III			
	Packages: Java API Packages – Using system Packages – Naming Conventions – Creating Packages – Accessing a Package – Using a Package – Adding a Class to a Package – Hiding Classes – Static Import.	4	Lecture
	Multithreaded Programming: Creating Threads – Extending the Thread Class – Stopping and Blocking a Thread – Life Cycle of a Thread – Using.	4	Lecture
	Thread Methods – Thread Exceptions – Thread Priority – Synchronization – Implementing the Runnable Interface	4	Lecture
UNIT IV	_II		
	Managing Errors and Exceptions: Types of Errors – Exceptions – Syntax of Exception Handling Code – Multiple Catch Statements – Using Finally Statement – Throwing our own Exceptions – Using Exceptions for debugging.	4	Lecture
	Applet Programming: How Applets differ from Applications – Preparing to write Applets – Building Applet Code – Applet Life Cycle – Creating an executable Applet	4	PPT
	 Designing a WebPage – Applet Tag – Adding Applet to HTML file – Running the Applet. 	4	Lecture
UNIT V			1
	Graphics Programming: The Graphics Class – Lines and Rectangles – Circles and Ellipses, Drawing Arcs – Drawing Polygons – Line Graphs – Using Control Loops in Applets – Drawing Bar Charts.	4	Lecture
	Managing Input/Output Files in Java: Concept of Streams – Stream Classes – Byte Stream Classes –	4	PPT

Character Stream Classes – Using Streams – Other Useful I/O Classes – Using the file Class – I/O
Exceptions – Creation of Files –
Reading / Writing Characters – Reading / Writing 4 Lecture Bytes – Handling
Primitive Data Types –
Concatenating and Buffering Files – Random Access
Files – Interactive Input and Output.

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	3	4	2	2	5	3	3	5	3.3
CO2	4	5	2	2	2	3	5	2	5	3	3.3
CO3	2	3	4	3	5	2	5	2	1	3	3
CO4	5	4	3	5	4	3	5	2	1	3	3.5
CO5	5	3	1	2	4	5	5	2	2	2	3.1
	Mean Overall Score									3.24	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	Ds = <u>Total of</u> Total No. of P		Mean Overall Sco		al of Mean Score otal No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : BCA Semester : III

Part III: Core-8 Hours : 6 P/W 45Hrs P/S

Sub. Code : U22CU7P

Credits : 3

TITLE OF THE PAPER: PROGRAMMING IN JAVA LAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	3	-	-						
SYLLABUS									
1. To imp	lement a s	simple temp	erature conversion	n program.					
2. To perf	orm addit	tion and subt	raction of comple	ex numbers using class and o	bjects.				
3. To perf	orm volu	me calculation	on using method o	overloading.					
4. Using c	ommand	line argume	nts, test if the give	en string is palindrome or not	t.				
5. String r	nanipulat	ion using St	ring Methods (Us	e of any five String methods	are preferred).				
6. Write a	program	to fill names	s into a list .Also,	copy them in reverse order in	nto another list. If				
the nam	ne contain	is any numer	ric value throw an	exception "Invalid Name"					
7. Program	n to demo	onstrate the u	ise of any two bui	lt-in exceptions in Java.					
8. To perf	orm mult	iplication of	matrices using cl	ass and objects.					
U			process student m						
10. Implem	ent multi	ple inheritan	ce for payroll pro	cessing.					
11. Implem	ent interf	face for area	calculation for di	fferent shapes.					
	· ·		thmetic" that cont am to use the pac	ains methods to deal with all kage.	arithmetic				
			one of the thread given limits.	generate Fibonacci series and	l another generate				
	-	ion called ": r than 100.	Marks Out of b	ound:" Exception, that is the	rown if the entered				
15. Program	n to demo	onstrate the u	se of Wrapper cla	ass methods.					
16. File Pro	cessing u	ising Byte st	ream.						
17. File Pro	ocessing u	ising Charac	ter Stream.						
18. Write applets to draw the following Shapes:									
	(a).Cone	(b).Cylinder	(c).Square inside	a Circle (d).Circle inside a S	Square				
19. Write a	n applet H	Program to d	esign a simple ca	lculator.					
20. Write a	n Annlat	Due energy te	minnets a hall as	4h C					

Programme : BCA Semester : III Sub. Code : U22AUU3

Part III: Allied-2 Hours : 4 P/W 75Hrs P/S Credits : 3

TITLE OF THE PAPER: E-COMMERCE

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	5	2	-	1	2	2			
	PREAMBLE: To impart the learners the basic concepts of Electronic Commerce and its applications. T equip the learners with knowledge about Electronic payment procedures and security issues in it.								
		COU	RSE OUTCOME		Unit	Hrs P/S			
At the end of the Semester, the Students will be able to									
UNIT 1 CO1:		-		communication Technologies, on	1	15			
the internet in Business Operations. UNIT 2 CO2: Analyze Electronic Payment System and its environment.									
UNIT 3 CO3: Make ethical decisions related to e-commerce based on laws, privacy, and security.									
UNIT 4 CO4: Explain the steps, tools, and security considerations needed to start selling online.									
UNIT 5 CO5:	Discuss vari	ous types of d	igital documents.		5	15			

SYLLABUS

UNIT I:

Welcome to Electronic Commerce: Electronic Commerce Framework - Electronic Commerce and Media Convergence. The Network Infrastructure for Electronic Commerce: Components of I-way – Network Access equipment – Global Information Distribution Networks.

UNIT II:

Network Security and Firewalls: Firewalls and network Security – Data and message Security. Electronic Commerce and World Wide Web: Architectural Framework for Electronic Commerce – World Wide Web as the Architecture – Technology behind the Web – Security and the Web. **UNIT III:**

Electronic Payment Systems: Types of Electronic Payment systems – Digital Token-based Electronic Payment Systems – Smart Cards and Electronic Payment Systems – Credit card based Electronic Payment Systems – Designing Electronic Payment Systems.

UNIT IV:

Inter organizational Commerce and EDI – Electronic Data Interchange – EDI: Legal, security and privacy issues. EDI Implementation, MIME and Value-Added Networks – EDI software Implementation – EDI envelope for message transport – Value-Added Network(VAN).

UNIT V:

Intra organizational Electronic Commerce: Internal Information System – Workflow automation and coordination – Supply Chain Management (SCM). Corporate Digital Library: Type of Digital

Documents. Advertising and Marketing on the Internet : Advertising on the Internet – Chatting online marketing process.

TEXT BOOKS: Frontiers of Electronic Commerce, Ravi Kalakota, Andrew Whinston, Perarson Education, New Delhi, 1996.

REFERENCES:

- 1. E-Commerce and its applications, Dr. U.S. Pandey, Rahul Srivastava, SaurabhShukla, S. Chand & Company Ltd., New Delhi, 2008.
- 2. Electronic Commerce, Gary Schneider. P., Cengage Learning US, XII Edition, 2017.
- 3. Electronic Commerce A Managerial Perspective, Efrain Turban, Jae Lee, David King, Michael Chung, H., Perarson Education, New Delhi, 2000.
- 4. Electronic Commerce, Peter Loshin, John R. Vacca, Charles River Media, 2003.
- 5. Electronic Commerce, Principles and Practice, HosseinBidgoli, Academic Press, 2002.
- 6. Electronic Commerce, Elias M. Awad, Prentice Hall, 2002.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Welcome to Electronic Commerce: Electronic Commerce Framework - Electronic Commerce and MediaConvergence.	5	Lecture
	TheNetworkInfrastructureforElectronic Commerce: Components of I-way –	5	ICT
	Network Access equipment – Global Information Distribution Networks.	5	Lecture
UNIT 11			
	Network Security and Firewalls: Firewalls and network Security – Data and message Security.	5	Lecture
	Electronic Commerce and World Wide Web: Architectural Framework for Electronic Commerce	5	PPT
	– World Wide Web as the Architecture – Technology behind the Web – Security and the Web.	5	PPT

UNIT III			
	Electronic Payment Systems: Types of Electronic Payment systems – Digital Token-based Electronic Payment Systems –	6	Lecture
	Smart Cards and Electronic Payment Systems	4	Videos
	Credit card based Electronic Payment Systems – Designing Electronic Payment Systems.	5	Videos
UNIT IV	·		
	Interorganizational Commerce and EDI – Electronic Data Interchange – EDI: Legal, security and privacy issues. EDI Implementation,	5	Lecture
	MIME and Value-Added Networks – EDI software Implementation	4	Lecture
	– EDI envelope for message transport – Value-Added Network(VAN).	6	Lecture
UNIT V			
	Intraorganizational Electronic Commerce: Internal Information System –	4	Lecture
	Workflow automation and coordination – Supply Chain Management (SCM). Corporate Digital Library: Type of Digital Documents.	4	Lecture
	Advertising and Marketing on the Internet : Advertising on the Internet – Chatting online marketing process.	4	Lecture

Course Outcomes (Cos)	Pro	gramn	ne Outco	omes (POs)	Pro	Programme Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO2	PSO3	PSO4	PSO5		
CO1	3	4	3	4	4	2	5	3	3	5	3.6	
CO2	4	3	2	2	5	3	5	2	5	3	3.4	
CO3	2	4	4	3	2	2	5	2	1	3	2.8	
CO4	5	4	3	5	2	3	5	2	1	3	3.3	
CO5	5	3	3	2	3	5	5	2	2	2	3.2	
	Mean Overall Score									3.26		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		al of Mean Score otal No. of COs

BLOOM"S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer: Department of Computer Applications

Programme : BCA

Semester : V Sub. Code :U22NMU1

Part III: Non Major Elective-1 Hours : 2 P/W 30Hrs P/S Credits : 2

TITLE OF THE PAPER: COMPUTER FUNDAMENTALS

				r	-	
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	2	1	-	1	-	
PREAMBLE:	·					
• To intro	oduce abo	out computer	r and its various p	arts		
• To stud	ly about v	arious input	, output and mem	ory devices which are widely	y used	
• To stud	ly about v	ariety of con	nputer software a	nd its functionalities		
		COUR	SE OUTCOME		Unit	Hrs P/S
At the end of the Semester, the Students will be able to						
UNIT 1 CO1:	1	6				
UNIT 2 CO2: Ability to apply Boolean algebra in circuit design.						6
UNIT 3 CO3 : Acquaintance of knowledge to design combinational and sequential circuits.						6
UNIT 4 CO4:	4	6				
UNIT 5 CO5:	Familiari	ty in inform	ation storage and	retrieval concepts.	5	6

SYLLABUS

UNIT I:

Introduction to computers: Types of computers-Characteristics of computers-What computer can't do.

UNIT II:

Classification of digital computer system: Microcomputers-Mini computers-Mainframe computers-Supercomputers-Network computers.

UNIT III:

Anatomy of digital computer: Function and components of a computer-Central processing unit(CPU)-Memory-How the CPU and memory work. **UNIT IV:**

Auxiliary storage devices: Hard disk-CD-ROM. Input devices: Keyboard-Mouse-Joystick-Scanners-Digital camera-Magnetic ink character recognition (MICR)-Optical character recognition (OCR)-Optical mark recognition -Bar code reader-Speech input devices –Touch screen-Light

pen.Output devices: classification of monitors- Based on color-characteristics of monitor-printer-plotter-Sound cards and Speakers.

UNIT V:

Introduction to computer software: Operating systems-Utilities-compilers and interpreters- Word processors-Spreadsheets-Presentation Graphics-Database management systems (DBMS) –ImageProcessors. Operating Systems: Functions of an operating system-Classification of operating system.

TEXT BOOKS:

1) Fundamentals of Information Technology, Alexis Leon and Mathews Leon, Vikas Publishers. **REFERENCES:**

1) The Internet Book, Douglas E. Comer, Fourth Edition, PHI Learning Pvt. ltd., New Delhi, 2009.

2) Using the Internet the Easy Way, Young Kai Seng, Minerva Publications, First Edition, 2000.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction to computers: Types of computers-	2	Peer Teaching
	Characteristics of computers-	2	Lecture
	What computer can"t do.	2	ICT

	Classification of digital computer system: Microcomputers-	2	PPT
	Mini computers-Mainframe computers-	2	PPT
	Supercomputers-Network computers.	2	Lecture
UNIT III			
	Anatomy of digital computer: Function and components of a computer-	2	Videos
	Central processing unit(CPU)- Memory-	2	PPT
	How the CPU and memory work.	2	Lecture
UNIT IV			
	Auxiliary storage devices: Hard disk-CD-ROM. Input devices: Keyboard-Mouse-Joystick- Scanners-Digital camera- Magnetic ink character recognition	2	Lecture
	(MICR)-Optical character recognition (OCR)-Optical mark recognition -Bar code reader-Speech input devices – Touch screen-Light pen.	2	Lecture
	Output devices: classification of monitors- Based on color- characteristics of monitor- printer-plotter-Sound cards and Speakers.	2	Lecture

Introduction to computer	2	Lecture
software: Operating systems-		
Utilities-compilers and		
interpreters Operating Systems:		
Functions of an operating		
system-Classification of		
operating systems.		
-Word processors-Spreadsheets-	2	Lecture
Presentation Graphics-Database		
management systems (DBMS)		
-Image Processors.		
Operating Systems: Functions	2	Lecture
of an operating system-		
Classification of operating		
systems.		

Course Outcomes (Cos)	Programme Outcomes (POs)			Programme Specific Outcomes (PSOs)				Mean scores of Cos			
(005)	PO1	PO2	PO3	PO 4	PO5	PSO1	PSO2	PSO3	PSO4	PSO 5	
CO1	2	4	3	4	3	2	5	3	3	5	3.4
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	3	3.1
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	2	2	3.1
	Mean Overall Score							3.24			

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0

Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score ofCOs =	Mean Score ofCOs = <u>Total ofValue</u>			Mean Overall Score of COs = <u>Total of Mean Score</u>		
	Total No. of Pos	& PSOs				Total No. of COs
BLOOM"S	INTERNAL		EXT	ERNAL		
TAXANOMY						
KNOWLEDGE	50%		50%			
UNDERSTANDING	30%		30%			
APPLY	20%		20%			

Course Designer:

Department of Computer Applications

Programme : BCA			
Semester	: IV		
Sub. Code	: U22CU8		

Part III: Core-9 Hours : 4 P/W 60Hrs P/S Credits : 4

TITLE OF THE PAPER:DATA STRUCTURES

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	4	2	1	1	-			
PREAMBLE:	:							
• Be exp	osed to so	orting and se	arching algorithm	s & their analysis.				
• To gain	ı about lir	near data stru	ctures-List, Stack	c and Queue.				
• To acqu	• To acquire about the nonlinear data structures-Tree.							
	COURSE OUTCOME Unit Hrs P/S							
At the end of the	he Semes	ter, the Stud	ents will be able t	0				
UNIT 1 CO1: Understand the sorting and searching algorithms. 1 12								
UNIT 2 CO2: Apply and implement stacks and queue.						12		
UNIT 3 CO3: Understand the different types of linked lists.						12		
UNIT 4 CO4:	4	12						
UNIT 5 CO5:	Analyze	different gra	phs. Its tree trave	rsal.	5	12		

SYLLABUS

UNIT I:

Introduction: Algorithm – Writing structured program, Analyzing algorithm-Divide and conquer –The general method, Binary search, Merge sort, Quick sort, Selection sort.

UNIT II:

Introduction: Arrays – Ordered List – Sparse Matrices -Representation of Arrays- Stacks andQueues – A Mazing problem – Evaluations of expressions.

UNIT III:

Linked list: Singly linked list – linked stacks and queues – polynomial addition – more onlinked list – equivalence relations – doubly linked list.

UNIT IV:

Trees: Basic terminology - binary trees - binary tree representations - binary tree traversal -

threaded binary trees – binary tree representation of trees – application of trees -Set Representation. UNIT V:

Graphs: Terminology and representations – traversals, spanning trees – shortest paths. TEXT BOOKS:

- 1. Fundamentals of Data structures Ellis Horrowitz, SartajSahani, Galgotia Pub., 1998.(Excluding analysis & Lemma)
- Fundamentals of Computer Algorithms Ellis Horrowitz, SartajSahani, SanguthevarRajasekaran, Universities Press – 2nd Edition, 2008.(Excludinganalysis & Lemma)

REFERENCES:

- 1. Data structure using C++, VARSHA H. PATIL, Oxford Higher Education/Oxford University Press, First edition, 2012.
- 2. Fundamentals of Data structures In C++, Ellis Horowitz, SartajSahni, Dinesh Mehta, University press, 2007.
- 3. Data Structures using C, Tanaenbaum A.S.,Langram Y. Augestein M.J, Pearson Education , 2004.
- 4. Introduction to the Design and Analysis of Algorithms, AnanyLevitin, Pearson Education 2003.

E-LEARNING RESOURCES:

- 1. https://www.w3schools
- 2. https://www.programiz.com/dsa
- 3. https://nptel.ac.in/courses/106102064/1

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction: Algorithm – Writing structured program, Analyzing algorithm	5	Lecture
	Divide and conquer – The general method, Binary search, Merge sort,	5	Lecture
	Quick sort, Selection sort.	2	ICT

UNIT 11

CO1

Introduction: Arrays – Ordered List – Sparse Matrices -	5	Lecture
Representation of Arrays-Stacks and Queues –	4	Lecture
A Mazing problem – Evaluations of expressions	3	ICT

UNIT III														
			: Singly queues -		l list – li	inked		5				Lecture		
	poly list -		l additio	n – m	ore on l	inked		4				ICT		
	equivalence relations – doubly linked list.							3				Lecture		
UNIT IV	•								·					
	Trees: Basic terminology – binary trees – binary tree representations –							5		Lecture				
	binary tree traversal – threaded binary trees – binary tree representation of trees							5				ICT		
	appl	lication resenta	of		rees	-Set		2				Videos		
UNIT V	1						1		I					
	Gray repr	phs: esentat		ninolo	ogy	and		5		Videos				
	trav	ersals,	spannin	g trees	5 —			6			-	Lecture		
	shortest paths.							1			-	Lecture		
Course Outcomes	Programme Outcomes (POs) P						rogra	amme Sp	ecific	Ou	itcomes	(PSOs)		Mean scores of Cos
(Cos)	PO1	PO 2	PO3	PO 4	PO5	PSO	01	PSO2	PSO	03	PSO4	PSO5		

CO2	2	3	4	2	2	3	5	2	5	3	4

CO3	5	4	2	3	4	2	5	2	5	3	2
CO4	4	4	5	5	3	3	5	2	1	3	5
CO5	4	3	5	2	1	5	5	2	3	2	5
Mean Overall Score										3.32	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

LOOM"S	INTERNAL	EXTERNAL	
TAXANOMY			
KNOWLEDGE	50%	50%	
UNDERSTANDING	30%	30%	
APPLY	20%	20%	
Cour	rse Designer:	Department of Computer Ap	plications

Programme: BCASemester: IVSub. Code: U22CU9

Part III: Core-4 Hours : 3 P/W 60 Hrs P/S Credits : 3

TITLE OF THE PAPER: DIGITAL PRINCIPLES AND COMPUTER

ORGANISATION

			UNUMBER						
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	4	2	1	1	-				
PREAMBLE:									
To acquire knowledge in digital logic, combinational logic circuit, flip-flops and registers. To discuss about the basic structure of computer, I/O system, memory system and processing unit									
	Unit	Hrs P/S							
At the end of the S									
UNIT 1 CO1: Def	ine the ba	asic compon	ents of a digital co	omputer and their function	1	12			
UNIT 2 CO2: Enh	nance kno	wledge on s	implifying digital	circuits.	2	12			
UNIT 3 CO3: App	3	12							
UNIT 4 CO4: Sin	4	12							
UNIT 5 CO5: De	UNIT 5 CO5: Design various counters.								

SYLLABUS

UNIT I:

Logic circuits:Binary number systems – OR gates – AND gates – Boolean Algebra –NOR gates – NAND Gates. Circuit Analysis and Design: Boolean laws and theorem – Sum of products – Truth table of Karanaugh map – Pairs, Quads and Octets – Karnaugh Simplification – Don"t care conditions - Product of Sums Method – Products of sums simplification.

UNIT II:

Data Processing Circuits: Multiplexers - Demultiplexers – BCD to Decimal Decoders – Encoders – EX OR Gates. Number system and codes: Binary to decimal Conversion – Decimal to Binary conversion – Octal Numbers – Hexa Decimal Numbers.

UNIT III:

Flip Flops: RS Flip flops – D Flipflops – JK Flipflops – JK Master Slave Flip flops. Instruction Codes – Computer Registers – Computer Instruction – Timing and control – Instruction Cycle – Memory reference Instruction – Input – Output and Interrupt – Programming the Basic Computer – Assembly Language.

UNIT IV:

Central Processing Unit – General Register Organization – Stack Organization – Instruction formats

- Addressing mode - Data Transfer and manipulation.

UNIT V:

Input-Output organization – Input-Output Interface – Priority Interrupt – DMA – IOP. – Memory Organisation – Memory Hierarchy –Cache memory – Virtual memory.

TEXT BOOKS:

Digital Principles And Applications by D.P. Leach and A.P. Malvino, Tata McGraw Hill, New Delhi,6th Edition,.

Computer System Architecture by M.Morris Mano, 3 rd Edition, 1998.

REFERENCES:

Digital Systems Principles and Applications by Ronald J. Tocci, Neal S. Widmer, Gregory L.Moss, Pearson Prentice Hall, 6 dition.Computure Organization by Carl Hamacher, Zvonko Vranesic,

Safwat Zaky, Tata McGraw Hill, 5th Edition

E-LEARNING RESOURCES:

- 1. http://nptel.ac.in/courses/117106086/1
- 2. https://swayam.gov.in/courses/1392-digital-circuits-and-systems
- 3. http://nptel.ac.in/courses/106102062/
- 4. https://www.tutorialspoint.com/computer_organization/index.asp

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Logic circuits:Binary number systems – OR gates – AND gates – Boolean Algebra –NOR gates – NAND Gates.	4	Lecture
	Circuit Analysis and Design: Boolean laws and theorem – Sum of products – Truth table of Karanaugh map – Pairs, Quads and Octets –	4	Lecture
	Karnaugh Simplification – Don"t care conditions - 4Product of Sums Method – Products of sums simplification.	4	Lecture
UNIT 11			
	Data Processing Circuits: Multiplexers - Demultiplexers – BCD to Decimal Decoders – Encoders – EX OR Gates.	4	Lecture

	Number system and codes: Binary to decimal	4	Lecture
--	--	---	---------

		Conversion –.	BCA – 20	20-21 – CBCS Patte	rn – SMGAC-MDU
F		Decimal to Binary conversion – Octal Numbe Hexa Decimal Numbers	rs –	4	Lecture
		Hexa Decimal Numbers			
	UNIT III				
		Flip Flops: RS Flip flops – D Flipflops	– JK	4	Lecture

	Flinflong IV Master Slave Flin flong		
	Flipflops – JK Master Slave Flip flops.		
	Instruction Codes – Computer Registers – Computer Instruction – Timing and control –	4	Lecture
	Instruction Cycle – Memory reference Instruction – Input – Output and Interrupt – Programming the Basic Computer – Assembly Language	4	PPT
UNIT IV			
	Central Processing Unit – General Register Organization – Stack Organization –	6	Lecture
	Instruction formats – Addressing mode –	6	Lecture
	Data Transfer and manipulation		Video
UNIT V			
	Input-Output organization – Input-Output Interface – Priority Interrupt –	6	Lecture
	DMA – IOP. – Memory Organisation – Memory Hierarchy	6	Lecture
	-Cache memory – Virtual memory.		PPT

Course Outcomes (Cos)	Prog	ramme	e Outco	mes (P	Os)	Prog	ramme Sj	(PSOs)	Mean scoresof Cos		
	PO1	PO2	PO3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	5	3	3	5	3.4
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	3	3.1
CO4	4	4	5	5	3	4	5	2	1	3	3.6
CO5	4	3	5	2	1	5	5	2	2	2	3.1
Mean Overall Score											3.26

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%		
Scale	1	2	3	4	5		
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0		
Quality	Very Poor	Poor	Moderate	High	Very High		
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Score of COs = <u>Total of Mean Score</u> Total No. of COs				

BLOOM"S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : BCA

Semester : IV Sub. Code : U22AUU4

Part III: Allied-2 Hours : 3 P/W 45Hrs P/S Credits :3

TITLE OF THE PAPER: COMPUTER BASED FINANCIAL ACCOUNTING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	5	3	1	-	1			
PREAMBLE	:							
	• To enable the students gain insights into the fundamental principles of accounting and use them in day-to-day business scenarios.							
		COUR	SE OUTCOME		Unit	Hrs P/S		
At the end of t	At the end of the Semester, the Students will be able to							
UNIT 1 CO1:	Knowin	g the fundan	nentals accounting	5.	1	9		
UNIT 2 CO2: Preparation of journal, ledger and trial balance.						9		
UNIT 3 CO3: Understanding the types of subsidiary books.						9		
UNIT 4 CO4: Acquiring knowledge on Tally.						9		
UNIT 5 CO5 : Having clear idea of preparing final accounts of individuals.						9		
SYLLABUS:					1	1		

UNIT I:

Nature and Scope of Management Accounting- Meaning- Definition- Scope of Management Accounting- Functions of Management Accounting- Management Accounting Vs Financial Accounting- Management Accounting- Vs Cost Accounting- Limitation of Financial Accounting- Advantages of Management Accounting- Limitation of Management Accounting.

UNIT II:

Introduction to Accountancy- Definition- Concepts and Conventions- Types of Accounts and the rules- Preparation of Journal, Ledger, Trail Balance- Subsidiary Books

UNIT III:

Final Accounts- Preparation of Trading Account- Preparation of Profit and Loss account-Preparation of Trading, Profit and Loss account and Balance Sheet with Simple Adjustments (Only Simple Problems)

UNIT IV:

Introduction to Tally: Features of Tally 9 – Company info: Create, Select, Alter and Close or Shut Company – Ledger Creation: Creating, Displaying, Altering and Deleting. F11 – Features and F12 – Configuration.

UNIT V:

Voucher Creation: Receipt, Payment, Contra, Journal, Sales, Purchase, Memo, Display, Alter, Delete, Insert, Statement of Reports: Trail balance, Profit and Loss account, Balance sheet.

TEXT BOOKS:

1. Financial and Management AccountingMADE SIMPLE– Dr.P.S.Boopathi Manickam, P.S.G. Publications, 2009, Fifth Edition.

Unit I: Chapter 1 Unit II : Chapter 2 Unit III: Chapter 3

 Tallly (version 9) – C.NellaiKannan, 2007 Unit IV : Pg. Numbers – 5 to 61 Unit V : Pg. Numbers – 62 to 102

REFERENCES:

- 1. Comdex Tally 9 Dr. NamrataAgrawal, Dream Tech Publications
- 2. Tally (Accounting Software) S.Palanivel, Margham Publications, 2010

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Financial Accounting: Meaning, Nature and scope, Limitations –	3	Lecture
	Accounting Principles: Basic Concepts and Conventions –	3	ICT
	Objectives of accounting – Accounting rules.	3	Lecture

UNIT 11			
	Books and records : Recording of business transactions –	3	Videos
	Types of accounts – Journal – Ledger – Journal Vs Ledger,	4	Lecture
	Subsidiary books – Trial balance.	2	Lecture
UNIT III			
	Final Accounts: Introduction – Trading account –	3	ICT
	Profit and loss account –	4	Videos
	Balance sheet. (Simple problems)	2	Lecture
UNIT IV			
	Introduction to Tally: Features of Tally 9 – Company info: Create, Select, Alter and Close or Shut Company –	3	Lecture
	Ledger Creation: Creating, Displaying, Altering and Deleting.	4	ICT
	F11 – Features and F12 – Configuration.	2	Lecture
UNIT V			
	VoucherCreation:Receipt,Payment,Contra,Journal,Sales,Purchase,	3	Lecture
	Memo, Display, Alter, Delete, Insert,	2	Videos
	Statement of Reports: Trail balance, Profit and Loss	4	Lecture

account, Balance sheet.	

Course Outcomes	Programme Outcomes (POs)			Prog	Programme Specific Outcomes (PSOs)				Mean scores of Cos		
(Cos)	D O 1	DOG	DOA	DO	205	DC01	Daoa	DCOO	DOC 4	DCO	
	PO1	PO2	PO3		PO5	PSO1	PSO2	PSO3	PSO4	PSO	
				4						5	
CO1	2	4	3	4	3	2	2	3	3	5	3.1
CO2	2	2		2	2	2		2	-	2	2.1
	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	3	3.1
CO4	4	4	5	5	3	3	2	2	1	3	3.2
CO5	4	3	5	2	1	5	5	2	2	2	3.1
Mean Overall Score								3.12			

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme :BCA Semester : IV Sub. Code : U22U10P

Part III: Allied Lab Hours : 4 P/W 45Hrs P/S Credits : 4

TITLE OF THE PAPER: TALLY LAB

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	3	2	-	1	-				
List of Progra	ms								
I. Company Cr	eation								
II. Ledger Crea	ation								
III. Voucher C	reation								
a) Cont	ra vouche	er							
b) Payr	nent vouc	cher							
c) Rece	ipt vouch	er							
d) Jour	nal vouch	er							
e) Purc	hase vouc	cher							
f) Sales	counter								
IV. Reports									
a) Day	book								
b) Trail	balance								
c) Final	l Account	S							
	hase Reg								
e) Sales	s Register								
f) Outst	tanding R	eceivable							
	g) Outstanding Payable								
	que Printi	-							
i) Bank	Reconcil	liation Stater	nent						

Programme:BCA

Semester :VI Sub.Code :U22NMU2 Part III: Non majorElective-2 Hours : 2 P/W 30HrsP/S Credits :2

TITLE OF THE PAPER: INTERNET AND ITS APPLICATIONS

Pedagogy	Hour s 2	Lecture 1	Peer Teaching -	GD/VIDOES/TUTORIA L 1	ICT -	
• To learn	 PREAMBLE: To learn the basic concepts of internet and its applications. To familiarize on internet protocols, E-mail services, intranet and extranet. 					
At the end of		E OUTCON ester, the Stu	ME dents will be able	e to	Un it	Hrs P/S
	UNIT 1 CO1 : learning the basic concepts of computer network and its topologies to accesss					
UNIT 2 CO2 : introducing communication media and its principles						6
UNIT 3 CO3	: Able to	understand	the internet acces	sing methodologies	3	6
UNIT 4 CO4 : Able to realize the revolution of Internet in Mobile Devices, Clouds using mail services						6
UNIT 5 CO5 : · Understand the value added networks with its working principle and applications						6

SYLLAB US UNIT

I:

Computer Networks: Introduction-overview of network – Communication processors – Modem – Message Switchers - Communication media – Types of networks – Network Topologies – Networkprotocols – network architecture

UNIT II:

Communication systems: Microwave systems – Communication satellites – Cross link – Componentof a satellite - Radar – Fiber optics.

UNIT III:

Internet and World Wide Web: Whats special about internet – Internet Access – Internet Protocols – Internet Addressing – The World Wide Web (WWW) – Web Pages and HTML – Searching the Web.UNIT IV:

Electronic Mail: Why use E-Mail? – How private is E-Mail? – How E-Mail Works? – E-Mail Namesand Addresses – Mailing Basis – Spamming- Mailing Lists – News Groups.

UNIT V:

Intranets: Introduction – Characteristics of Intranet – Advantages of Intranet- Business Benefits of Intranet – Drawbacks of Intranet – Extranet . Introduction to Multimedia: Multimedia in entertainment

 multimedia in education and training – multimedia on the web – multimedia in office work –multimedia servers and databases.

TEXT BOOKS:

1. Fundamentals of Information Technology, Alexis Leon and Mathews Leon, Vikas publishers.

REFERENCES:

- 1. The Internet Complete Reference, Harley Hahn, 2nd Ed.
- 2. Internet in a Nut Shell, Alexis Leon, Mathew Leon, Leon Press, 1st Edition

E-LEARNING RESOURCES:

1.www.pubnub.com/blog/2015-05-27-internet-of-things-101-getting-started-w-raspberry-pi/

2.www.theinternetofthings.eu/what-is-the-internet-of-things

3.www.ibm.com/blogs/bluemix/2015/04/tutorial-using-a-raspberry-pi-python-iot-twilio-bluemix/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Computer Networks: Introduction- overview of network – Communication–	2	Lecture

	processors – Modem – Message Switchers - Communication media – Types of networks	2	Lecture
	Network Topologies – Network protocols – network architecture.	2	rr I
UNIT 11			
	Communication systems: Microwave systems – Communication satellites –		Lecture
	Cross link – Component of a satellite		Lecture
	- Radar – Fiber optics.		Videos
UNIT III		I	
	Internet and World Wide Web: Whats special about internet		PPT
	Internet Access – Internet Protocols – Internet Addressing		Videos
	The World Wide Web (WWW) – Web Pages and HTML – Searching the Web.		PPT
UNIT IV			
	Electronic Mail: Why use E- Mail? – How private is E- Mail? —		Videos

	How E-Mail Works? – E-Mail Namesand Addresses – Mailing Basis	2	PPT
	Spamming- Mailing Lists – NewsGroups.	2	Lecture
UNIT V			
	Intranets:Introduction – Characteristics of Intranet – Advantages of Intranet- Business Benefits of Intranet – Drawbacks ofIntranet	2	Lecture
	Extranet . Introduction to Multimedia: Multimedia in entertainment – multimedia in education andtraining	2	Lecture
	multimedia on the web – multimedia in office work – multimedia servers anddatabases.	2	PPT

Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean scores of Cos
PO1	PO 2	P O 3	P O 4	PO 5	PSO 1	PSO 2	PS O3	PS O4	PS O5	
2	4	3	4	3	2	5	3	3	5	3.4
2	3	4	2	2	3	5	2	5	3	3.1
5	4	2	3	4	2	5	2	1	3	3.1
4	4	5	5	3	4	5	2	1	3	3.6
4	3	5	2	1	5	5	2	2	2	3.1
Mean Overall Score									3.26	
	PO1 2 2 5 4	PO1 PO 2 4 2 3 5 4 4 4 3	PO1 PO P 2 4 3 2 4 3 2 3 4 5 4 2 4 4 5 4 3 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PO1POPOPOPOPSOPSOPSOPSOPSOPSOO3O4O52434325335243422352533523422352533523422352533542342521344553455222435215222

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall S	core of COs = $\underline{1}$	<u>Fotal of Mean Score</u> Total No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOM		
Y		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
	2070	2070

Department of ComputerApplications

Programme : BCA Semester : V Sub. Code: : SU53

Part III: SBE 3 Hours : 2 P/W 30Hrs P/S Credits :2

TITLE OF THE PAPER: DATABASE MANAGEMENT SYSTEMS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	2	1	-		1	
PREAMBLI	E:					
• To under	stand the c	oncept of cr	eating accessing a	nd storing of database.		
• To study	about rela	tional datab	ase design, Constr	raints, DDL, DML, SQL and	triggers.	
• To impar	t knowledg	ge on Norma	lization.			
		COUI	RSE OUTCOME		Unit	Hrs P/S
At the end of	the Semes	ter, the Stud	lents will be able	to		
UNIT 1 CO applications.	l: .Familia	r with the fil	le database manag	ement systems and its	1	6
UNIT 2 CO2	2	6				
UNIT 3 CO3	3: Master tl	ne basics of	SQL and construc	ct queries using SQL.	3	6
UNIT 4 CO4 problem-dom	-	relational d	latabase schema u	sing SQL for a given	4	6
UNIT 5 COS processing	5:Understa	nd the conce	ept of concurrency	control of database	5	6
SYLLABUS						
UNIT I:						
		•	00	A Historical Perspective – F	•	
				Storing Data in a DBMS –		in a DBMS
Transaction I UNIT II:	Manageme	nt – Structu	re of a DBMS – P	eople Who Work with Databa	ases.	
	to database	design: Da	tabase Design and	ER Diagrams – Entities, Attr	ibutes, a	and Entity Se
		e	e	Teatures of ER Model – Conce		•
ER Model.	-				-	-
UNIT III:						
The relationa	l model: In	troduction	to the Relational N	Iodel – Integrity Constraints	over Re	lations –

Enforcing Integrity Constraints – Querying Relational Data – Logical Database Design: ER to

Relational – Introduction to Views – Destroying / Altering Tables and Views **UNIT IV:**

Relational algebra and calculus: Preliminaries – Relational Algebra: Selection and Projection – Set Operations –Renaming – Joins - Division Relational Calculus: Tuple Relational Calculus – Domain Relational Calculus. SQL:QUERIES, CONSTRAINTS, TRIGGERS: The Form of a Basic SQL Query - UNION, INTERSECT, and EXCEPT – Nested Queries – Aggregate Operators – Null Values – Complex Integrity Constraints in SQL – Triggers and Active Databases – Designing Active Databases UNIT V:

Schema refinement and normal forms: Introduction to Schema Refinement – Functional Dependencies – Reasoning about FD''s – Normal Forms – Properties of Decompositions – Normalization – Schema Refinement in Database Design

TEXT BOOKS:

Database Management Systems – Raghu Ramakrishnan& Johannes Gehrke, McGraw Hill International Edition – Third Edition – 2003

REFERENCES:

- 1. Database Management Systems Alexis leon&mathews Leon, "Leon Vikas Publishing, Chennai, 2002.
- 2. Modern Database Management Frad R. McFadden, Jeffrey A.Hoffer& Mary. B. Prescott, 5th Edition, Pearson Education Asia, 2001.
- Database System Concepts Abraham Silberschatz, Henry F.Korth, S.Sudarshan, McGraw Hill, 2006

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT - I		I	<u> </u>
	Overview of database systems: Managing Data – A Historical Perspective – File Systems Versus a DBMS —	2	Lecture
	Advantages of a DBMS – Describing and Storing Data ina DBMS – Queries in a DBMS – Transaction Management	2	Lecture
	Structure of a DBMS – PeopleWho Work with Databases.	2	ICT
UNIT- II	1	1	1

	Introduction to database design:Database Design and.	2	РРТ
	ER Diagrams – Entities, Attributes, and Entity Sets – Relationships and Relationship Sets –	2	PPT
	. Additional Features of ERModel – Conceptual Design with the ER Model	2	Lecture
UNIT III		I	1
	The relational model: Introduction to the RelationalModel – Integrity Constraintsover Relations –	2	Videos
	Enforcing Integrity Constraints – Querying Relational Data –Logical	2	PPT
	Database Design: ER to Relational – Introduction to Views – Destroying / Altering Tables and Views	2	Lecture
	UNIT IV		
	Relational algebra and calculus:Preliminaries – RelationalAlgebra: Selection and Projection – Set Operations –Renaming – Joins - Division Relational Calculus: Tuple T –	2	Lecture
	Relational Calculus – DomainRelational Calculus. SQL:QUERIES, CONSTRAINTS, TRIGGERS: The Form of a Basic SQL Query - UNION, INTERSECT, and EXCEP	2	Lecture

	. Nested Queries – AggregateOperators – Null Values – Complex Integrity Constraints in SQL – Triggers and Active Databases – Designing Active Databases	2	Lecture
UNIT V			
	. Schema refinement and normal forms:	2	Lecture
	Introduction to		
	Schema Refinement –		
	. Functional Dependencies – Reasoning	2	Lecture
	about FD"s – Normal Forms –		
	Properties of Decompositions –Normalization	2	Lecture
	– Schema Refinement in Database Design		

Course Outcomes	Programme Outcomes (POs)					Prog	Programme Specific Outcomes (PSOs)				Mean scores of Cos
(Cos)											
	PO1	PO2	PO3	PO	PO5	PSO1	PSO2	PSO3	PSO4	PSO	
				4						5	
CO1	2	4	3	4	3	4	5	3	3	5	3.6
CO2	4	3	4	2	2	4	5	2	5	3	3.4
CO3	5	4	2	3	4	4	5	2	1	3	3.3
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	4	5	2	2	2	3
	Mean Overall Score										3.36

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%	
Scale	1	2		3	4	5	
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor		Moderate	High	Very High	
Mean Score ofCOs =	<u>Total ofV</u>	alue		Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total No. of Pos	s & PSOs				Total No. of COs	
BLOOM"S	INTERNAL	4	EXT	FERNAL			
TAXANOMY							
KNOWLEDGE	KNOWLEDGE 50%		50%)			
UNDERSTANDING	i 30%		30%)			
APPLY	20%		20%)			

Department of Computer Applications.

Programme : BCA Semester : V Sub. Code :SUP5 Part III: SBE 5 Hours : 2P/W 30Hrs P/S Credits :2

TITLE OF THE PAPER: ORACLE LAB

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	2	1	-	1	-				
SYLLABUS									
1. Working wi	th DDL C	Commands							
2. Working wi	th DML (Commands							
3. Working wi	th date an	d time hand	ling functions						
4. Working w	ith Const	raints – Notl	Null, Primary Key	y, Check, Unique, Foreign Ke	у				
5. Working wi	th simple	SQL comma	ands						
6. Working wi	th GROU	PBY , HAY	VING queries						
7. Working wi	th Aggreg	gate Queries	– COUNT, MIN,	MAX, SUM and AVG					
8. Working wi	th set ope	rations – UN	NION, INTERSEC	CTION and MINUS					
9. Working wi	th OUTE	R JOINS (le	eft outer, right out	er and full outer)					
10. Working w	ith nested	d queries							
11. Fibonacci	series gen	eration using	g PL/SQL						
12. Factorial c	alculation	using PL/S	QL						
13. Raising Bu	ild in Exc	ceptions							
14. Raising User defined exceptions									
15 Creating and Calling functions									
16. Creating and Calling Procedures									
17. Creating tr	iggers								

Programme ; BCAPart III; CoreSemester : VHours : 5 P/W 60Hrs P/SSub. Code: U22CU11Credits : 5TITLE OF THE PAPER: OPERATING SYSTEMS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	4	2	1	1	-

PREAMBLE:

To discuss the operating system evolution and its major rule. To understand the various operating system components like process management, memory management, I/O management and file management. To know about issues in resource allocation and management.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: Analyze the concepts of file management.	1	12
UNIT 2 CO2 : Implement security aspects in appropriate situations.	2	12
UNIT 3 CO3 : Discuss various other operating systems.	3	12
UNIT 4 CO4 : Apply knowledge gained through processor scheduling to other applications.	4	12
UNIT 5 CO5: Analyze limitations of operating systems.	5	12

SYLLABUS

UNIT I:

Introduction to Operating Systems:Introduction, What is an Operating systems, Operating system components and goals, Operating systems architecture. Process Concepts: Introduction, ProcessStates, Process Management, Interrupts, Interprocess Communication.

UNIT II:

Asynchronous Concurrent Execution:Introduction, Mutual Exclusion, Implementing Mutual Exclusion Primitives, Software solutions to the Mutual Exclusion Problem, Hardware solution to the Mutual Exclusion Problem, Semaphores. Concurrent Programming: Introduction, Monitors.

UNIT III:

Deadlock and Indefinite Postponement:Introduction, Examples of Deadlock, Related Problem Indefinite Postponement, Resource concepts, Four Necessary conditions for Deadlock, Deadlock solution, Deadlock Prevention, Deadlock Avoidance with Dijkstra's Banker's algorithm, Deadlock Detection, Deadlock Recovery. Processor Scheduling:Introduction, Scheduling levels, Preemptive Vs Non-Preemptive Scheduling Priorities, Scheduling objective, Scheduling criteria, Scheduling algorithms.

UNIT IV:

Real Memory Organization and Management:Introduction, Memory organization, Memory Management, Memory Hierarchy, Memory Management Strategies, Contiguous Vs Non-Contiguous Memory allocation, Fixed Partition Multiprogramming, Variable Partition multiprogramming. Virtual Memory Management:Introduction, Page Replacement, Page Replacement Strategies, Page Fault Frequency (PFF) Page replacement, Page Release, Page Size.

UNIT V:

Disk Performance Optimization:Introduction, Why Disk Scheduling is necessary, Disk Scheduling strategies, Rotational optimization. File and Database Systems:Introduction, Data Hierarchy, Files, File Systems, File Organization, File Allocation, Free Space Management, File Access control.

TEXT BOOKS:

Operating Systems, Deitel&DeitelChoffnes, Pearson education, Third edition, 2008.

REFERENCES:

- 1. An introduction to Operating systems concepts and Practice, Pramod Chandra P. Bhatt, PHI, Second Edition, 2008.
- 2. Operating System Concepts, Abraham Silberschatz Peter Galvin Greg Gagne, 6th edition Windows XP Update, Wiley India edition, 2007.
- 3. Operating Systems Principles and Design, PalChoudhury, PHI Learning, 2011.
- 4. Operating Systems, A Concept Based Approach DhananjayM.Dhamdhere Tata McGraw Hill, 3rd Edition, 2012.

E-LEARNING RESOURCES:

- 1. nptel.ac.in/courses/106108101/
- 2. w3schools.in/operating-system-tutorial
- 3. https://swayam.gov.in/course/237-operating-system

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT - I			
	Introduction to Operating Systems: Introduction, What is an Operating systems, Operating system components and goals, Operating systems architecture.	4	Lecture
	Process Concepts: Introduction, Process States,	4	Lecture
	Process Management, Interrupts, Inter process Communication.	4	PPT

	Asynchronous Concurrent	4	Lecture
	Execution:Introduction, Mutual Exclusion, Implementing Mutual Exclusion Primitives, ,		
	Software solutions to the Mutual Exclusion Problem, Hardware solution to the Mutual Exclusion Problem	3	Videos
	Semaphores. Concurrent Programming: Introduction, Monitors	5	Lecture
JNIT – III			
	Deadlock and Indefinite Postponement:Introduction, Examples of Deadlock, Related Problem Indefinite Postponement, Resource concepts, Four Necessary conditions for Deadlock, Deadlock solution, Deadlock Prevention, Deadlock Avoidance with Dijkstra''s Banker''s algorithm, Deadlock Detection, Deadlock Recovery.	6	Lecture
	Processor Scheduling:Introduction, Scheduling levels, Preemptive Vs Non-Preemptive Scheduling	2	PPT
	Priorities, Scheduling objective, Scheduling criteria, Scheduling algorithms.	2	Lecture
UNIT – IV			
	Real Memory Organization and Management:Introduction, Memory organization, Memory Management, Memory Hierarchy, Memory Management.	4	Lecture
	Strategies, Contiguous Vs Non-Contiguous Memory allocation, Fixed Partition Multiprogramming, Variable Partition multiprogramming	4	PPT
	Virtual Memory Management:Introduction, Page Replacement, Page Replacement Strategies, Page Fault Frequency (PFF) Page replacement, Page Release, Page Size.	4	Videos

UNIT - V

Disk Performance Optimization: Introduction, Why Disk Scheduling is necessary, Disk Scheduling	4	Lecture
strategies, Rotational optimization.		
File and Database Systems: Introduction, Data Hierarchy, Files, File Systems, File Organization,	3	PPT
File Allocation, Free Space Management, File Access control.	4	Video

Course Outcomes (Cos)	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)								Mean scores of Cos		
()	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	3	3	4	3	2	5	3	3	5	3.3
CO2	2	5	4	2	2	3	5	2	5	3	3.3
CO3	5	3	2	3	4	2	5	2	1	3	3
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	2	2	3.1
	Mean Overall Score										3.24

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	Os = <u>Total of</u> Total No. of P		Mean Overall S <u>Score</u>	Score of COs =]	<u>Fotal of Mean</u> Total No. of COs

Department of Computer Applications

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Programme : BCA Semester: V Sub. Code: U22CU12 Part III: Core-10 Hours : 5 P/W 60Hrs P/S Credits :5

TITLE OF THE PAPER:COMPUTER NETWORKS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	L ICT					
	4	2	1	-	1					
PREAMBLE :	PREAMBLE:									
• To Lea	rn about i	network mod	lels and transmiss	ion techniques.						
To stuce	ly about	Communica	tion types of routi	ng algorithms and internet ac	cessing.					
		COUR	SE OUTCOME		Unit	Hrs P/S				
At the end of the	0									
UNIT 1 CO1:	Discuss t	he introduct	ion of networking	g concepts.	1	12				
UNIT 2 CO2:	2	12								
UNIT 3 CO3:	Examine	the layers d	esign and CRC.		3	12				
UNIT 4 CO4:	Recogniz	ze the netwo	rk routing algorith	nm and their effectiveness.	4	12				
UNIT 5 CO5:	Assess the	e internet do	mains and its serv	vices for any domain.	5	12				
SYLLABUS UNIT I: Introduction: Use of Computer Networks – Network Hardware – Network Software – Reference Models – Example Networks: The Internet, Ethernet.										
UNIT II: Physical Layer: Transmission Media – Wireless Transmission – The Public Switched Telephone Network.										

UNIT III:

Data Link Layer: Data Link Layer Design Issues – Error Correction and Detection – Elementary Data Link Protocols.

UNIT IV:

Network Layer: Network Layer Design Issues - Routing Algorithms: Shortest Path Routing,

Flooding, Distance Vector Routing, Broadcasting, Multicast Routing – Congestion Control Algorithms-Quality of Service- Techniques for achieving good quality of service-Traffic shaping-The leaky bucket algorithm-The token bucket algorithm.

UNIT V:

The Transport Layer : Elements of Transport Protocols -The Application Layer: Domain Name System – Electronic Mail – The World Wide Web – Multimedia.

TEXT BOOKS:

Computer Networks , Andrew S. Tanenbaum, 4th Edition, Prentice Hall, India.

REFERENCES:

- 1. Computer Communication & Network, John Fuer, Pitman, Computer System Series.
- 2. Data & Communication Network ,E. Stallings , PHI, 4thEdition.

E-LEARNING RESOURCES:

1. http://nptel.ac.in/courses/106105081/

2. http://nptel.ac.in/courses/106106091/

3.http://nptel.ac.in/courses/106105080

/

4. https://www.studytonight.com/computer-networks/

5. https://swayam.gov.in/courses/4066-computer-networks

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction: Use of ComputerNetworks – Network Hardware –	4	Lecture
	Network Software – ReferenceModels –.	4	Lecture
	Example Networks: The Internet, Ethernet	4	Peer Teaching
UNIT 11	•	•	

Physical Layer:	TransmissionMedia –	4	Lecture
			x 7' 1
Wireless Transmissio	n —	4	Videos
The Public Switched	Telephone Network.	4	Peer Teaching

Data Link Layer: Data Link Layer Design Issues –	4	Videos
Error Correction and Detection –	4	ICT
Elementary Data Link Protocols.	4	Lecture
Network Layer: Network Layer Design Issues –	2	Videos
Routing Algorithms: Shortest Path Routing, Flooding, Distance Vector Routing, Broadcasting, Multicast Routing –	4	Lecture
Congestion Control Algorithms- Quality of Service- Techniques for achieving good quality of service- Traffic shaping-The leaky bucket algorithm-The token bucket algorithm.	6	Lecture
The Transport Layer : Elements of Transport Protocols	4	Lecture
TheApplication Layer: DomainName System –	4	ICT
Electronic Mail – The World Wide Web –Multimedia.	4	Videos
	Design Issues –Error Correction and Detection –Elementary Data Link Protocols.Network Layer: Network Layer Design Issues –Routing Algorithms: Shortest Path Routing, Flooding, Distance Vector Routing, Broadcasting, Multicast Routing –Congestion Control Algorithms- Quality of Service- Techniques for achieving good quality of service- Traffic shaping-The leaky bucket algorithm-The token bucket algorithm.The Transport Layer : Elements of Transport ProtocolsThe Application Layer: Domain Name System –Electronic Mail – The World Wide	Design Issues – Image: Additional and the problem of the problem

Course Outcomes	Pro	gramm	e Outco	omes (F	POs)	Programme Specific Outcomes (PSOs)				Mean scores of Cos	
(Cos)	DO1	DO2	DO2		DO5	PSO1	PSO2	PSO3	PSO4	DCO5	
	PO1	PO2	PO3	PO4	PO5	P301	PS02	PS03	PS04	PSO5	
CO1	2	4	3	4	3	2	5	3	2	5	3.3
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	5	3	3.5
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	3	2	3.2
Mean Overall Score										3.32	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Department of Computer Applictaions

Programme : BCA Semester: V Sub. Code: U22CU14P

Part III: Core 12 Hours : 5 P/W 75Hrs P/S Credits :5

TITLE OF THE PAPER: WEB PROGRAMMING WITH PHP

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	5	2	1	1	1			
PREAMBLE	PREAMBLE:							
• To intr	oduce the	web progra	mming with the o	pen source PHP.				
• To lear	n the prog	gram buildin	g constructs using	g SQL and PHP.				
• To lear	n about c	lient and ser	ver data using ope	en source.				
		COUR	SE OUTCOME		Unit	Hrs P/S		
At the end of t	he Semes	ter, the Stud	ents will be able t	0				
UNIT 1 CO1: and PHP.	1	15						
UNIT 2 CO2 : Use PHP logical and comparison operators, branching structures programs for developing(if/switch), and loop structures (for, for each, do, do/while) Programs.						15		
UNIT 3 CO3 : Erecit Database using MySQL for any required applications with OOPS concepts.						15		
UNIT 4 CO4: Construct PHP program to connect and query database.						15		
UNIT 5 CO5 : Understand, develop to web application using PHP and validate them.						15		

SYLLABUS UNIT I:

Database applications and the web – The Web – Three tier Architecture, PHP Scripting language – Introducing PHP – Condition and Branches – Loops.

UNIT II:

PHP Scripting Language – Functions – Types – User Defined functions- Arrays, Strings and Advanced Data Manipulation in PHP – Arrays, strings, Regular Expressions, Dates and Times, Integers and Floats.

UNIT III:

Introduction to Object Oriented Programming with PHP - Classes and Objects, Inheritance,

Throwing and Caching Exceptions, SQL and MySQL – Database Basics, My SQL Command Interpreter, Managing Databases and Tables, Inserting, Updating, and Deleting Data, Querying with SQL SELECT, Join Queries.

UNIT IV:

Querying Web Databases – Querying a MySQL Database using PHP, Processing User Input, PEAR Overview, Core Components, Packages, Writing to Web databases- Database Inserts, Updates, and Deletes.

UNIT V:

Issues in Writing Data to Databases, Validation with PHP and Java Script – Validation and Error Reporting Principles. Server-Side Validation with PHP, JavaScript and Client Side Validation.

TEXT BOOKS:

Web Database Applications with PHP and Mysql by Hugh E. Williams & David Lane, II Edition, SPD O" REILLY

REFERENCES:

- 1. PHP, MYSQL and APACHE, Julie . C .Meloni.
- 2. PHP 5 and MYSQL Bible, Joyce park, CharleMorgon

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Database applications and the web – The Web	4	Videos
	Three tier Architecture, PHP Scripting language	5	Lecture
	Introducing PHP – Condition and Branches – Loops.	6	Peer Teaching
UNIT 11			
	PHP Scripting Language – Functions – Types – User Defined functions-	5	Lecture
	Arrays, Strings and Advanced Data Manipulation in PHP–	5	Videos

	Arrays,strings,RegularExpressions,DatesandTimes,Integers and Floats.	5	ICT
UNIT III			I
	Introduction to Object Oriented Programming with PHP –	5	Videos
	Classes and Objects, Inheritance,	5	Peer Teaching
	Throwing and Caching Exceptions,	5	Lecture
UNIT IV			
	Querying Web Databases – Querying a MySQL Database using PHP, Processing User Input,	5	Lecture
	PEAR Overview, Core Components, Packages,	5	Lecture
	Writing to Web databases- Database Inserts, Updates, and Deletes.	5	Lecture
UNIT V			
	Issues in Writing Data to Databases, Validation with PHP and Java Script –	5	Lecture
	Validation and Error Reporting Principles. Server-	5	Lecture
	Side Validation with PHP, JavaScript and Client SideValidation.	5	Lecture

ourse Outcomes (Cos)	Programme Outcomes (POs)			Programme Specific Outcomes (PSOs)				Mean scores of Cos			
	PO1	PO 2	PO3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	3	4	3	2	5	3	3	5	3.6
CO2	5	3	4	2	2	3	5	2	5	3	3.4
CO3	2	4	2	3	4	2	5	2	1	3	2.8
CO4	2	4	5	5	3	3	5	2	1	3	3.3
CO5	3	3	5	2	3	5	5	2	2	2	3.2
	Mean Overall Score						3.26				

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Department of Computer Applications

Programme : BCA Semester: V Sub. Code: EU51

Part III: Elective 1 Hours : 5 P/W 75Hrs P/S Credits :5

		TITL	E OF THE PAP	ER: PROGRAMMING WI	TH .NE	T
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	2	1	1	1	
PREAMBLE	:					
• To intr	oduce .NI	ET framewo	rk and its compon	ents.		
• To lear	n about A	SP.Net con	cepts and its appli	cations.		
• To incu	ulcate the	techniques t	o connect clients	and webdata.		
COURSE OUTCOME						Hrs P/S
At the end of the Semester, the Students will be able to						
UNIT 1 CO1: Knowledge about the .NET framework.						15
UNIT 2 CO2 : Ability to analyze the structure of a .NET.						15
UNIT 3 CO3 : Programming skills development for n-tier architecture.					3	15
UNIT 4 CO4 : Design and develop Web based applications and its validations. 4					4	15
UNIT 5 CO5 : Capable of integrating webpages with database using ADO.Net.					5	15
SYLLABUS					1	1

SYLLABUS

UNIT I:

The .NET Framework: The .NET Programming Framework - VB.NET, C# and the .NET Languages -The common language runtime – The .NET Class Library – ASP.NET – Visual Studio.NET. Learning the .NET Languages: The .NET Languages – Data Types – Declaring variables – Scope and accessibility - Variable operations - Object oriented manipulations - conditional structures - loop structures functions and subroutine.

UNIT II:

Types, Objects and Namespaces: The basics about classes – value types and reference types – advances class programming - understanding namespaces and assemblies. ASP.NET applications: ASP.NET applications – ASP.NET file types –the bin directory – Application updates – Code behind – The Global.asax application file - ASP.NET configuration - The web.configfile .

UNIT III:

Web form fundamentals: A simple Page applet – The page class. Web Controls: Web Controls Classes - Autopostback and web control events. **UNIT IV:**

Validation and rich controls: The calendar control – formatting the calendar – restricting dates – the Adrotator – The Advertisement file – Validation – The validation controls – The validation process –A simple validation example – Server side validation – Understanding regular expression – literals and metacharacters– finding a regular expression.

UNIT V:

Overview of ADO.NET: Characteristics of ADO.NET – Disconnected model – native XML – Extended data format – managed code – comparing ADO and ADO.NET. ADO.NET data access: About the ADO.NET examples – Obtaining the sample database – The SQL select statement – A sample select statement – The Where clause – The SQL update statement – The SQL insert statement – The SQL delete statement. TheDatalist, DataGrid and Repeater: comparing the template controls – the DataList – The DataGrid – The Repeater.

TEXT BOOKS:

1. ASP.NET : The Complete Reference, Matthew MacDonald, Tata McGraw-Hill Publishing Company Ltd, NewDelhi 2008.

REFERENCE BOOKS

- 1. ASP.Net VB.Net Web Programming, Matt.J.Crouch Pearson Education.
- 2. ASP.Net for Developers Michael Amundsen Paul Litwin

E-LEARNING RESOURCES:

3. http://vb.net-informations.com/framework/framework_tutorials.htm.

4. https://www.tutorialspoint.com/vb.net/index.htm.

5. https://www.javatpoint.com/asp-net-tutorial.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	The.NETFramework:The.NETProgrammingFramework-VB.NET, C# and the.NETLanguagesThecommonlanguage runtime -	5	Lecture

	The .NET Class Library – ASP.NET – Visual Studio.NET. Learning the .NET Languages: The .NET Languages – Data Types – Declaring variables – Scope and	5	Videos
	accessibility – Variable operations – Object oriented manipulations – conditional structures – loop structures – functions and subroutine.		
UNIT 11			
	Types, Objects and Namespaces: The basics about classes – value types and reference types – advances class programming – understanding namespaces and assemblies. –	6	Lecture
	ASP.NET applications: ASP.NET applications – ASP.NET file types – the bin directory – Application updates – Code behind	6	Lecture

The Global.asax application file – ASP.NET configuration – The web.configfile .	3	Lecture
UNIT III		
Webformfundamentals:AsimplePageapplet-The page class	6	Lecture
Web Controls: Web Controls Classes –	6	РРТ
Autopostback and web control events	3	Lecture
UNIT IV		I
Validation and rich controls: The calendar control – formatting the calendar – restricting dates – the Adrotator – The Advertisement file –	5	PPT
Validation – The validation controls – The validation process –A simple validation example – Server side validation –	5	Lecture
Understanding regular expression – literals and metacharacters – finding a regular expression.	5	Lecture
UNIT V		I

		222
Overview of	6	PPT
ADO.NET:		
Characteristics of		
ADO.NET –		
Disconnected model –		
native XML –		
Extended data format		
– managed code –		
comparing ADO and		
ADO.NET.		
ADO.NET data	4	Videos
access: About the		
	1	<u> </u>
ADO.NET examples		
– Obtaining the		
sample database –		
The SQL select		
statement – A sample		
select statement – The		
Where clause – The		
SQL update statement		
– The SQL insert		
statement – The SQL		
delete statement.		
TheDatalist, DataGrid	5	Lecture
and Repeater:		
comparing the		
template controls –		
the DataList – The		
DataGrid – The		
Repeater.		

Course Outcomes	Programme Outcomes (POs)			Programme Specific Outcomes (PSOs)				Mean scores of Cos			
(Cos)											
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	

CO1	2	4	5	3	3	4	2	3	3	5	3.4
CO2	2	3	4	4	4	4	3	2	5	3	3.4
CO3	5	4	2	3	5	4	5	2	1	3	3.4
CO4	4	4	2	5	4	4	5	2	1	3	3.4
CO5	4	3	3	2	4	4	5	2	2	2	3.1
	Mean Overall Score									3.34	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of V</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Department of Computer Applications

Programme : BCA

Semester

Part III: Elective 1 Hours : 4 P/W 75Hrs P/S Credits:4

:VI Sub. Code: P22DSU2B

TITLE OF THE PAPER: ARTIFICIAL NEURAL NETWORKS

						ININ O	
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	5	2	1	1	1		
PREAMBLE	:	I					
• To stu	dy and des	sign artificia	l neural network a	and its working methodology	•		
• To exp	olore vario	ous neural ne	twork models for	traning various domains.			
		COUR	SE OUTCOME		Unit	Hrs P/S	
At the end of t	the Semes	ter, the Stud	ents will be able t	0			
UNIT 1 CO1	: Introduct	tions of learn	ning and training 1	neurons.	1	15	
UNIT 2 CO2	: Understa	inding variou	is models of neur	al networks.	2	15	
UNIT 3 CO3	: Explore a	applications	network models	for various domains.	3	15	
UNIT 4 CO4	4	15					
UNIT 5 CO5	UNIT 5 CO5: Implementation Applications of neural network concepts						
CVI I A DIIC							

SYLLABUS

UNIT I:

Introduction: Brain as a neural network – Basic properties of neurons – Artificial Neural Networks. Learning: Learning and training – Learning rules – Stability and plasticity

UNIT II:

Hopfield, Perceptron and Related models: Hop field model - basic model of hop-field network cellular neural networks - perceptron - Other associative models - Bidirectional Associative memory

UNIT III:

Self Organization Map: Kohenen map - adaptive of learning vector quantization - multilayer self organizing feature map.

UNIT IV:

Feed-Forward back propagation networks: Training of multilayer feed -forward - training aspects and variations of back propagation method – Back propagation of stochastic approximation.

UNIT V:

Hybrid learning Neural Network: counter propagation network - radial basis functional networks. Probabilistic models, fuzzy ART map and recurrent networks - Probabilistic neural

networks.

TEXT BOOKS: Neural Networks Algorithms and Applications, M.AnandaRao, J .Srinivas, Narosa Publishing House, 2010.

REFERENCES:

- 1. Neural networks, James A.Freeman, David N.Skepura.
- 2. Neural Networks Fundamentals with Graphs, Algorithms and Applications, N.K.Bose, P.Liang

UNIT 1 Introduction: Brain as a neural network – Basic properties of neurons 5 PPT Artificial Neural Networks. Learning: Learning and training – 7 Lecture Learning rules – Stability and plasticity. 3 Lecture UNIT 11 Hopfield, Perceptron and Related models: Hop field model 6 Lecture basic model of hop-field network – cellular neural networks – perceptron 3 PPT Bidirectional Associative memory 3 PPT UNIT III Self Organization Map: Kohenen map – 4 Lecture map – unity in the map – 6 Lecture Lecture memory 6 Lecture Curre unity in the map – 3 PPT Curre memory 1 Lecture 1 1 unity in the map – 3 PPT 1 unity in the map – 5 Lecture 1 memory 6 Lecture 1 1 unity in the map – 6 Lecture 1 1 memory 1 1 1 1 1 1 unity in the ma	UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
network - Basic properties of neurons	UNIT 1			
Learning: Learning and training Image: Learning rules and training Learning rules - Stability and plasticity. 3 Lecture UNIT 11 Hopfield, Perceptron and Related models: Hop field model 6 Lecture basic model of hop-field network - cellular neural networks - perceptron 6 Lecture Other associative models - perceptron 3 PPT Bidirectional Associative memory 3 PPT UNIT III Self Organization Map: Kohenen map - 4 Lecture adaptive of learning vector quantization - 5 Lecture multilayerself organizing feature 6 Lecture		network - Basic properties of	5	PPT
plasticity.Image: constraint of the sector of t			7	Lecture
Hopfield, Perceptron and Related models: Hop field model6Lecturebasic model of hop-field network – cellular neural networks – perceptron6LectureOther associative models – Bidirectional Associative memory3PPTUNIT IIISelf Organization Map: Kohenen map –4Lectureadaptive of learning vector quantization –5Lecturemultilayerself organizing feature6Lecture			3	Lecture
Related models: Hop field modelContent of the perceptronContent of the per	UNIT 11			1
- cellular neural networks - perceptron-Other associative models - Bidirectional Associative memory3UNIT III-UNIT III-Self Organization Map: Kohenen map -4Lectureadaptive of learning vector quantization -5Lecturemultilayerself organizing feature6			6	Lecture
Bidirectional Associative memoryBidirectional Associative memoryUNIT IIIUNIT IIISelf Organization Map: Kohenen map –4Adaptive of learning vector quantization –5Imultilayerself organizing feature6		– cellular neural networks –	6	Lecture
Self Organization Map: Kohenen map –4Lectureadaptive of learning vector quantization –5Lecturemultilayerself organizing feature6Lecture		Bidirectional Associative	3	PPT
map – map – adaptive of learning vector quantization – 5 multilayerself organizing feature 6	UNIT III			
quantization – 6 Lecture		•	4	Lecture
			5	Lecture
		• • •	6	Lecture

UNIT IV			
	Feed-Forward back propagation networks: Training of multilayer feed	6	PPT
	-forward – training aspects and variations of back propagation method –	3	Lecture
	Back propagation of stochastic approximation.	6	Lecture
UNIT V			
	Hybrid learning Neural Network: counter propagation network —	6	Lecture
	radial basis functional networks. Probabilistic models, fuzzy ART map and recurrent networks	6	Lecture
	Probabilistic neural networks.	3	РРТ

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scoresof Cos	
	PO1	PO 2	PO3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	5	3	3	4	3.3
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	2	3
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	CO5 4 3 5 2 1 5 5 2 2 5									3.4	
Mean Overall Score									3.26		

1-20%	21-40%	41-60%	61-80%	81-100%
1	2	3	4	5
0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Very Poor	Poor	Moderate	High	Very High
		Mean Overall	Score of COs = $\frac{1}{2}$	<u>Fotal of Mean Score</u> Total No. of COs
	1 0.0-1.0 Very Poor = <u>Total of V</u>	1 2 0.0-1.0 1.1-2.0 Very Poor Poor	123 $0.0-1.0$ $1.1-2.0$ $2.1-3.0$ Very PoorPoorModerate= $\underline{\text{Total of Value}}$ Mean Overall a	1234 $0.0-1.0$ $1.1-2.0$ $2.1-3.0$ $3.1-4.0$ Very PoorPoorModerateHigh= $\underline{\text{Total of Value}}$ Mean Overall Score of COs = \underline{T}

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

programme : Semester : V Sub. Code: U22SEU2P

BCA Part III: Elective-2

Hours : 2 P/W 90Hrs P/S Credits :2

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	6	5	-	1	-			
SYLLABUS								
1) Illustra	ting vario	ous loops						
2) Program	ns to mar	nipulate obje	cts					
3) Creatio	n and usi	ng name spa	ces					
4) Illustrat								
5) Handlin	ng global.	asax file in	web page like sho	wing numbers of visitors of t	he web page			
6) Illustra	ting web	controls of .]	NET					
7) Handlin	ng Calend	lar – Highlig	hting a specific d	ate, view setting in calendar,	setting a schedule on			
a specif	ic date, r	estricting ca	lendar.					
8) Validat	ing web p	page using v	alidator controls					
9) Implem								
10) Implementing connected data model of ADO.NET								
11) Illustrating Data Grid, Data List and Repeater Control								
12) Illustration of Regular Expression								
13) Performing Server side Validation								

TITLE OF THE PAPER: .NET PROGRAMMING LAB

14) Handling Literals and meta characters

Programme : BCA Semester : V Sub. Code:U22CU14P

Part III: Core -13 Hours : 6 P/W 90Hrs P/S Credits : 4

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	6	5	-	1	-

TITLE OF THE PAPER: PHP LAB

SYLLABUS

- 1. Working with Branching statements
- 2. Working with Looping Statements
- 3. Working with 1 Dimensional, 2 Dimensional Arrays.
- 4. Working with Strings and String handling functions
- 5. Working with Date and Time functions
- 6. Working with Regular Expressions
- 7. Working with DDL commands of MYSQL
- 8. Working with DML commands of MYSQL
- 9. Working with SQL Commands of MYSQL
- 10. Working with PEAR database
- 11. Client side Validation
- 12. Server side validation
- 13. Reporting errors

Semester :V

Hours : 2 P/W 60HrsP/S

Credits :2

Sub.Code :U22SEU3

TITLE OF THE PAPER: COMPUTER GRAPHICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIA	L ICT	
	2	2	-	-	-	
PREAMBL	E:				th co gr fu • Tr ar tr	o know about the basics of computer raphics undamentals. o train the 2D and 3D ansformations oranimation.
COURSE OUTCOME At the end of the Semester, the Students will be able to					Unit	Hrs P/S
UNIT 1 CO1: Gain proficiency computer graphics and graphics devices					1	12
UNIT 2 CO2 : Understand about the primitive drawing and its generation algorithms					2	12
UNIT 3 CO3 : Enhance the perspective of modern computer system with modeling, analysis and interpretation of 2D and 3D visual information.					3	12
			ping and viewing		4	12
UNIT 5 CO	5: Gain the	knowledge	of 3D and its tran	nsformations	5	12

SYLLABUS UNIT I:

A survey of computer graphics: Computer-Aided Design – Presentation Graphics Computer Art – Entertainment – Education and Training. Overview of Graphic Systems: Video Display Devices –Raster Scan Systems - Random Scan Systems.

UNIT II:

Output Primitives: Points and Lines – Line Drawing Algorithms – Circle Generation Algorithm

UNIT III:

Two-Dimensional Geometric Transformations: Basic Transformations – Matrix Representations – Composite Transformations – OtherTransformations UNIT IV:

Two dimensional viewing: The viewing pipeline –clipping operations – point clipping – Line clipping - Cohen Sutherland line clipping only – Polygon clipping - Sutherland Hodgmann polygon clipping only – Curve clipping - Text clipping – Exterior clipping.

UNIT V:

Three dimensional geometric and modeling transformations: Translation – rotation – scaling.

TEXT BOOKS:

1) Computer graphics – Donald Hearn, M.Pauline Baker, PHI, 2ndEdition

REFERENCES:

1) Principles of Interactive Computer Graphics , William M. Newman and F. Sproull.

2) Computer Graphics, Steven Harrigton, McGraw Hill InternationalEdition, 2ndEd.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	A survey of computer graphics: Computer- Aided Design – Presentation Graphics Computer Art – Entertainment – Education and Training.–	4	Lecture
	Overview of Graphic Systems: Video Display Devices	4	PPT
	Raster Scan Systems - Random Scan Systems.	4	Lecture
UNIT 11			
	Output Primitives: Points and Lines —	4	Lecture
	Line Drawing Algorithms	4	Lecture
	Circle Generation Algorithm	4	Lecture
UNIT III		1	
	Two-Dimensional Geometric Transformations:-	4	PPT

	Basic Transformations –	4	PPT
	Matrix Representations –		
	Composite		
	Transformations		
	Other Transformations	4	PPT
UNIT IV			
	Two dimensional viewing:	4	Lecture
	The viewing pipeline		
	-clipping operations – point	4	Lecture
	clipping – Line clipping -		
	Cohen Sutherland line		
	clipping only – Polygon		
	clipping -		
	Sutherland Hodgmann	4	Videos
	polygon clipping only		
	– Curve clipping - Text		
	clipping – Exterior		
	clipping.		
UNIT V			
	Three dimensional geometric	4	Video
	andmodel		
	ing		
	transformations:	4	PPT
	Translation –		
	rotation – scaling.	4	Lecture

Course Outcome s	Programme Outcomes (POs)										Mean scoresof Cos
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO 2	PSO3	PSO 4	PSO 5	
CO 1	2	4	3	3	3	4	5	3	3	5	3.5
CO 2	3	3	4	2	2	4	5	2	5	3	3.3
CO 3	5	4	2	3	4	4	5	2	1	3	3.3
CO 4	4	4	5	5	3	2	5	2	1	3	3.4
CO 5	4	3	5	2	4	4	5	2	2	2	3.3
	Mean Overall Score									3.36	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	$s = \frac{\text{Total of}}{\text{Total No. of Po}}$		Mean Overall S	Score of COs =	<u>Total of Mean Score</u> Total No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
	200	20.7
UNDERSTANDING	30%	30%
APPLY	20%	20%

Department of ComputerApplications

Programme:BCA

Part III:Elective-3

Semester :V

Hours : 5 P/W 90 Hrs P/S

Sub.Code : P22DSU1C

Credits :5

TITLE OF THE PAPER: SYSTEM SOFTWARE

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	5	2	1	1	1				
PREAMBLE:	1	I							
To intro	oduce the	low level fu	nctioning softwa	res					
• To pres	ent about	translators -	- assemblers and	compliers					
• To lear	n about tł	ne working p	rinciple of Loade	ers andLinkers					
		COUR	SE OUTCOME		Unit	Hrs P/S			
At the end of the	ne Semes	ter, the Stud	ents will be able	to					
			ranslation proces	ss with various types of	1	18			
instructions and	a comput	ers							
UNIT 2 CO2 :	. To stud	y about the a	assembler and its	functions	2	18			
UNIT 3 CO3:	Understa	nd and ident	ify the types of lo	baders and their functions	3	18			
UNIT 4 CO4:	UNIT 4 CO4: Analyse about macro processors								
UNIT 5 CO5:	Know ab	out the work	king principle of	compiler	5	18			

SYLLABUS

UNIT I:

System Software and Machine Architecture-Simplified Instructional Computer (SIC), SIC/XE, CISC machines and RISC machine.

UNIT II:

Basic Assembler functions – Assembler algorithm and data structures – Machine Dependent Assembler features – Machine Independent Assembler features – one pass assemblers – multi pass assemblers

UNITIII:

Basic Loader functions – Design of Absolute Loader – Bootstrap Loader – Machine Dependent Loader features – Machine Independent Loader features – Loader design options – Linkage editors – Dynamic linking.

UNIT IV:

Basic Macro processor functions – Machine independent macro processor features – Macro processor design options.

UNIT V:

Basic Compiler functions – grammars – lexical analysis – Syntactic analysis – code generation – Machine dependent compiler features – machine Independent compiler features.

1. TEXT BOOKS:

2) System Software an Introduction to System Programming - by Leland L. Beck, Addison – Wesley, III Edition 1999.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	System Software and Machine Architecture-	6	Lecture
	Simplified Instructional Computer (SIC), SIC/XE,	6	Lecture
	CISC machines and RISC machine.	6	PPT

		(T t
	Basic Assembler functions – Assembler algorithm and data structures –	6	Lecture
	Machine Dependent Assembler features – Machine Independent	6	Lecture
	. Assembler features– one pass assemblers– multi passassemblers	6	Videos
UNIT III			
	BasicLoaderfunctions – Design ofAbsolute Loader – BootstrapLoader –	6	РРТ
	Machine Dependent Loader features – Machine Independent	6	Videos
	Loader features – Loader design options – Linkage editors – Dynamic linking	6	PPT
UNIT IV			
	Basic Macro processor functions-	6	Videos
	Machine independent macro processor features –	6	РРТ
	. Macro processor designoptions.	6	Lecture
UNIT V			

Basic Compiler functions –grammars – lexical analysis – Machine dependent	6	Lecture
Syntactic analysis – code generation –	6	Lecture
compiler features – machine Independent compiler features	6	PPT

Course Outcome s	Programme Outcomes (POs)					es (POs) Programme Specific Outcomes (PSOs)				Mean scoresof Cos	
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO2	PSO3	PSO4	PSO5	
CO 1	2	4	3	4	3	4	5	3	3	5	3.6
CO 2	2	3	4	2	2	4	5	2	5	3	3.2
CO 3	5	4	2	3	4	4	5	2	1	3	3.3
CO 4	4	4	5	5	3	2	5	2	1	3	3.4
CO 5	4	3	5	2	1	4	5	2	2	2	3
	Mean Overall Score									3.3	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	$= \frac{\text{Total of } V}{\text{Total No. of Pos}}$		Mean Overall S	Score of COs = $\underline{1}$	<u>Cotal of Mean Score</u> Total No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Department of ComputerApplications

Programme:BCA

Hours : 6 P/W 90HrsP/S

Semester : VI

Sub.Code : U22CU15

Credits : 5

Part III:Core-14

TITLE OF THE PAPER: SOFTWARE ENGINEERING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	5	2	1	1	1			
PREAMBLI								
• To int	troduce the	software In	te cycle and devel	opment approaches				
	plore vario gstrategies		on techniques, requ	uirement analysis, software de	esigning	and		
		COUH	RSE OUTCOME		Unit	Hrs P/S		
At the end of	the Semes	ter, the Stud	lents will be able t	0				
UNIT 1 CO1	: Acquire	fundamenta	l knowledge in sof	ftware engineering.	1	18		
UNIT 2 CO2	oftware.	2	18					
UNIT 3 CO3 analysis, desi	a communication, planning, t	3	18					
UNIT 4 CO4	UNIT 4 CO4: Adapt to design notations and techniques							
UNIT 5 CO5 software	: Incorpor	ating .testing	g, verification and	l validation techniques into a	5	18		

SYLLABUS

UNIT I:

Introduction to Software Engineering and Planning: Introduction - definition - some size factors - quality and Productivity factors.Planning a Software Project: Introduction - Defining the problem - Developing a solution strategy - Planning the development process - Planning an organizationalstructur

UNIT II:

Software Cost Estimation: Introduction - Software cost factors - software cost estimation techniques - staffing - level estimation .

UNIT III:

SoftwareRequirementDefinition:Introduction - the software requirement specification-formal specification techniques - languages and processors for requirements.

UNIT IV:

Software Design: Introduction - fundamental design concepts - modules and modularization criteria - design notations - design techniques .

UNIT V:

Verification and Validation Techniques:Introduction - quality assurance - walkthroughs and inspection - unit testing and debugging - system testing -Software Maintenance.

TEXT BOOKS:

1) Software engineering concepts, Richard Fairley, Tata McGraw Hillpublications, 1997.

REFERENCES:

1) Software Engineering, Roger S.Pressman, McGraw Hill Publications, 4^{th} Edition.

2) Software Engineering, Ian Somerville, Addison Wesley PublishingCo.

E-LEARNING RESOURCES:

- 1. nptel.ac.in/courses/106101061
- 2. tutorialspoint.com

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction toSoftwareEngineeringandPlanning:Introduction-definition - some size factors -quality and Productivity factors-	6	Lecture
	.Planning a Software Project: Introduction - Defining the problem - Developing a solution strategy	6	Lecture
	Planningthedevelopment process - Planninganorganizationalstructure.	6	Lecture
UNIT II			
	SoftwareCostEstimation:Introduction- Software cost factors-	6	PPT
	software cost estimation techniques	6	Lecture
	staffing - level estimation	6	Lecture
UNIT III			
	Software Requirement Definition:Introduction -	6	PPT
	thesoftware requirement	4	ICT

	specification - formal specificationtechniques - languages and processors for requirements.	8	Lecture
UNIT IV			
	SoftwareDesign:Introduction -	6	ICT
	fundamental design concepts - modules and modularization criteria -	6	PPT
	design notations - design techniques .	6	Lecture
UNIT V			<u> </u>
	Verification and Validation Techniques:Introduction - quality assurance -	5	Lecture
	walkthroughs and inspection	4	
	unit testing and debugging	4	PPT
	system testing - Software Maintenance	5	PPT

Course Outcomes (Cos)	Pro	gramm	e Outco	omes (F	POs)	Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO	PSO	PSO	PSO	PSO	
						1	2	3	4	5	
CO1	2	4	3	4	3	4	5	3	3	5	3.6
CO2	2	3	4	2	2	4	5	2	5	3	3.2
CO3	5	4	2	3	4	4	5	2	1	3	3.3
CO4	4	4	5	5	3	2	5	2	1	3	3.4
CO5	4	3	5	2	1	4	5	2	2	2	3
				Mean (Overall	Score					3.3

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score ofCO	s = <u>Total ofV</u> Total No. of		Mean Overal <u>Score</u>	l Score of COs =	<u>Total of Mean</u> Total No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
	30%	2007
UNDERSTANDING	30%	30%
APPLY	20%	20%

Department of ComputerApplications

Programme : BCA

Semester : VI

Hours: 6 P/W 90 HrsP/S

Part III : Elective-3

Credits : 5

Sub.Code : U22CU16

TITLE OF THE PAPER: DATA WAREHOUSING ANDMINING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	2	1	1	1	
PREAMBL	Е:			<u> </u>		
• To re-	cognize the	e need of hu	ge, voluminous da	atastorage		
• To lea	arn about s	toring, acce	ssing data from da	tawarehouse		
• To lea	arn how to	mine data f	rom warehouse us	ing different methodologies		
		COU	RSE OUTCOME		Unit	Hrs P/S
At the end of	the Semes	ter, the Stu	dents will be able t	to		
UNIT 1 CO	1: Know ab	out the data	a warehouse and it	s architecture	1	18
UNIT 2 CO2 challenges	2: Understa	and the data	mining definition	s, techniques and its	2	18
UNIT 3 CO3	3 : Familiar	with how t	o find and group a	ny data set	3	18
UNIT 4 CO4 methods	1 : Designin	ig and using	y various classifica	tion methods and prediction	4	18
UNIT 5 COS	S:Apply dat	ta mining te	chniques to all rea	l time applications	5	18
SYLLABUS						

UNIT I:

Data Warehousing: Introduction – What is data warehouse? – Definition – Multidimensional datamodel – OLAP operation – Warehouse schema – Data Warehousing Architecture – Warehouse server – Mata data – OLAP engine – Datawarehouse backend process.

UNIT II:

Data mining: introduction – what is data mining – data mining definitions – KDD Vs Data mining - DBMSVs Data mining – Other related areas – DM techniques – Issues and challenges in data mining.

UNIT III:

Association rules: introduction - what is an Associative Rule? - Method to discover

Association Rules – Apriori Algorithm – Dynamic itemset counting algorithm – FP growth algorithm –Border Algorithm. Clustering Techniques: Introduction – clustering paradigms – partitioning algorithms – K medoid algorithms – Hierarchial Clustering – DBSCAN –CURE.

UNIT IV:

Classification Based Concept: Basic Concepts – Decision tree induction - Bayes Classification methods: Bayes Theorem – Naïve Bayesian Classification.

UNIT V:

Other Techniques: Introduction – What is Neural Network? – Learning in NN – Unsupervised Learning – Datamining using NN: A case study – Genetic Algorithm – Rough Sets – Support Vector Machines.

TEXT BOOKS:

1. Data Mining Techniques , Arun K. Pujari , University Press. (For Unit I, II, III and V)

Data Mining concepts and techniques, Jawei Han, MichelineKamber, Jian Pei, Margan Kaufmann Publishers – imprint of Elsevier, 3rd Edition. – (For Unit IV only)

REFERENCES:

- 1. Advances in Knowledge Discovery and Data Mining Usama M. Farrad, GeogoryPiatetsky Shapiro, padhrai Smyth and RamasamyUthurusamy, The M.I.T.press.
- 2. The Data Warehouse Life Cycle Toolhit, Ralph Kimball, John Wiley & SonsInc.
- 3. Data warehousing in Action, Sean Kelly, John Wiley & SonsInc.
- Insights into data Mining, Theory and Practice, K.P. Soman, ShyamDiwakar, V. Ajay PHI Publications Eastern Economy Edition 6th Printing, 2012

UNITS	ТОРІС	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Data Warehousing: Introduction – What is data warehouse? – Definition – Multidimensional datamodel – OLAP operation – Warehouse schema–	6	Lecture

	Data Warehousing	6	Videos
	Architecture –		
	Warehouse server –		
	Mata data – OLAP engine –	6	Lecture
	Datawarehouse backend		
	process.		
UNIT 11	F		
	Data mining:	6	Lecture
	introduction – what is data	0	Lecture
	mining – data mining		
	definitions—		
	KDD Vs Data mining	6	Lecture
	- DBMS Vs Data mining –		
	Other related areas		
	DM techniques – Issues and	6	PPT
	challenges in data mining.		
UNIT III			
	Association rules: introduction	6	Lecture
	– what is an Associative Rule?		
	– Method to discover		
	Association Rules – Apriori		
	Algorithm –		
	Dynamic itemset counting	6	PPT
	algorithm– FP	0	111
	growthalgorithm		
	– BorderAlgorithm.		
	Clustering Techniques:	6	Lecture
	Introduction –		
	clustering paradigms		
	– partitioning		
	algorithms – K		
	medoid algorithms –		

	Hierarchial Clustering – DBSCAN – CURE		
UNIT IV			
	Classification Based Concept: Basic Concepts – Decision tree induction	6	Lecture
	Bayes Classification methods: Bayes Theorem	6	Lecture
	Naïve Bayesian Classification.	6	PPT
UNIT V			
	Other Techniques: Introduction – What is Neural Network? – Learning in NN – Unsupervised Learning–	6	Lecture
	Datamining using NN: A case study–	6	РРТ
	Genetic Algorithm – Rough Sets – Support Vector Machines.	6	PPT

Course Outcomes	Programme Outcomes (POs)				Pro	Programme Specific Outcomes (PSOs)				Mean score of Cos	
(Cos)											
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	5	4	5	3	3	5	3.8
CO2	2	3	4	2	4	4	5	2	5	3	3.4
CO3	5	4	2	3	5	4	5	2	1	3	3.4
CO4	4	4	5	5	2	2	5	2	1	3	3.3
CO5	4	3	5	2	4	4	5	2	2	2	3.3
				Ν	Iean Ov	verall Sco	ore				3.44
Mapping	5	1	-20%		21-409	%	41-60%	(61-80%	81-10	00%
Scale			1		2	2	3 4				5
Relation	tion 0.0-1.0 1.1-2.0)	2.1-3.0 3.1-4.0 4.1-5			4.1-5	.0		
Quality Very Poor Poor				Moderate High Very			High				
Mean Sco	ore of C	Os =	Tot	al ofV	alue		Mean Ove	erall Sco	ore of COs	s = Total of I	Mean Score
		Т	otal No.	of Pos	s & PSC	Ds				Total	No. of COs

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Department Of Computer Applications

Programme : BCA Semester : VI Sub. Code: U22DSU2C Part III: Elective 1 Hours : 4 P/W 75Hrs P/S Credits : 4

TITLE OF THE PAPER: DIGITAL IMAGE PROCESSING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	2	1	1	1	
PREAMBLE	E:					
• To learn	the image	formation m	odel and various	representations of an image.		
• To inculc	ate the image	age and feat	are extraction pro	cessing techniques.		
		-	-			
• To learn t	he image s	segmentatior	and various anal	ysis methodologies.		
						-
		COUR	SE OUTCOME		Unit	Hrs P/S
At the end of	the Semes	ter, the Stud	ents will be able t	0		
UNIT 1 CO1	: Understa	and the imag	e conversion app	roaches.	1	15
UNIT 2 CO2	: Build kn	owledge abo	out pixels and sign	al passing methodologies.	2	15
UNIT 3 CO3	E Learn to	develop col	or image processi	ng approaches using Image	3	15
UNIT 4 CO4	4	15				
	images.					
UNIT 5 CO5	5	15				

SYLLABUS UNIT I:

Introduction: Fundamental steps in Digital Image Processing – Image sensing and acquisition - Simple image formation - Image Sampling and Quantization – Basic concepts in sampling and quantization – Representing Digital Image.

UNIT II:

Some basic relationships between pixels - Histogram processing – Histogram equalization. Filtering in the frequency domain : Image Smoothing using frequency domain – Ideal Low pass Filter – Butter worth low pass filter – Guassian low pass filter.

UNIT III:

Image Sharpening using frequency domain filters – Ideal high pass filter – butter worth high pass filter – Gaussian high pass filter. Color fundamentals - Color models - Full color image processing

UNIT IV:

Erosion and Dilation - Opening and Closing - Hit or Miss Transformation - Basic Morphological algorithm –Boundary extraction – Hole filling.

UNIT V:

Fundamentals - Point, Line and Edge detection - Region based Segmentation - Segmentation using Morphological Watersheds.

TEXT BOOKS:

Digital Image Processing, Rafael C.Gonzalez, Richard E.Woods, Prentice Hall 3rd Edition, 2008

REFERENCES:

Digital Image Processing Using MATLAB, Rafael C.Gonzalez, Richard E.Woods, Steven L.Eddins, Prentice Hall, 2004.

- 1. Digital Image Processing, Bernd Jahne, Springer, 5th revised edition.
- 2. Digital image processing, Jayaraman S, Veerakumar T, Esakkirajan S, McGrawHill, 2009.
- 3. Digital Image Processing, PoonamYadav, AbhishekYadav, University Science Press, 2010.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction: Fundamental steps in Digital Image Processing	6	PPT
	Image sensing and acquisition - Simple image formation - Image Sampling and Quantization	6	Lecture

	Basic concepts in sampling and quantization – Representing Digital Image.	3	Lecture		
UNIT 11					
	Some basic relationships between pixels -	7	Videos		
	Histogram processing – Histogram equalization. Filtering in the frequency domain :	3	Lecture		
	Image Smoothing using frequency domain – Ideal Low pass Filter – Butter worth low pass filter – Guassian low pass filter.	5	PPT		
UNIT III					
	ImageSharpeningusingfrequencydomainfiltersIdeal high pass filter-	6	Lecture		
	butter worth high pass filter – Gaussian high pass filter.	6	Lecture		
	Color fundamentals - Color models - Full color image processing.	3	Lecture		
UNIT IV					
	Erosion and Dilation - Opening and Closing - Hit or Miss Transformation -	6	PPT		
	Basic Morphological algorithm –	6	Lecture		
	Boundary extraction – Hole	3	Lecture		

	filling.		
UNIT V			
	Fundamentals - Point, Line and Edge detection	6	PPT
	Region based Segmentation	5	Video
	Segmentation using Morphological Watersheds	4	Lecture

Course Outcomes (Cos)	Programme Outcomes (POs)			Programme Specific Outcomes (PSOs)				Mean scores of Cos			
	PO1	PO2	PO3	PO 4	PO5	PSO1	PSO2	PSO3	PSO4	PSO 5	
CO1	2	4	3	4	3	4	5	3	3	5	3.6
CO2	2	3	4	2	2	4	5	2	5	3	3.2
CO3	5	4	2	3	4	4	5	2	1	3	3.3
CO4	4	4	5	5	3	2	5	2	1	3	3.4
CO5	4	3	5	2	1	4	5	2	2	2	3
	Mean Overall Score								3.3		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of COs =	= <u>Total ofV</u>	alue	Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total No. of Pos	s & PSOs			Total No. of COs	

BLOOM"S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Programme : BCA

Semester :VI Sub. Code: P22DSU2B

Part III: Elective 1 Hours : 4 P/W 75Hrs P/S

Credits : 4

TITLE OF THE PAPER: ARTIFICIAL NEURAL NETWORKS

D 1	ТТ	T (ICT			
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
		-						
	5	2	1	1	1			
PREAMBLE:								
• To stud	ly and des	sign artificia	l neural network a	and its working methodology	' .			
• To expl	lore vario	ous neural ne	twork models for	traning various domains.				
		COUR	SE OUTCOME		Unit	Hrs P/S		
	C							
At the end of the	ne Semes	ter, the Stud	ents will be able t	0				
UNIT 1 CO1:	Introduct	tions of learn	ing and training r	neurons.	1	15		
	TT 1 .	1	1.1. 0	1 . 1		1.5		
UNIT 2 CO2:	Understa	inding variou	is models of neura	al networks.	2	15		
	D 1			6	2	15		
UNIT 3 CO3 :	3	15						
	1	15						
UNIT 4 CO4: Analysis of back propagation methods scrutiny.415								
	5	15						
UNIT 5 CO5:Implementation Applications of neural network concepts 5								

SYLLABUS

UNIT I:

Introduction: Brain as a neural network – Basic properties of neurons – Artificial Neural Networks. Learning: Learning and training – Learning rules – Stability and plasticity

UNIT II:

Hopfield, Perceptron and Related models: Hop field model – basic model of hop-field network – cellular neural networks – perceptron – Other associative models – Bidirectional Associative memory

UNIT III:

Self Organization Map: Kohenen map – adaptive of learning vector quantization – multilayer self organizing feature map.

UNIT IV:

Feed-Forward back propagation networks: Training of multilayer feed –forward – training aspects and variations of back propagation method – Back propagation of stochastic approximation.

UNIT V:

Hybrid learning Neural Network: counter propagation network – radial basis functional networks. Probabilistic models, fuzzy ART map and recurrent networks – Probabilistic neural

networks.

TEXT BOOKS: Neural Networks Algorithms and Applications, M.AnandaRao, J .Srinivas, NarosaPublishing House, 2010.

REFERENCES:

3. Neural networks, James A.Freeman, David N.Skepura.

4. Neural Networks Fundamentals with Graphs, Algorithms and Applications, N.K.Bose, P.Liang

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING	
UNIT 1				
	Introduction: Brain as a neural network – Basic properties of neurons	5	PPT	
	Artificial Neural Networks. Learning: Learning and training –	7	Lecture	
	Learning rules – Stability and plasticity.	3	Lecture	
UNIT 11			I	
	Hopfield, Perceptron and Related models: Hop field model	6	Lecture	
	basic model of hop-field network – cellular neural networks – perceptron	6	Lecture	
	Other associative models – Bidirectional Associative memory	3	PPT	
UNIT III			I	
	Self Organization Map: Kohenen map –	4	Lecture	
	adaptive of learning vector quantization –	5	Lecture	
	multilayerself organizing feature map.	6	Lecture	

	Feed-Forward back propagation networks: Training of multilayer feed	6	PPT
	-forward – training aspects and variations of back propagation method –	3	Lecture
	Back propagation of stochastic approximation.	6	Lecture
JNIT V			
	Hybrid learning Neural Network: counter propagation network—	6	Lecture
	radial basis functional networks. Probabilistic models, fuzzy ART map and recurrent networks	6	Lecture
	Probabilistic neural networks.	3	PPT

Course Outcomes (Cos)	Programme Outcomes (POs)			Programme Specific Outcomes (PSOs)				Mean scores of Cos			
	PO1	PO 2	PO3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	4	3	4	3	2	5	3	3	4	3.3
CO2	2	3	4	2	2	3	5	2	5	3	3.1
CO3	5	4	2	3	4	2	5	2	1	2	3
CO4	4	4	5	5	3	3	5	2	1	3	3.5
CO5	4	3	5	2	1	5	5	2	2	5	3.4
	Mean Overall Score								3.26		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs	= <u>Total of N</u> Total No. of Pos		Mean Overall Sco		<u>al of Mean Score</u> otal No. of COs

BLOOM"S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Programme	Par	
Semester	: VI	Ho
Sub. Code	: U22DSU3BP	Cre

Part III: Elective-2 Hours : 4 P/W 90Hrs P/S Credits : 4

TITLE OF THE PAPER: ARTIFICIAL NEURAL NETWORKUSING MATLAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	6	5	-	1	-			
SYLLABUS								
1) Implementation of Perceptron								
2) Implementation of Hop field network								
3) Implementation of Associative Neural Network model								
4) Implementation of Self Organizing Memory(SOM) Neural Network								
5) Implementation of multi-layer SOM.								
6) Implementation of simple Feed forward Neural Network								
7) Implementation of Feed Forward with Back Propagation Training								
8) Implementation of Counter Propagation Neural Network								
9) Implementation of Radial Basis Functional Networks								
10) Implementation of recurrent Neural Network								

Programme : BCA Semester : VI Sub. Code : U22DSU3CP

Part III: Core/Allied/Elective-2 Hours : 4 P/W 90Hrs P/S Credits : 4

TITLE OF THE PAPER: DIGITAL IMAGE PROCESSING USING MATLAB

Pedagogy	Hours	practical	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	6	5	-	1	-				
SYLLABUS									
1) Generating Histogram of given Image									
2) Performing Histogram Equalization									
3) Smoothing an image with									
I) Ideal Low pass filter									
II) Butter Worth Low pass Filter									
III) Gaussian Low Pass Filter									
4) Image Sharpening with									
I)	I) Ideal High pass filter								
II)		Butter Worth High pass Filter							
III)	Gaus	Gaussian High Pass Filter							
5) Color image processing like, various color representation of the given image RGB, HSI, CMYK and Gray scale.									
6) Performing Erosion									
7) Performing Dilation									
8) Working with morphological algorithm									
9) Extracting the Boundary of the given image									
10) Detecting points and lines in the given image									
11) Implementation of Region based segmentation									
12) Segmentation using Morphological Watershed.									