

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI – 625 002.

DEPARTMENT OF COMPUTER APPLICATIONS

MASTER OF **C**OMPUTER **A**PPLICATIONS

SYLLABUS TO BE INTRODUCED FOR THE ACADEMIC YEAR 2022 - 2023

OUTCOME BASED EDUCATION

UNDER C.B.C.S.

SRI MEENAKSHI GOVT ARTS COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF COMPUTER APLICATIONS

DEPARMENT NAME : Department of Computer Applications (M.C.A)

INTRODUCTION:

The Department of Computer Applications blossomed in the year 1998 offering Master of Computer Applications course approved by AICTE. In August 2018 BCA course was started. The Department has an enterprising faculty team of 3 Assistant Professors, 2 Guest faculties and 1 Programmer. It has more than 100 research publications to its credit. They contribute and share their knowledge to academic community through Invited Talks and Paper presentations in National / International Conferences. The Department takes continuous efforts in upgrading the course content and enhancing student's skills.

COURSES OFFERED:

- **B.C.A**
- M.C.A
- M.Phil. Computer Applications.

VISION

Enabling Students to become enterprising Academicians, Young Entrepreneurs and Responsible Citizens.

MISSION

Imparting Quality Knowledge and Essential Virtues Treading Towards Holistic Development.

PROGRAMME OUTCOME OF M.C.A

At the end of the programme the students will be able to:

- PO1. Apply the understanding of management principles with computing knowledge to manage The projects in multidisciplinary environments.(P)
- PO2. Computing Skills and apply knowledge of computing to produce effective designs And solutions for specific problems. (E).
- PO3. Applying IT related solutions in an economic, social and environment context.(P)
- PO4. Understand and commit to Cyber regulations and responsibilities in Professional Computing Practices(C)
- PO5. Identify opportunities and use innovative ideas to create value and wealth for the Betterment of the individual and society.(K) .

Programme Specific Outcome (PSO)

After the completion of the programme Post graduate students will be able to

- PSO1.An ability to design, develop and evaluate new computer based systems for novel Applications which meet the desired needs of industry and society.(C)
- PSO2. Understanding and ability to use advanced computing techniques and tools.(U)
- PSO3: Enable the students to apply the computing and soft skills acquired in the MCA program For designing and developing innovative applications for the betterment of the society.
- PSO4: Provide exposure to techniques that would enable the students to design, implement and evaluate IT solutions.
- PSO5: To enable the students to meet the challenges of research and development in computer Science and applications.
- PSO6: Comprehend the concepts and applications of International business in the areas related to Finance, Marketing, entrepreneurship, HR, Logistics and supply chain etc.,
- PSO7: Communicate professionally and face challenges ethically with concern to social welfare

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI-2

Programme : M.C.A

Course Type	CourseCODETitle of theType		ırse	Hrs/ Week	Credits	Exam Hrs		Ma rks	
							Int	Ext	Total
CCI	P22CC1	Core Course I -MFC		5	5	3	25	75	100
CC II	P22CC2	Core Course II - OS	5	4	3	25	75	100	
CC III	P22CC3	Core Course III - C++ &DS		5	5	3	25	75	100
CC IV	P22CC4P	Core Course V-Practical - C++ & lab	Core Course V-Practical - C++ &DS			5	40	60	100
DSEC- I	P22DSC1A	Object Oriented Analysis and De	esigns	5	4	3	25	75	100
	P22DSC1B	Management Information System	1						
	P22DSC1C	Soft Skills		-					
SEC -I	P22SEC1P	Multimedia and UML lab		4	2	2	40	60	100
Tota	al			30	23				600
		SEMESTER –II							
CC V	P22CC5	Core Course VI RMT		4	4	3	25	75	100
CC VI	P22CC6	Core Course VII - RDBMS		4	4	3	25	75	100
CCVII	P22CC7	Core Course VIII - Financial Ac	counting	5	5	3	25	75	100
CC VIII	P22CC8	Core Course IX – Data Commun Networking	ication and	5	5	3	25	75	100
CC XI	P22CC9P	Core Course X – Practical Client	Server Lab	5	3	3	40	60	100
DSEC-II	P22DSC2A/ P22DSC2B/ P22DSC2C	Major Based Elective Course II Elective - II		4	4	3	25	75	100
SEC- II	P22SEC2P	Skill Enhancement Course II	NS	2	2	2	20	60	100
			NS Lab	1		2	20		
Tot	al	1	1	30	27				600

SEMESTER --I

	SEN	AESTER –III						
CC–X	P22CC10	Core Course XI EWA	5	4	3	25	75	100
CC– XI	P22CC11	Core Course XII Python Programming	5	4	3	25	75	100
CC – XII	P22CC12	Core Course XIII DIP	5	4	3	25	75	100
CC–XIII	P22CC13P	Core Course XV Practical _ python lab	5	3	3	40	60	100
CC–XIV	P22CC14P	Core Course XV Practical _ EWA lab	5	3	3	40	60	100
MBEC-III		Major Based Elective Course III – Elective 3	5	4	3	25	75	100
CC–XV	P22CCPS	Internship *		2	3	25	75	100
		Total	30	24				700
	SEN	AESTER –IV						
CC– XVI	P22CC16	Core Course XIV Data Mining	5	4	3	25	75	100
СР	P22CCPW	Core Course XVII (Project)	20	8	-	80	20	100
MBEC-IV	P22DSC4	Major Based Elective Course IV Elective IV	5	4	3	25	75	100
	1	Total	30	12				500

*Internship will be carried out during the summer vacation of the second semester and the students have to submit a report after the internship. The report will be evaluated by two examiners within the department. The marks will be included in the third semester statement of marks.

Course Type	Title of the Course	Hrs/Wee	Credits	Exam	Marks		Marks
		k		Hrs	Int	Ext	Total
SEC-1	Multimedia and UML lab	4	2	3	25	75	100
SEC -II	Network Security and Network security Lab	3	2	3	40	60	100

Electives

Semester-I

P22DSC1A. Object Oriented Analysis and DesignP22DSC1B. Management Information SystemP22DSC1C. Soft Skills

Semester-II

P22DSC2A. Cloud Computing P22DSC2B. Internet of Things P22DSC2C. Digital Principles and Computer Organization

Semester-III

P22DSC3A.Human Resource Management P22DSC3B. Artificial Intelligence P22DSC3C. Soft Computing

Semester – IV

Mobile Computing Machine learning Compiler Design

COURSE STRUCTURE ABSTRACT

FOR M.C.A, PROGRAMME

Extra credit courses* - to be discussed

PART	COURSE	TOTAL NO OF COURSE	HOURS	CREDIT	MARK
	Core Course	15	74	60	1600
	Core Project	1	25	8	100
	Major Based Elective Course	4	17	16	400
III	Internship	1	-	2	100
	Skill Enhancement Course	2	4	4	200
Total	-	24	120	90	2400
Extra credit	courses*				
Value Adde	d Course (VAC)	1	-	2	100
Self Sudy Co	ourse (SSC)	1	2	2	100
Total		25	2	2	2500

•

Sri Meenakshi Govt. Arts College for Women (Autonomous) Madurai - 625 002

M.C.A. DEGREE EXAMINATION – FROM 2021 TO 2023

	Part-A	Part-B	
UNIT-I	2	1	
UNIT-II	2	1	
UNIT-III	2	1	
UNIT-IV	2	1	
UNIT-V	2	1	

BLUE PRINT

PART - A --> $6 \times 5 = 30$ (6 out of 10)

PART - B --> $3 \times 15 = 45$ (3 out of 5)

Total = 75

Programme:M.C.A Semester : I

Sub.Code : P22CC1

Part III:Core Hours : 5 P/W 60HrsP/S Credits:5

TITLE OF THE PAPER: Mathematical Foundations of Computer Science

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	4	-	1	-	
PREAMBLE: To know th	e basic co	oncepts of M	lathematical logic	, Sets and Lattices, and Boo	olean Alg	gebra.
At the and of the S	omostor		E OUTCOME		Unit	Hrs P/S
At the end of the S					1	10
UNIT1CO1 : computing skill.	-	operations	and predicate of	calculus needed for	1	12
UNIT 2 CO2: E concepts needed		e	•	ons and relations ns.	2	12
UNIT 3 CO3 : I principles for de	-		oolean function	s, induction	3	12
UNIT 4 CO4 : Apply the acquired knowledge of lattices in the area of designing.					4	12
UNIT 5 CO5: If automata theory computers.	•		-	•	5	12

SYLLABUS

UNIT - I: Mathematical Logic

Statements and notations – connectives: Negation, conjunction, disjunction, statement formulas & truth tables, conditional and bi-conditional, well-formed formula, tautologies, equivalence of formulas, duality law, tautological implications, formulas with distinct truth tables, functionally complete sets of connectives, other connectives.

UNIT - II: Counting

Counting: Introduction – Basic counting Principles – Factorial Notation – Binomial Coefficients – Permutations – Combinations. The Pigeonhole Principle.

UNIT - III: Properties of the Integers

Introduction – Order and inequalities, Absolute value – Mathematical Induction – Division Algorithm – Divisibility, Primes – Greatest Common Divisor, Euclidean Algorithm – Fundamental theorem of arithmetic.

UNIT - IV: Sets and Lattices

Ordered pairs n-tuples, Cartesian product – Relations and ordering: Relations, properties of binary relation, relation matrix and graph of relation, partition and covering of a set equivalence and compatibility relations, composition of binary relations partial ordering, partial ordered set. Lattices as partially ordered sets.

UNIT - V: Boolean Algebra

Boolean algebra- Boolean functions. Finite state machines: Introductory sequential circuits, equivalence of finite state machines.

TEXT BOOK(S)

1. Discrete Mathematical Structures with Applications to Computer Science. by J.P. Tremblay &R.Manohar, Tata McGraw Hill, Publishing Company Ltd. (35th Reprint 2008)

Schaum's Outlines- Discrete Mathematics by Seymour Lipschutz, Marc Lars Lipson, III-Edn. Tata McGraw Hill, Education Pvt. Ltd., New Delhi.5th Reprint 2012. UNIT-I: TB 1 – Chapter 1 – Section 1.1, 1.2 UNIT-II: TB 2 – Chapter 6 – Section 6.1 – 6.6 UNIT-III: TB 2 – Chapter 11 – Section 11.1 – 11.7 UNIT-IV : TB 1 – Chapter 2 – Section 2.1.8, 2.1.9, 2.3.1 – 2.3.9, 4.1.1 – 4.1.5 UNIT-V : TB 1 – Chapter 4 – Section 4.2 – 4.3, 4.6

REF. BOOK(S)

1. Discrete Mathematics by G.Balaji, II-ed., G.Balaji Publishers

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Statements and notations – connectives: Negation, conjunction, disjunction, statement formulas & truth tables,	4	Black board
	conditional and bi- conditional, well-formed formula, tautologies, equivalence of formulas,	4	Black board
	duality law, tautological implications, formulas with distinct truth tables, functionally complete sets of connectives, other connectives.	4	Black board

UNIT 11			
	Counting: Introduction – Basic counting Principles	4	Black board
	Factorial Notation – Binomial Coefficients	4	Black board
	Permutations – Combinations. The Pigeonhole Principle.	4	Black board
UNIT III			
	Introduction – Order and inequalities, Absolute value – Mathematical Induction	4	Black board
	Division Algorithm – Divisibility, Primes – Greatest Common Divisor	4	Black board
	, Euclidean Algorithm –	1	PPT Presentation
	Fundamental theorem of arithmetic.	3	Black board
UNIT IV			
	Ordered pairs n-tuples, Cartesian product – Relations and ordering: Relations, properties of binary relation, relation matrix and graph of relation,	4	Black board
	partition and covering of a set equivalence and compatibility relations, composition of binary relations partial ordering,	4	Black board
	partial ordered set. Lattices as partially ordered sets.	4	Black board
UNIT V			
	Boolean algebra - Boolean functions.	4	Black board

functions. Finite state machines:	4	PPT presentations
Introductory sequential circuits, equivalence of finite state machines.		Black board

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Ou	itcomes	(PSOs)		Mean scores of
(005)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	3	2	4	4	2	4	4	4	2	3.5
CO2	4	5	4	4	2	4	5	2	4	4	5	2	3.6
CO3	4	5	4	4	2	4	4	2	4	5	4	2	3.7
CO4	4	4	5	3	2	5	4	2	4	5	4	2	3.6
CO5	4	5	4	5	2	5	4	2	5	4	4	2	3.7
	•	•	•	•	Μ	ean Ove	erall Scor	·e	•	•	•	•	3.62

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO	s = <u>Total of</u> Total No. of F				of Mean Score tal No. of Cos

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer: Department of Computer Applications

Programme : M.C.APart III:CoreSemester : IHours : 5 P/W 60 HrsP/SSub.Code : P22CC2Credits :4TITLE OF THE PAPER: OPERATING SYSTEMS

ICT Pedagogy Hours Lecture Peer Teaching GD/VIDOES/TUTORIAL 5 3 1 1 -**PREAMBLE:** The objective of this course is to enable the students to clearly understand the underlying concepts of the operating system. **COURSE OUTCOME** Hrs P/S Unit At the end of the Semester, the Students will be able to UNIT 1 CO1: Implement the algorithms in process management and solving 1 12 the issues of IPC. **UNIT 2 CO2**: Able to demonstrate the mapping between the physical memory 2 12 and virtual memory. UNIT 3 CO3: Able to understand file handling concepts in OS perspective 3 12 UNIT 4 CO4: Able to perform the services with the recent OS. 4 12 5 **UNIT 5 CO5**: Understand the basic structure used in the current operating 12 system.

SYLLABUS

UNIT-I

Introduction: What is an Operating System – Mainframe Systems – Desktop Systems – Multiprocessor Systems – Distributed Systems – Clustered Systems – Real-Time Systems – Handheld Systems – Processes: Process Concept – Process Scheduling – Operation on Processes – Cooperating Processes – Interprocess Communication – Communication in Client-Server Systems.

UNIT-II

CPU Scheduling: Basic Concepts – Scheduling Criteria – Scheduling algorithms – Multiple-Processor Scheduling - Real-Time Scheduling - Process Synchronization: Background – The Critical-Section Problem – Synchronization Hardware – Semaphores – Classical Problems of Synchronization – Critical Regions.

UNIT-III

Deadlocks: System Model – Deadlock Characterization – Methods for Handling Deadlocks – Deadlock Prevention – Deadlock Avoidance – Deadlock Detection – Recovery from Deadlock -File-System Interface: File Concept – Access Methods – Directory Structure – Protection.

UNIT-IV

Memory Management: Background– Swapping – Contiguous Memory Allocation – Paging – Segmentation – Segmentation with Paging – Virtual Memory: Background – Demand Paging Process Creation – Page Replacement – Allocation of Frames – Thrashing.

UNIT-V

Mass - Storage Structure: Disk Structure – Disk Scheduling – Disk Management.Case Study – Windows 2000 and the LINUX Systems.

TEXT BOOK

Operating System Concepts by Silberschatz Galvin, VI-Ed. Addison-Wesley, Reprint-2012 Publishing Company. UNIT-I Chapter: 1.1 - 1.8, 4.1 - 4.6. UNIT-II Chapter: 6.1 - 6.5, 7.1 - 7.6. UNIT-III Chapter: 8.1 - 8.7, 11.1 - 11.3, 11.6. UNIT-IV Chapter: 9.1 - 9.6, 10.1 - 10.6UNIT-V Chapter: 14.1 - 14.3, 20,21

REF. BOOKS

- 1. Operating System By MadnicandDonovan
- 2. Modern Operating System By Andrew S.Tanenbaum, Prentice Hall of India, NewDelhi(1996)
- 3. Operating System Concepts By William Stallings–Prentice, Hall InternationalPublications.

E-LEARNING RESOURCES:

- 1. https://nptel.ac.in/courses/106/102/106102132/
- 2. nptel.ac.in/courses/106108101/
- 3 w3schools.in/operating-system-tutorial
- 4 https://swayam.gov.in/course/237-operating-system

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Operating System- classification	4	Black board
	Processes:	4	PPT
	Interprocess Communication	4	Black board
UNIT 11			
	CPU Scheduling	4	Black board
	Scheduling algorithms	4	Black board
	- Process Synchronization Semaphores	4	PPT
UNIT III		•	· · · ·
	Deadlocks	4	Black board
	Deadlock Avoidance Algorithm	4	Black board
	File-System Interface	4	PPT

UNIT IV				
Memory	Management	4	Black board	
Paging -	-	4	Black board	
Segmen	tation			
Page Re	placement-	4	Black board	
algorith	ns			
UNIT V				
Mass - S	Storage	2	Black board	
Structur	e			
Case	Study –	4		
Window	vs 2000.		PPT	
-				
Case	Study –the	3	DDT	
LINUX	Systems.		PPT	

Course Outcomes	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Ou	itcomes ((PSOs)		Mean scores of
(Cos)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	3	2	5	4	2	5	3	4	1	3.3
CO2	5	5	5	4	1	4	5	1	3	5	4	2	3.5
CO3	4	5	4	4	1	4	4	2	4	5	4	1	3.4
CO4	4	3	5	5	2	5	4	2	4	5	5	2	3.5
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.7
	M				ean Overall Score					3.5			

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. of		<u>.</u>	Mean Overall Sco Total No. of Cos	ore of COs = $Tota$	al of Mean Score

INTERNAL	EXTERNAL
50%	50%
30%	30%
20%	20%
	50% 30%

CourseDesigner:

Department of ComputerApplications

Programme: M.C.A Semester : I Sub.Code : P22CC3

Part III: Core Hours : 5 P/W 60 HrsP/S Credits : 5

TITLE OF THE PAPER: C++ AND DATA STRUCTURES

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
	5	4	-	1	-			
PREAMBLE:								
To enabl	To enable the students to understand the basic concepts of C++ and data structures and salient							
features	of compu	ter algorithn	ns.					
	1	e						
		COURS	SE OUTCOME		Unit	Hrs P/S		
At the end of the Semester, the Students will be able to								
UNIT 1 CO1:	Able to u	inderstand th	e concepts of data	a types, data structures and	1	12		
linear structure	s.							
UNIT 2 CO2 :	Able to a	pply the OO	Ps concepts of Inl	neritance and over loading	2	12		
UNIT 3 CO3:	Applicati	on of arrays	in list and queue	structure	3	12		
UNIT 4 CO4: To design and implement simple and advanced data structure					4	12		
concepts in C++.								
UNIT 5 CO5: to design a search application using data structures 5 12						12		

SYLLABUS

UNIT I:

Object Oriented Programming concepts- Encapsulation- Programming Elements- Program Structure- Enumeration Types- Functions and Pointers- Default arguments- Overloading Functions-Scope and Storage Class- Pointer Types- Arrays and Pointers- Call-by-Reference.

UNIT II:

Classes- Constructors and Destructors- Static Member and member functions- friend Functions -this Pointer- Overloading- Overloading Operators- Unary Operator Overloading- Binary Operator Overloading- Inheritance- Virtual function- Files- Command lineargument-Template.

UNIT III:

Introduction- Arrays- Operation on arrays- Polynomial Representation- Polynomial Addition-Stack: definition- representation- operations- infix to post fix- evaluation of postfix expression- Queues - definition- Representation- operations - Circular queues- lists- Queue and Linked Lists.

UNIT IV:

Trees- operations on trees-Binary Trees - definitions-Operations on binary trees - Binary Tree

Representations – node representation, internal and external nodes- array representation – linked representation - Binary tree Traversals- converting forest into binary tree-Binary search tree-operations on binary search tree.

UNIT V:

Graphs – application of graphs – array representation – Linked representation of Graphs - Shortest path algorithm– Dijkstra's algorithm - – Graph Traversals-DFS and BFS – spanning tree mining costing spanning tree-Hashing.

TEXT BOOK:

- 1. "Object Oriented Programming with C++" by E.Balagurusamy, 4th edition. Reprint-2009. Tata McGraw-Hill Publishing Company Limited. NewDelhi
- 2 Horowitz, Sahni& Dinesh Mehta, "Fundamental of data structures in C++", Galgotia, 2003

REFERENCE BOOKS:

- 1. Schaum's Outlines "Programming with C++", Second edition, Tata McGrawHill,2000
- 2. Jean, Paul tremblay, Paul. G Sorenson, "An introduction to data structures with application", Tata McGraw Hill,2002
- 3. YashavantKanetkar, "Let Us C++", BPB publications, First Edition, 1999.

E-LEARNING RESOURCES:

- 1. https://www.w3schools
- 2. https://www.programiz.com/dsa
- 3. https://nptel.ac.in/courses/106102064/1
- 4. https://nptel.ac.in/courses/106/105/106105151/
- 5. https://nptel.ac.in/courses/106/102/106102064/

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHIN
UNIT 1			
	Object Oriented Programming concepts- Encapsulation- Programming Elements	4	Black Board
	- Program Structure- Enumeration Types- Functions and Pointers- Default arguments- Overloading Functions-	4	PPT

	Scope and Storage Class- Pointer Types- Arrays and Pointers- Call- by-Reference.	4	Black Board
UNIT 11			
1	Classes-Constructorsand Destructors-StaticMember and memberfunctions-friend Functions	4	Black Board
	Overloading- Overloading Operators- Unary Operator Overloading- Binary Operator Overloading-	4	Black Board
	Inheritance- Virtual function- Files- Command line argument- Template.	4	Black Board
UNIT III			
	Introduction- Arrays- Operation onarrays- Polynomial Representation- Polynomial Addition-	4	Black Board
	Stack: definition- representation- operations- infix to post fix- evaluation of postfix expression	4	Black Board
	Queues - definition- Representation- operations - Circular queues- lists- Queue and Linked Lists.	4	Black Board
UNIT IV			
	Trees- operations on trees-Binary Trees – definitions- Operations on binary trees representations	4	Black Board
	Representations – node representation, internal and external nodes- array representation – linked representation -	4	РРТ
	Binary Tree Binary tree Traversals- converting forest in to binary tree-Binary search tree- operations on binary search tree.	4	Black Board
UNIT V			

Graphs – application of graphs – array represe Linked representation of Graphs	4	PPT	
Shortest path algorithm– Dijkstra's algor Graph	4	Black Board	
Traversals-DFS and BFS –			
spanning tree mining costing spanning tree- Hashing.	4	Black Board	

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	imme Sp	ecific Ou	itcomes ((PSOs)		Mean scores of
	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.3
CO2	5	5	5	4	2	4	5	2	4	4	5	1	3.6
CO3	4	5	4	5	2	4	4	3	4	5	4	2	3.5
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.6
CO5	4	4	5	5	2	4	4	3	5	4	4	2	3.5
	1		1	1	М	ean Ove	erall Scor	e		ł	•	1	3.5

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. of		<u>f</u>	Mean Overall Sc Total No. of COs		al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
		A 1' /

CourseDesigner:

Department of Computer Applications .

Programme:M.C.APart III:ElectiveSemester: IHours : 5 P/W 60 HrsP/SSub.Code: P22DSC1ACredits : 4TITLE OF THE PAPER: OBJECT ORIENTED ANALYSIS AND DESIGN

	1	1			T	
Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	3	-	1	1	
PREAMBLE:						
	To learn a	bout Object C	Driented Analysis ar	nd Design Concepts and UML	Diagram	s.
		U	·	C 1	C C	
						•
		COUR	SE OUTCOME		Unit	Hrs P/S
At the end of the	ne Semes	ter, the Stude	ents will be able to	0		
UNIT 1 CO1 :	Able to u	inderstand th	e object oriented	concepts and to apply	1	12
object oriented	life cycle	e model for a	n project.			
UNIT 2 CO2 :	Able to de	esign static an	d dynamic models u	ising UML diagrams.	2	12
UNIT 3 CO3:	Able to p	erform obje	ct oriented analysi	s to identify the objects	3	12
from the proble	mSpecifi	ication.	-			
UNIT 4 CO4:	Able to id	lentify and ref	ine the attributes an	d methods for designing the	4	12
object oriented s	ystem					
UNIT 5 CO5:A	Able to le	earn the open	source CASE too	ols and to apply them in	5	12
various domain	IS.					
SVI I ARIIS						•

SILLABUS

UNIT - I

Introduction – Two Orthogonal views – object oriented Systems development Methodology – Object orientation – unified approach – Object Basics – object oriented philosophy – objects – classes – attributes – behavior and methods – Message passing -Encapsulation and information hiding – hierarchy – polymorphism – object relationship and associations – aggregation – a case study – advanced topics.

UNIT - II

Object oriented system development life cycle (SDLC) – development process – building high quality software – use-case driven approach – reusability –Object oriented methodologies – introduction – Booch methodology – Jacobson methodologies – patterns – frame works – unified approach.

UNIT - III

Unified modeling language – introduction – static and dynamic models – modeling – unified modeling language - UML diagrams – UML class diagrams – Use-case diagram – UML dynamic modeling- model management –OOA process – introduction – difficulty in analysis - business object analysis – use-case driven object oriented analysis – business processing modeling – use-case model – developing effective documentation.

UNIT - IV

Object analysis – classification – common class patterns approach – use-case driven approach – CRC – naming classes – object relationships – associations – Super-Sub class relationships – aggregation – class responsibility – object responsibility - Object oriented design process and design axioms – introduction – design process – design axioms- design patterns.

UNIT - V

Designing classes – introduction - object oriented design philosophy – UML object constraint – designing classes – class visibility – defining attributes – designing methods and protocols – Packages and managing classes – Access layer – Object storage and object interoperability – introduction – object store and persistence – Database management systems – database organization and access control – distributed databases.

TEXT BOOK:

Object Oriented Systems Development – Ali Bahrami – Irwin/McGraw Hill Publications – 1999. (Chapters 1 to 11)

REF. BOOK: OOAD by Grady Booch

E-LEARNING RESOURCES:

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction — object oriented Systems development Methodology – Object orientation – unified approach	4	Black Board
	Object Basics – object oriented philosophy attributes – behavior and methods	4	Black Board
	a case study – advanced topics	4	ICT -NPTEL
UNIT 11			
	Object oriented system development life cycle (SDLC	4	PPT
	Object oriented methodologies	4	Black board
	patterns – frame works	4	Black board
UNIT III			
	Unified modeling language	4	ICT-NPTEL
	UML diagrams	4	PPT
	OOA process	4	Black board
UNIT IV			
	Object analysis – classification	4	Black board
	object relationships	4	Black board
	Object oriented design process and design axioms	4	Black board
UNIT V			
	Designing classes	4	Black board

• https://nptel.ac.in/courses/106/105/106105153/

Packages and managing classes –	4	Black board
Object storage and object interoperability	4	Black board

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Ou	itcomes	(PSOs)		Mean scores of
	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.3
CO2	5	5	5	4	2	4	5	3	4	5	4	2	3.7
CO3	4	5	4	5	2	4	4	2	4	5	4	1	3.5
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.6
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.7
		•	•		Μ	ean Ove	rall Scor	re	•	•	•	•	3.6

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. of		-	Mean Overall Sco Total No. of COs	ore of COs = $\underline{\text{Tota}}$	al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner: Department of ComputerApplications

Programme: M.C.APart III:ElectiveSemester : IHours : 5 P/W 60 HrsP/SSub.Code : P22DSC1BCredits: 4TITLE OF THE PAPER: MANAGEMENT INFORMATION SYSTEMS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
0.00	5	3	-	2	-	
PREAMBLE	:					
To enri	ch knowle	dge on conc	epts of Manageme	ent Information Systems: De	ecision N	/laking,
Databas	se Manage	ement techno	ology, Client / Ser	ver Computing, and Decisio	on Suppo	rt System.
		COUR	SE OUTCOME		Unit	Hrs P/S
At the end of	the Semes	ter, the Stud	ents will be able t	0		
UNIT 1 CO1	: Understa	nd the leade	rship role of Mana	agement Information	1	12
Systems in acl	hieving bu	siness comp	etitive advantage	through informed		
decision maki	ng.	_	-	-		
UNIT 2 CO2	Analyze	and synthesi	ze business inform	nation and systems to	2	12
facilitate evalu	ation of s	trategic alter	natives	-		
		_				
UNIT 3 CO3 : Effectively communicate strategic alternatives to facilitate						12
decision maki						
UNIT 4 CO4	Able to r	nanage the I	Database design		4	12
UNIT 5 CO5 : Able to develop Client – Server programming application basics					5	12

SYLLABUS

UNIT – I

MANAGEMENT INFORMATION SYSTEMS : AN OVERVIEW- Introduction – Management Information Systems – Definitions of MIS – Framework for MIS Organization and Management Triangle – Information Needs and its Economics – Systems Approach – Meaning and Objectives of MIS – Disadvantages of Information Systems – approaches of MIS Development – Constraints in Developing an MIS – MIS and Use of Computer – Limitations of MIS.

UNIT - II

INFORMATION SYSTEMS FOR DECISION MAKING: Introduction – Transaction Processing Systems – Management Information Systems – Intelligent Support Systems – Office Automation Systems.

UNIT - III

DATABASE MANAGEMENT TECHNOLOGY: Introduction – Data vs Information – Data Hierarchy – Methods for Organizing Data in Files – limitations of File-Based Systems – Database and Database Management Systems – Entity Relationship Diagram – Fourth Generation Languages(4GLs) – Recent Development in Databases – Principles of Database Management – The Database Administrator.

UNIT - IV

CLIENT-SERVER COMPUTING: Introduction – Definition of Client-Server Computing – Components and Functions of a Client-Server System – Development of Client-Server System –

Client-Server Security – Client-Server Costs Computation – Advantages of Client-Server System – Disadvantages/Obstacles of a Client-Server System.

UNIT - V

DECISION SUPPORT SYSTEM: Introduction – Definitions – Evolution of DSS - Objectives of DSS – Classifications of DSS – Characteristics of DSS – Components of a DSS – Functions of a DSS – Development of DSSs – Group Decision Support Systems – Executive Information Systems – Success Criteria for DSS/EIS – Relationship between MIS and DSS – DSS Measures of Success in Organizations – Applications of a DSS – TPS, MIS, DSS and EIS – Future Developments in DSS.

TEXT BOOK(S):

1. Management information systems by A.K.GuptaS.Chand& Company Ltd., New Delhi,II-Edition 2003.

REFERENCE BOOK(S):

1. Management Information Systems by Kenneth C. Laudon , Carol GuercioTraver, 12thEdition. **E-LEARNING RESOURCES:**

1. https://nptel.ac.in/courses/122/105/122105022/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	MANAGEMENT INFORMATION SYSTEMS : AN OVERVIEW	4	Black Board
	Framework for MIS Organization and Management	4	РРТ
	Systems Approach-MIS	4	PPT
UNIT 11			
	INFORMATION SYSTEMS FOR DECISION MAKING Transaction Processing Systems	4	Black Board
	Management Information Systems – Intelligent Support Systems	4	РРТ
	Office Automation Systems.	4	PPT
UNIT III			
	DATABASE MANAGEMENT TECHNOLOGY	4	Black Board
	Entity Relationship Diagram – Fourth Generation Languages(4GLs)	4	Black Board
	The Database Administrator- recent development.	4	РРТ
UNIT IV			
	Definition of Client-Server Computing	4	Black Board

	Components and Functions of a Client-	4	Black Board
	Server System		
	Development of Client-Server	4	PPT
	System		
UNIT V			
	Definitions – Evolution of DSS Objectives of DSS – Classifications of DSS	4	Black Board
	Components of a DSS – Functions of a DSS	4	Black Board
	Relationship between MIS and DSS – DSS Measures of Success in Organisations – Applications of a DSS – TPS, MIS, DSS and EIS	4	PPT

Course	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Ou	itcomes ((PSOs)		Mean
Outcomes (Cos)													scores of
(003)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
	1	2	-		2	1	_	-		-	-	/	2.2
CO1	4	4	4	4	2	5	4	2	4	3	4	l	3.3
CO2	5	5	4	4	2	4	5	3	4	5	4	2	3.6
CO3	4	5	4	5	2	4	4	2	4	5	4	1	3.5
CO4	4	3	5	4	2	5	4	2	5	4	5	2	3.5
CO5	4	5	5	5	2	4	4	3	5	4	4	2	3.6
	Mean Overall Score								3.5				

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
	ean Score ofCOs = <u>Total of</u> <u>lue</u> Total No. of POs &PSOs			ore of COs = $\frac{\text{Tota}}{3}$	al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department of Computer Applications.

Programme : M.C.A Semester : I Sub.Code :P22DSC1C TITLE OF THE PAPER: SOFT SKILLS

Part III : Elective Hours : 5 P/W 60Hrs P/S Credits : 4

ICT

 Pedagogy
 Hours
 Lecture
 Peer Teaching
 GD/VIDOES/TUTORIAL

 5
 4
 1

To sharpen memory skills and other study skills which are vital for academic excellence. To give training for positive thinking which will keep the students in a good stead at the time of crisis

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1 : Resilience – learning to keep going when things don't go	1	12
according to plan, coping with the unfamiliar, managing disappointment and		
dealing with conflict.		
UNIT 2 CO2: time and resource management, conflict resolution, teaching and	2	12
mentoring others		
UNIT 3 CO3: Teamwork – learning to connect and work with others to achieve	3	12
a set task and group learning to increase the memory power.		
UNIT 4 CO4: Communication – demonstrating clear briefing and listening	4	12
skills, not being afraid to ask for help and support when necessary.		
UNIT 5 CO5 : Positive thinking and Leadership – assessing the requirements of a	5	12
task, identifying the strengths within the team, utilizing the diverse skills of the group to		
achieve the set objective, awareness of risk/safety.		

SYLLABUS

Unit I - Introduction

- Definition of Personality
- Components of Personality structural and functional aspects.
- Determinants of Personality- biological, psychological and socio-cultural factors.
- Assessment of Personality observation, interview and psychological tests.
- Misconceptions and Classifications.
- Need for personality development.

Unit II - Self-Awareness and Self Motivation

- Self analysis through SWOT and Johariwidow.
- Elements of motivation.
- Seven rules of motivation.
- Techniques and strategies for self motivation.
- Motivation checklist and Goal setting based on the principle of SMART.
- Self motivation and life.

Unit III - General Knowledge and current affairs

• Regional, National and International events.

- Geographical, political and historical facts.
- Information on sports and other recreational activities.
- Basic knowledge with regard to health and health promotion.

Unit IV - Memory, decision making and study skills

- Definition and importance of memory.
- Causes offor getting.
- How to forget (thought stopping), how to remember (techniques for improving memory)
- The technique of passing exams.
- The rational decision making process.
- Improving creativity in decision making and components of creativity.

Unit V - Power of positive thinking

- Thinking power- seven steps for dealing with doubt.
- Traits of positive thinkers and high achievers,\
- Goals and techniques for positive thinking.
- Enhancement of concentration through positive thinking.
- Practicing a positive lifestyle.

PRACTICAL TRAINING

The course would include the following practical exercises. Ice-breaking, Brainstorming and stimulation exercises. Thought stopping .Memory and study

Ice-breaking, Brainstorming and stimulation exercises. Thought stopping .Memory and study skills training.

REFERENCES:

- 1. Mile, D.J. Power of positive thinking. Delhi: Rohan Book Company.
- 2. Pravesh Kumar. All about self-motivation. New Delhi: Goodwill Publishing House.
- 3. Dudley, G.A. Double your learning power. Delhi: Konark Press. Thomas publishing Group Ltd.
- 4. Lorayne, H. How to develop a super power memory. Delhi: Konark Press. Thomas publishing Group Ltd.

5. Hurlock, E.B. Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill.

E-LEARNING RESOURCES:

1.https://nptel.ac.in/courses/109/107/109107121/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Definition of Personality Components of Personality – structural and functional aspects.	4	Black Board
	Determinants of Personality- biological, psychological and socio-cultural factors.	4	Black Board

[
	Assessment of Personality –		
	observation, interview and		
	psychological tests.		
		4	DDT
	Misconceptions and	4	PPT
	Classifications.		
	Need for personality		
	development.		
UNIT 11			
	Self analysis through SWOT and	4	Black Board
	Johari widow.		
	Elements of motivation.		
	Seven rules of motivation.	4	Black Board
	Techniques and strategies for self		
	motivation.		
	Motivation checklist and Goal	4	РРТ
	setting based on the principle of		
	SMART.		
	Self motivation and life.		
	Sen motivation and me.		
UNIT III			
	Regional, National and	4	Black Board
	International events.	7	Diack Board
	Geographical, political and		
	historical facts.		
	Information on an arts and athen	4	Black Board
	Information on sports and other	4	Black Board
	recreational activities.		
			DDT
	Basic knowledge with regard to	4	PPT
	health and health promotion.		
UNIT IV		4	
	Definition and importance of	4	Black Board
	memory.		
	Causes of forgetting.		
	How to forget (thought stopping),	4	Black Board
	how to remember (techniques for		
	improving memory)		
	The technique of passing exams.		
	The rational decision making	4	РРТ
	process.		
	r		

	Improving creativity in decision making and components of creativity.		
UNIT V	•		
	Thinking power- seven steps for dealing with doubt. Traits of positive thinkers and high achievers,	4	Black Board
	Goals and techniques for positive thinking. Enhancement of concentration through positive thinking.	4	Black Board
	Practicing a positive life style.	4	РРТ

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Ou	itcomes ((PSOs)		Mean scores of
()	PO 1	PO 2	PO 3	РО 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	3	3	3	2	4	2	3	4	3	3	4	4	3.3
CO2	3	2	3	3	4	4	3	4	4	3	4	3	3.5
CO3	3	2	3	2	4	2	3	4	4	3	4	4	3.4
CO4	3	3	3	3	4	3	3	4	3	4	5	4	3.5
CO5	3	2	3	2	2	3	4	4	3	4	3	5	3.3
	1		•	•	М	lean Ove	erall Scor	·e		1	1	1	3.4

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC <u>Value</u> Total No. of		<u>f</u>	Mean Overall Sc Total No. of COs		al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
~ ~ .	-	

CourseDesigner:

Department of Computer Applications .

Programme : M.C.A Semester : I Sub.Code : P22CC4P Part III: Practical Hours : 6 P/W 75 rsP/S Credits: 3

TITLE OF THE PAPER: C++ AND DATA STRUCTURES LAB

Pedagogy	Hours	PracticalLab	TUTORIAL	ICT
	5	4	1	-
		-		
PREAMBLE:				
		is paper is to develop the progra ta structure algorithm	amming skill to the studer	nts to solve the
At the end of the	e Semeste	COURSE OUTCOME er, the Students will be able to		
CO1 : able to ur	nderstand	the OOPs concepts		
CO2 : able to ap	ply all fu	nctionalities into programs		
CO3 : able to in	nplement	basic data structure operations.		
CO 4 : Understa	and the co	ncepts of TREE traversal and its	s implementations	

LAB CYCLE: C++ AND DATA STRUCTURES LAB

- 1. Program for function overloading.
- 2. Program for default arguments.
- 3. Program for unary operator overloading using memberfunction.
- 4. Program for binary operator overloading using memberfunction.
- 5. Program for unary operator overloading using friendfunction.
- 6. Program for binary operator overloading using friendfunction.
- 7. Program for sequential filehandling.
- 8. Program for polynomial addition using arrays.
- 9. Program for singleinheritance.
- 10. Program for virtualfunction.
- 11. Program for stack class implementation using arrays.
- 12. Program for stack class implementation using linkedlists.
- 13. Program for queue class implementation using arrays.
- 14. Program for queue class implementation using linkedlists.
- 15. Program for infix to postfix conversion.
- 16. Program for evaluation of post fix expression.
- 17. Program for operations on singly linkedlist.
- 18. Program for operations ongraphs.
- 19. Program for binary treetraversals.

Programme Semester		Part III: Practical Hours: 4 P/W Hrs.P/S
Sub.Code	: P22SEC1P (Skill enhancement Course)	Credits: 2

TITLE OF THE PAPER: MULTIMEDIA AND UML LAB

Pedagogy	Hours	Practical Lab	TUTORIAL	ICT
	2	1	1	-
		-		
PREAMBLE	E:			
1. '	To manipu	late images by various techniq	ues supported by imag	e editingtools.
	To create 2 animations	D animation using guide layer of tware.	r, various tweening met	thods supported by
3.	To model t	he object using wireframe and	making it to animate a	andtransform.
		COURSE OUTCOME		
A 4 41	the Same	· · · · · · · · · · · · · · · · · · ·		
At the end of	the semes	ter, the Students will be able to	0	
		an animation using Flash	0	
CO1 : able	to develop			
CO1 : able CO2 : Able	to develop to develop	an animation using Flash	on using Photoshop	
CO1 : able CO2 : Able CO 3 : unde	to develop to develop erstand the	an animation using Flash an application and modificati	on using Photoshop oment using 3D Max	

LAB CYCLE:

Adobe Photoshop – (Image creation and Manipulation):

- 1. Working with Selection Tools , Copy, Cut, Paste, MoveTool
- 2. Working with Lasso, Polygonal Lasso tool, Transform and Opacityoptions
- 3. Working with Quick Select Tool (or Magic Wand Tool), Invert SelectionTool
- 4. Working with Paint Bucket Tool, Color Picker, BrushTool
- 5. Working with Layers, EraserTool
- 6. Working with Text and TransformTool
- 7. Working with ColorBalance
- 8. Working with Crop and Canvas
- 9. Working with Clone Stamp Tool, SmudgeTool
- 10. Working with Filters , effects

Macromedia FLASH – (2D Animation):

- 1. MotionTweening
- 2. ShapeTweening
- 3. Working with multipleLayers
- 4. Animation using guidelayer
- 5. Animation using MaskingEffect
- 6. Working with Fade-in, Fade-out and Zoom-in, Zoom-outoptions
- 7. Working with Image Effects like blur, ripple
- 8. Sparkling GlassEffect
- 9. Flash Slide ShowPresentation
- 10. Working with Flash Scripts in order to control theanimation

3D Studio MAX – (3D Animation and rendering):

- 1. Working with Build-in 3Dobjects.
- 2. Simulation of abuilding.
- 3. Materials and Textures
- 4. Creation of user defined objects and Organization of Objects in aScene.
- 5. Simulation of Bombblast.
- 6. Illuminating Scenes UsingLights.
- 7. Creating an UnderwaterScene
- 8. Cloth, Hair, and FurCreation
- 9. CharacterAnimation

UML DIAGRAMS USING TOOLS

Programme : M.C.A Semester : II Sub.Code : P22CC5

Part III: Core Hours : 4 P/W 60 HrsP/S Credits :4

TITLE OF THE PAPER: RESOURCE MANAGEMENT TECHNIQUES

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	5	5	-	-	-				
PREAMBLE:									
To focu	is on logi	cs of Resour	ce Management to	echniques.					
		COUR	SE OUTCOME		Unit	Hrs P/S			
At the end of th	ne Semes		ents will be able to	0	Chit	110170			
UNIT 1 CO1 :	Analy	ze the LPP a	and IPP Understar	nd of	1	12			
Transportation	problem								
UNIT 2 CO2 :	Apply tra	ansportation	and assignment m	nodels to find optimal	2	12			
solution in war	ehousing	and Travelli	ng,						
UNIT 3 CO3 :	To prepa	re project sc	heduling using PE	ERT and CPM	3	12			
UNIT 4 CO4:	Able to u	ise optimizat	ion concepts in re	al world problem	4	12			
UNIT 5 CO5: Identify and analyze appropriate queuing model to reduce the 5 12									
waiting time in	waiting time in queue.								

SYLLABUS

UNIT-I

Simplex Method – Big M method – Two phase simplex method.

UNIT-II

Transportations and Assignment problems.

UNIT-III

Network Model – CPM and PERT.

UNIT-IV

Game Theory – Simulations – Monte – Carlo Simulation – Generation of random numbers.

UNIT-V

Dynamic programming Cargo loading Model – Work - force size Model – Equipment Replacement model – Investment model.

TEXT BOOKS

REFERENCEBOOKS

- 1. Resource Management Techniques by V.Sundaresan, K.S.Ganapathy Subramanian, K.Ganesan, A.R.Publications, Chennai, (7thEditon).
- 2. Operations Research by KarthiSwarup, P.K.GuptaandManmohan, Sultan Chand and Sons, (9th Edition), NewDelhi.
- 3. Linear Programming by Dr.S.Arumugam and A.Thangapndi,Isacc, New Gamma Publishing House,Palyamkottai.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1		поско	I
	Simplex	4	Black Board
	method		
	Big M method	4	Black Board
	Two phase	4	Black Board
	simplex		
	method.		
UNIT 11		·	·
	Transportations	4	Black Board
	problems.		
	Assignment	4	Black Board
	problems.		
	Problem practices	4	Black Board
UNIT III			
	Network model	4	Black Board
	PERT	4	Black Board
	СРМ	4	Black Board
UNIT IV			
	Game Theory – Simulations –	4	Black Board

	Generation of random numbers.		
	Monte – Carlo Simulation –	4	Black Board
	Generation of random numbers.	4	Black Board
UNIT V		I	
	Dynamic programming Cargo loadingModel	4	Black Board
	Work - force size Model	4	Black Board
	Equipment Replacement model – Investment model.	4	Black Board

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Ou	itcomes ((PSOs)		Mean scores of
	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.3
CO2	5	5	5	4	2	4	5	3	4	5	4	2	3.7
CO3	4	5	4	5	2	4	4	2	4	5	4	1	3.46
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.6
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.66
	•		•	•	Μ	lean Ove	erall Scor	e		•		1	3.6

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
$\frac{\text{Mean Score of COs} = \frac{\text{Total of}}{\text{Value}\text{Total No. of Pos} \text{PSOs}}$			Mean Overall Sco Total No. of COs	ore of COs = $Tota$	ll of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department of Computer Applications .

Programme: M.C.A Semester : II Sub.Code : P22CC6

Part III: Core Hours : 4 P/W 60 HrsP/S Credits : 4

TITLE OF THE PAPER: RELATIONAL DATABASE MANAGEMENT SYSTEMS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	5	4	-	1	-		
PREAMBLE:		•					
1.	To learn	the data corr	elation and know	about various databasemode	els.		
2.	To enrich	n the importa	ince of and proces	ss of datanormalization.			
3.	To learn	the transaction	ons and concurrer	nt executions of transactions	and ide	ntify the	
	issues an	d supporting	mechanisms of R	DBMS.			
		COURS	SE OUTCOME		Unit	Hrs P/S	
At the end of t	he Semes	ter, the Stude	ents will be able t	0			
UNIT 1 CO1:	Identify t	he methodol	ogy of conceptua	l modeling through Entity	1	12	
Relationship m	odel.						
				ta models for database	2	12	
systems, datab	ase schen	na and databa	ase instances				
UNIT 3 CO3:	Identify	Structure Qu	ery Language sta	tements used in creation	3	12	
1	ion of Da	tabase. Deve	elop a simple data	abase applications using			
normalization.							
UNIT 4 CO4:	understar	nd the concep	ots of Data Storag	ges.	4	12	
UNIT 5 CO5: Acquire the knowledge about different special purpose databases 5 12							
and to critique	how they	differ from	traditional databa	se systems			

SYLLABUS

UNIT – I

Purpose of database systems – View of data – Data models – Database languages – Transaction and storage management – Database Administrator – Types of database user – Structure of database management system – Entity Relationship model – Basic concepts – Design issue – Mapping constraints – keys – ER diagram – Weak entity set – Extended ER features – Design of ERschema.

UNIT – II

Relational model – Structure of Relational Databases – Relational Algebra – The tuple relational calculus – SQL – Basic structure – Set operations – Aggregate functions – Null values–Nestedsubqueries–Derivedrelation–Views–Modificationofdatabase–Joined relation– DataDefinitionLanguage–IntegrityConstraints–Domainconstraint–Referential integrity – Assertion – Trigger – Functional dependencies.

UNIT – III

Relational database design – Decomposition – Normalization using functional dependency – Normalization using multivalued dependencies – Normalization using join dependency – Domain key normal form – Object oriented data model – Persistent programming language – Object relational databases – Complex types – Querying with complex type – Comparison of object oriented and object relational databases.

UNIT – IV

Storage and file structure – RAID – Tertiary storage – File organization – Organization of records in file – Data dictionary storage – Storage structure for object oriented database – Indexing and Hashing – Ordered indices – B+ tree index files – B tree index files – Static hashing – Dynamic hashing – Multiple key access.

$\mathbf{UNIT} - \mathbf{V}$

Transactions – Transaction state – Implementation of atomicity and durability – Concurrent executions – Serialibility – Recoverability – Implementation of isolation – Transaction definition in SQL – Testing for serialibility – Concurrency control – Lock based protocols – Time stamp based protocols – Validation based protocols – deadlock handling – Recovery system – failure classification – log based recovery – Shadow paging – Recovery with concurrent transactions –Buffer management.

TEXT BOOKS

Database system concepts, A.Silberchatz, H.F.Korth and S.Sudarshan, Tata Mcgraw hill publications, III edition.

Unit –I: Chapter 1,2.1 to 2.8

Unit –II : Chapter 3.1 to 3.3, 4.2 to 4.11, 6.1 to 6.5

Unit – III : Chapter 7.2 to 7.6, 8.2, 8.4, 9.2, 9.3, 9.5

Unit – IV: Chapter 10.3 to 10.8, 11.2 to 11.6

Unit – V : Chapter 13.3 to 13.9, 14.1 to 14.3, 14.6, 15.1, 15.4, 15.5 to 15.7.

REFERENCE BOOKS

1. Database Management Systems , Raghuramakrishnan, Mcgraw Hill, 1998.

- 2. Introduction to database system, C.J.Date, Addsionweslwy publications, VIedition.
- 3. Modern database management, Mefadden, IVedition.

E-RESOURSES:

- 1. https://www.pearson.com
- 2. www.tutorialspoint.com/sql/ sq1-rdbms-concepts.htm
- 3. beginnersbook.com/2015/04/rdbms-concepts
- 4. beginnersbook.com/2015/04/dbms-tutorial
- 5. www.tutorialspoint.com/dbms/index.htm

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
UNIT 1			
	Purpose of database systems –	4	Black Board
	View of data – Data models –		
	Database languages		
	Transactionandstoragemanagement–DatabaseAdministrator–Typesdatabaseuser–Structure	4	Black Board
	database managementsystem	4	
	— Entity Relationship model – Basic concepts – Design issue –	4	Black Board
	Mapping constraints – keys – ER		
	diagram – Weak entity set –		
	Extended ER features – Design of		
	ER schema.		
UNIT 11			
	Relational model – Structure of Relational Databases – Relational Algebra – The tuple relational calculus –	4	Black Board
	SQL – Basic structure – Set operations – Aggregate functions – Null values – Nested sub queries – Derived relation – Views – Modification ofdatabase – Joined relation –	4	PPT

	Data Definition Language – Integrity Constraints – Domain constraint – Referential integrity – Assertion – Trigger – Functionaldependencies.	4	Black Board
UNIT III			
	Relational database design – Decomposition – Normalization using functional dependency – Normalization using multivalued dependencies – Normalization using join dependency –	4	Black Board
	Domain key normal form – Object oriented data model – Persistent programminglanguage – Object relational databases – Complex types –	4	Black Board
	Querying with complex type – Comparison of object oriented and object relationaldatabases.	4	Black Board
UNIT IV			
	Storage and file structure – RAID – Tertiary storage – File organization – Organization of records in file –	4	Black Board
	Data dictionary storage – Storage structure for object oriented database	4	РРТ
	Indexing and Hashing – Ordered indices – B+ tree index files – B tree index files – Static hashing – Dynamic hashing – Multiple key access	4	Black Board
UNIT V			
	Transactions – Transaction state – Implementation of atomicity and durability – Concurrent executions –	4	Black Board
	Serialibility – Recoverability – Implementation of isolation – Transaction definition in SQL – Testing for serialibility –	4	РРТ

based based	urrency control – Lock l protocols – Time stamp l protocols – Validation l protocols – deadlock	4	Black Board
failur recov Recov transa	ing – Recovery system – e classification – log based ery – Shadow paging – very with concurrent actions –Buffer gement.		

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Programme Specific Outcomes (PSOs)						Mean scores of
(003)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.3
CO2	5	5	5	4	2	4	5	3	4	5	4	2	3.7
CO3	4	5	4	5	2	4	4	2	4	5	4	1	3.46
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.6
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.7
		1		1	Μ	lean Ove	erall Scor	e		ł		1	3.56

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
$\frac{\text{Very Fool}}{\text{Mean Score of COs}} = \frac{\text{Total of}}{\text{ValueTotal No. of Pos} \& PSOs}$			Mean Overall Sco Total No. of COs	re of COs = $Tota$	ll of Mean Score

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner: Department of Computer Applications .

Part III: Core Hours: 5 P/W 60 HrsP/S Credits : 5

TITLE OF THE PAPER: DATA COMMUNICATIONS AND NETWORKING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT			
0.01	5	3	-	1	1			
PREAMBLE:		•						
Т	o enable	the students						
	• to u	nderstand ab	out fundamentals	ofnetworks				
	• to le	arn about ne	tworkconcepts					
	• to le	arn about la	yerfunctions					
	COURSE OUTCOME Unit Hrs P/S							
At the end of th	At the end of the Semester, the Students will be able to							
UNIT 1 CO1:	UNIT 1 CO1 : Understand the components of a data communications system. 1 12							
UNIT 2 CO2 :]	Identify k	key consider	ations in selecting	various transmission	2	12		
media in netwo	rks.	-	-					
UNIT 3 CO3:	Usage of	the various	error detection and	d correction schemes and	3	12		
the various type	es of sign	als and their	features.					
UNIT 4 CO4:	Identify a	and de.ne rol	es and features of	various data transmission	4	12		
protocols.								
UNIT 5 CO5 : Understand the network security methods and its applications 5 12								
			•	**	1			
SYLLABUS								

UNITI

Introduction: Data Communication - Networks - Distributed Processing, Network criteria, Applications -Protocols and Standards, - Standards Organizations - Standards Creation committees, Forums, Regulatory Agencies. Basic Concepts: Line Configuration - Point-to-Point, Multipoint - Topology - Mesh, Star, Tree, Bus, Ring, Hybrid Topologies -Transmission Mode - Simplex, Half-Duplex - Full Duplex - Categories of Networks - LAN, WAN, MAN -Internetworks. The OSI Model: The Model - Functions of the Layers.

UNIT II

Transmission of Digital Data: Interfaces and Modems: Digital Data Transmission - Parallel Transmission, Serial Transmission - Transmission Media: Guided Media - Twisted-Pair Cable, Coaxial Cable, Optical Fiber - Unguided Media - Radio Frequency Allocation, Propagation of Radio Waves, Terrestrial Microwave, Satellite Communication, Cellular Telephony. Error Detection and Correction: Types of Errors, Detection, Vertical Redundancy Check, Longitudinal Redundancy Check, Cyclic Redundancy Check, Checksum, ErrorCorrection. **UNIT III**

Data Link Control: Line Discipline – ENQ/ACKJ, Poll/Select - Flow Control – Stop-and-Wait, Sliding Window - Error Control - Automatic Repeat Request, Stop-and-Wait ARQ, Sliding Window ARQ. Switching: Circuit Switching - Space-Division Switches, Time-Division

Switches, TDM Bus, Space-and Time division switching combinations, Public switched telephone network – Packet Switching – Datagram Approach, Virtual circuit approach, Circuit-switched connection versus virtual-circuit connection - Message Switching.

UNIT IV

Local Area Networks: Project 802 – IEEE 802, LLC, MAC, PDU – Ethernet – Access method: CSMA/CD, Addressing, Electrical specifications, Frame format, Implementation -Other Ethernet Networks – Switched Ethernet, Fast Ethernet, Gigabit Ethernet – Token Bus – Token Ring – Access method: Token passing, Addressing, Electrical specifications, Frame format, Implementation - FDDI – Access method: Token passing, Addressing, Electrical specifications, Frame format, Implementation - Comparison. Metropolitan Area Networks: IEEE 802.6 (DQDB) – Access method: Dual Bus, Distributed Queues – Ring Configuration – Operation, and Implementation. Networking and Internetworking Devices: Repeaters – Bridges – Routers – Gateways – Other Devices – Multiprotocol Routers, Brouters, Switches, Routing Switches.

UNIT V

Network Security: Security Attacks - Security Services – A model for network security – Symmetric encryption principles –Symmetric block encryption algorithms – Public-Key cryptography Principles – Public-Key cryptography algorithms – X.509 certificates.

TEXT BOOK:

1. Data Communications and Networking, Behrouz A Forouzan, Tata McGraw Hill Publishing Company Limited, New Delhi, 2nd Edition, Third Reprint 2001. (Unit I to UnitIV)

UNIT-I

Chapter 1(Sections 1.2-1.5), Chapter 2(Sections 2.1-2.5), Chapter 3(Sections 3.1,3.2)

UNIT-II

Chapter 6(Sections 6.1-6.1), Chapter 2(Sections 7.1-7.2), Chapter 9

UNIT-III

Chapter10, Chapter 14(Sections 14.1–14.3)

UNIT-IV

Chapter 12, Chapter 13(Sections 13.1), Chapter 21 (Sections:21.1-21.5)

2. Network Security Essentials: Applications and Standards by William Stallings, Fourth Edition, Second Impression 2012, Pearson Education Publications. (UnitV)

UNIT-V

Chapters 1 (Sections: 1.3,1.4,1.7), Chapter 2 (Sections: 2.1,2.2,3), Chapter 3 (Sections: 3.4,3.5), Chapter 4 (Sections: 4.4)

REFERENCE BOOK(s):

1. Computer Networks, Andrew S. Tanenbaum, Prentice Hall of India, 4th Edition, 2006.

E-LEARNING RESOURCES:

1. https://nptel.ac.in/courses/106/105/106105082/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1		I	
	Introduction: Data Communication – Networks – Distributed Processing, Network criteria, Applications	4	Black Board
	Protocols and Standards, - Standards Organizations – Standards Creation committees, Forums, Regulatory Agencies. Basic Concepts: Line Configuration – Point-to-Point, Multipoin - Topology – Mesh, Star, Tree, Bus, Ring, Hybrid Topologies	4	Black Board
	Transmission Mode – Simplex, Half-Duplex - Full Duplex - Categories of Networks – LAN, WAN, MAN - Internetworks. The OSI Model: The Model – Functions of the Layers.	4	PPT
UNIT 11			
	Transmission of Digital Data: Interfaces and Modems: Digital Data Transmission – Parallel Transmission, Serial Transmission	4	Black Board
	TransmissionMedia:Guided MediaTwisted-PairCable, CoaxialCable,OpticalFiber- UnguidedMedia- Radio FrequencyAllocation,PropagationofRadioWaves,TerrestrialMicrowave,SatelliteCommunication,	4	Black Board
	Cellular Telephony. Error Detection and Correction: Types of Errors, Detection, Vertical Redundancy Check, Longitudinal Redundancy Check, Cyclic Redundancy Check, Checksum, Error Correction	4	PPT

	Data Link Control: Line Discipline – ENQ/ACKJ, Poll/Select - Flow Control – Stop- and-Wait, Sliding Window - Error Control – Automatic Repeat Request, Stop-and-Wait ARQ, Sliding Window ARQ. Datagram Approach, Virtual circuit approach, Circuit-switched connection versus virtual-circuit connection - MessageSwitching.	4	Black Board
	Switching: Circuit Switching – Space-Division Switches, Time- Division Switches, TDM Bus, Space-and Time division switching combinations, Public switched telephone network – Packet Switching –	4	Black Board
	Datagram Approach, Virtual circuit approach, Circuit-switched connection versus virtual-circuit connection - Message Switching.	4	РРТ
UNIT IV			
	Local Area Networks: Project802 – IEEE 802, LLC, MAC, PDU– Ethernet – Access method: CSMA/CD, Addressing, Electrical specifications, Frame format, Implementation -Other Ethernet Networks – Switched Ethernet, Fast Ethernet, Gigabit Ethernet – Token Bus – Token Ring – Access method: Token passing,Addressing,	4	Black Board
	Electrical specifications, Frame format, Implementation - FDDI – Access method: Token passing, Addressing, Electrical specifications, Frame format, Implementation - Comparison. Metropolitan Area Networks: IEEE 802.6 (DQDB) –Access method: Dual Bus, Distributed Queues – Ring Configuration –	4	Black Board

UNIT III			
	Networking and Internetworking Devices: Repeaters – Bridges – Routers – Gateways – Other Devices – Multiprotocol Routers, Brouters, Switches, Routing Switches.	4	ICT – Net materials NPTEL notes
UNIT V			
	Network Security: Security Attacks - Security Services – A model for network security	4	Black Board
	Symmetric encryption principles –Symmetric block encryption algorithms –	4	РРТ
	Public-KeycryptographyPrinciples–Public-Keycryptographyalgorithms–X.509certificates.	4	Black Board

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Oı	itcomes	(PSOs)		Mean scores of
	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cos
	1	2	3	4	5	1	2	3	4	5	6	1	
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.26
CO2	5	5	5	5	2	4	5	2	4	5	4	2	3.66
CO3	4	5	4	4	2	4	5	3	4	5	4	1	3.53
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.6
CO5	4	5	5	5	2	5	5	3	5	4	4	2	3.8
Mean Overall Score							3.57						

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC <u>Value</u> Total No. of		_	Mean Overall Sco Total No. of Cos	ore of COs = $Tota$	al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department of Computer Applications .

Programme: M.C.A Semester : II Sub.Code : P22CC7 Part III: Core Hours : 5 P/W 60 Hrs P/S Credits : 5

TITLE OF THE PAPER : FINANCIAL MANAGEMENT AND ACCOUNTINTG

OBJECTIVES

The coverage of the topics in this paper should endeavor to develop a working knowledge of accounting so as to enable the students to apply these in software development.

UNIT - I

Principles of Accounting-Need for Accounting-purpose and advantages of accounting-Branches of Accounting-Important terms used in accounting-Accounting concepts-Methods of Accounting: Single entry, double entry system of book keeping-Types of Accounts: Personal account, Impersonal Accounting-Journal-Ledger- Trial Balance.

UNIT - II

Final Account: Trading Account, Profit and loss account, Balance sheet-Accounting for material-Meaning for material control-Objective for material control-Essential of material control-Re-ordering level-Economic Ordering Quantity –Minimum level or safety stock level-Maximum level-Danger level-Store Records Difference between Bin card and Store ledger-ABC Analysis

UNIT - III

Financial statements--Nature-Importance of financial statement – limitations-Process of financial statement analysis and interpretation-Types of Analysis-Techniques and tools of financial statement analysis.

UNIT - IV

Standard for control-variable/Fixed Costs-Contribution-Break Even Analysis-Standard/Actual cost-Material Price/Usage variance-Labour cost/time variance-sales price/quantity variance.

UNIT - V

Budgeting and forecasting-Objectives-Sales, Production, Purchase Labour, Capital Expenditure and Cash budgets.

TEXT BOOKS

1. Maheswari S N, Financial and Management Accounting, Sultan Chand & Sons, 2003.

- 2. Pandey I M, Financial Management, 7th Edition, vikas Publications.
- 3.Reddy T.S Hari Prasad Reddy Y.Margham Publication ,2008.

4. Jain S.P, Narang K.L Cost Acounting, Kalyani Publishers, 2009.

REF. BOOKS:

- 1. S. Nagarathnam, Management Accounting Financial Management and Holding Company Accounts, S. Chand Company Ltd., 1989.
- 2. Jain S.P,Narang K.L Financial Acounting, Kalyani Publishers, 2009.
- 3. Gupta R.L ,Advanced Accountancy,Sulann chand & sons ,1981

Programme: M.C.A Part III: Elective Semester : II Sub.Code : P22DSC2A

Hours : 4 P/W 60 Hrs.P/S Credits: 4

TITLE OF THE PAPER: CLOUD COMPUTING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOE	S/TUTORIAL	ICT	
	5	3	-	1		1	
PREAMBLE	:						
	This give	es an idea of	cloud computing	and its serve	ices available to	day whi	ich may led to
the de	sign and	development	of simple cloud	d service an	d focused on s	ome ke	v challenging
	-	oudcomputin	-				<i>.</i>
155005		Judeomputin	8.				
		COURS	SE OUTCOME			Unit	Hrs P/S
At the end of the Semester, the Students will be able to						om	1115 175
UNIT 1 CO1 : Compare the strengths and limitations of cloud computing						1	12
or the sublights and miniations of cloud computing						1	12
UNIT 2 CO2·	Analyze	and Identify	the architecture i	nfrastructure	and delivery	2	12
UNIT 2 CO2 : Analyze and Identify the architecture, infrastructure and delivery models of cloud computing.						-	12
		0	e the challen	ves and f	acilitate user	3	12
UNIT 3 CO3 : Effectivelymanage the challenges and facilitate use authentications.						5	12
UNIT 4 CO4 : Address the core issues of cloud computing such as security,						4	12
privacy and interoperability.						-	12
1 7	1	2	risss and Sat a mi	vota alaud	ndannly	5	12
UNIT5CO5:	U		vices and Set a pri	vale cloud A	appiy	5	12
suitable virtual	nzauonco	ncept.				1	1

SYLLABUS

UNIT-I:

Introduction to Cloud computing: Definition –Cloud Deployment models – Private Vs Public clouds – Business drivers for Cloud Computing – Cloud Technologies –Technology Challenges.

UNIT-II:

Infrastructure as a Service (IaaS): Storage as a service : Amazon storage service – Compute as a service: Amazon Elastic compute cloud – Hp cloud system matrix

Platform as a service (PaaS): Google App Engine – PaaS Storage Aspects – Software as a Service (**SaaS)**: Social computing service – case study : Face book, Twitter, Picasa.

UNIT-III:

Cloud challenges: Scaling computation: Scale out Vs Scale up – Amdahl's Law- Scaling storage – CAP theorem – Multi tenancy levels – Tenants and users – Authentication- Availability – Failure Detection – Application Recovery.

UNIT-IV:

Designing cloud Security: Introduction – Cloud security requirements: Physical Security – Virtual Security- Risk Management: Concepts – Process- Security Design Patterns-Selecting a cloud service provider: Listing the Risks – security criteria for selecting a cloud service provider.

UNIT-V:

Cloud Management: Managing IaaS : Management of cloud system Matrix-Managing PaaS : Management of windows Azure- Managing SaaS: Monitoring Force.com : NetCharts.

TEXT BOOKS:

- 1. DinkarSitaram, GeethaManjunath," Syngress Moving to the cloud" Elsevier2012
- 2. GautamShroff, "Enterprise Cloud Computing Technology Architecture Applications", Cambridge University Press; First Edition, 2010.

REF. BOOKS:

- 1. Dimitris N. Chorafas, "Cloud Computing Strategies" CRC Press; First Edition2010.
- 2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach" McGraw-Hill Osborne Media; FirstEdition

E-LEARNING RESOURCES:

1. https://nptel.ac.in/courses/106/105/106105167/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction to Cloud	4	Black Board
	computing: Definition –Cloud		
	Deployment models –		
	Private Vs Public clouds –	4	Black Board
	Business drivers for Cloud		
	Computing –		
	Cloud Technologies – Technology Challenges	4	ICT – web materials
UNIT 11		1	
	Infrastructure as a Service	4	Black Board
	(IaaS): Storage as a service :		

	Amazon storage service –		
	Compute as a service: Amazon		
	Elastic compute cloud – Hp cloud		
	system matrix		
	system matrix		
	Platform as a service (PaaS):	4	PPT
	Google App Engine – PaaS		
	Storage Aspects –		
	Software as a Service (SaaS):	4	ICT – Web Materials
	Social computing service – case		
	study : Face book, Twitter,		
	Picasa.		
	Picasa.		
UNIT III			1
	Cloud challenges: Scaling	4	Black Board
	computation: Scale out Vs Scale		
	up – Amdahl's Law- Scaling		
	storage		
	sionage		
	CAP theorem – Multi tenancy	4	Black Board
	levels – Tenants and users –		
	Authentication- Availability -	4	Black Board
	Failure Detection – Application		
	Recovery.		
	Recovery.		
UNIT IV	· · · · · · · · · · · · · · · · · · ·		·
	Designing cloud Security:	4	Black Board
	Introduction – Cloud security		
	requirements: Physical Security –		
	Virtual Security		
	virtual Security		
	Risk Management: Concepts -	4	РРТ
	Process- Security Design		
	Patterns-		
	Selecting a cloud service	4	Black Board
	provider: Listing the Risks –		
	security criteria for selecting a		
	cloud serviceprovider.		
UNIT V	1		1
	Cloud Management: Managing	4	Black Board
	IaaS : Management of cloud		
	system Matrix-Managing		
	system mutik munuging		
h			

PaaS : Management of windows Azure-	4	РРТ
Managing SaaS: Monitoring Force.com :NetCharts.	4	РРТ

Course Outcomes (Cos)	Prog	gramme	Outco	omes ((Pos)		Progra	ımme Sp	ecific Oı	itcomes	(PSOs)		Mean scores of
(005)	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	PSO	PSO	Cos
	1	2	3	4	3	1	2	3	4	5	6	/	
CO1	5	4	4	4	2	5	4	2	5	3	4	2	3.5
CO2	5	5	5	4	1	5	5	3	4	5	4	2	3.8
CO3	4	4	4	5	2	4	4	2	4	5	4	2	3.4
CO4	5	3	5	5	1	4	4	2	5	4	5	1	3.5
CO5	4	5	5	5	2	5	4	3	5	4	4	1	3.6
	1	1		1	Μ	lean Ove	erall Scor	re	1	1	1	1	3.5

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC <u>Value</u> Total No. of		<u>f</u>	Mean Overall So Total No. of CO		otal of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner: Department of Computer Applications.

PartIII: Elective Hours : 4 P/W 60 HrsP/S Credits :4

TITLE OF THE PAPER: INTERNET OF THING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
		4	-	1	-	
		1 (· N / 1 · · · · · · · · · · · · · · · · · · ·		1 1
		1	of M2M (Machine	to Machine) with necessary	protocc	ols and
The second sec						
S 4 - 1 - REAMBLE: To understand the concept of M2M (Machine to Machine) with necessary protocols and applications of IoT. COURSE OUTCOME Unit Hrs P/S the end of the Semester, the Students will be able to Init 1 COI: Analyze various protocols for IoT 1 12 INIT 1 CO2: Develop web services to access/control IoT devices. 2 12 INIT 3 CO3: Design a portable IoT using Rasperry Pi 3 12 INIT 5 CO5: Analyze applications of IoT in real time scenario 5 12 INIT 4 CO4: Deploy an IoT application and connect to the cloud. 4 12 INIT 5 CO5: Analyze applications of IoT in real time scenario 5 12 INIT 4 CO4: Deploy an IoT application of Control Lowels and Deployment Templates – Domain Specific IoTs: Home Automation – Cities – Environment – Energy – Retail – Agriculture – Health and Lifestyle. UNIT-I: IOT and M2M: Introduction to M2M – Difference between IoT and M2M – Need for IoT Systems Management – SNMP – Network Operator Requirements – IoT Platforms Design Methodology : Introduction – IoT Design Methodology. UNIT-II: IoT Physical Devices and Endpoints :IoT Device – Examplary Device: Raspberry Pi, About the board. Linux on Raspberry Pi, Raspberry Interfaces – other IoT Devices. UNIT-IV:<						
				0		
	2	1				
	-					
	-	-	<u> </u>			
	5 4 - 1 EAMBLE: To understand the concept of M2M (Machine to Machine) with n applications of IoT. COURSE OUTCOME he end of the Semester, the Students will be able to IT 1 CO1: Analyze various protocols for IoT IT 2 CO2: Develop web services to access/control IoT devices. IT 3 CO3: Design a portable IoT using Rasperry Pi IT 4 CO4: Deploy an IoT application and connect to the cloud. IT 5 CO5: Analyze applications of IoT in real time scenario ILABUS UNIT-I: Introduction to Internet of Things: Introduction – Physic Design of IoT – IoT Enabling Technologies – IoT Levels and Deg Specific IoTs: Home Automation – Cities – Environment – En Health and Lifestyle. UNIT-II: IOT and M2M: Introduction to M2M – Difference betwork IoT Systems Management – SNMP – Network Operator Require Methodology : Introduction – IoT Design Methodology. UNIT-II: IOT Physical Devices and Endpoints :IoT Device – Exa About the board. Linux on Raspberry Pi, Raspberry Interfaces – o UNIT-IV: IoT Physical Servers and Cloud Offerings: Introduction Communication APIs – WAMP – AutoBahn for IoT – Xively O Services for IoT. UNIT-V: Case Studies of IoT Design: Home Automation – Cities – Productivity Applications. An IoT Tool: Chief - Chief Case Studie EXT BOOKS ArshdeepBahga, Vijay Madisetti, "Internet of Things - A Hands Press 2015. CEFERENCE BOOKS: 1. HonboZhou , "The Internet of Things in t					
	-	applications		le scenario	5	12
Meth UNII Abou UNII Com Servi UNII	Systems Ma odology : I G-III: IoT Phys It the board G-IV: IoT Phys munication ces for IoT G-V: Case Stu	anagement – ntroduction sical Device . Linux on F sical Server APIs – WA dies of IoT	- SNMP – Networ – IoT Design Met es and Endpoints Raspberry Pi, Rasp s and Cloud Offe AMP – AutoBahn Design: Home Au	rk Operator Requirements – hodology. :IoT Device – Examplary oberry Interfaces – other IoT rings: Introduction to Clou for IoT – Xively Cloud fo utomation – Cities – Enviro	IoT Pla Device: Devices d Storag or IoT –	tforms Design Raspberry Pi a. ge Models and Amazon Wel
TEXT BC Ars Press <u>REFERE</u> 1. H	DOKS hdeepBahg s 2015. NCE BOO HonboZhou	a, Vijay Ma P <mark>KS:</mark> , "The Intern	disetti, "Internet o et of Things in the C	f Things - A Hands on Appr Cloud" A Middleware Perspect	ive" CRC	C Press
<u>E-LEARN</u> 1. htt	NING RES	OURCES:	s/106/105/106105		ted-w-ra	spberry-pi/
	T T T T T T T T T T T T T T T T T T T		<u>-</u>	<i>6 6 6 6 6 6 6 6 6 6</i>		1 · · · · · ·

3. www.theinternetofthings.eu/what-is-the-internet-of-things

4.www.ibm.com/blogs/bluemix/2015/04/tutorial-using-a-raspberry-pi-python-iot-twilio-

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction to Internet of Things:	4	Black Board
	Introduction – Physical Design of		
	IoT – Logical Design of IoT		
	IoT Enabling Technologies – IoT	4	Black Board
	Levels and Deployment		
	Templates – Domain Specific		
	IoTs: Home Automation – Cities	4	PPT
	Environment – Energy – Retail–	4	rr i
	Agriculture – Health and		
	Lifestyle.		
UNIT 11	IOT and M2M: Introduction to	4	Black Board
		4	DIACK DOALD
	M2M – Difference between IoT		
	and M2M – Need for IoT	4	Dia da Dia and
	Systems Management – SNMP –	4	Black Board
	Network Operator RequirementsIoTPlatformsDesign	4	PPT
	Methodology : Introduction –IoT	т	
	Design Methodology.		
UNIT III	Design Methodology.		
	IoT Physical Devices and	4	Black Board
	Endpoints : IoT Device	·	Diack Dourd
	Examplary Device: Raspberry Pi,	4	PPT
	About the board.		
	Linux on Raspberry Pi, Raspberry	4	Black Board
	Interfaces – other IoT Devices		
UNIT IV	LeT Divised Servers and Claud	4	Black Board
	IoT Physical Servers and Cloud	4	DIACK DOALD
	Offerings: Introduction to Cloud		
	Storage Models and		
	Communication APIs	A	
	WAMP – AutoBahn for IoT –	4	Black Board
	Xively Cloud for IoTAmazon Web Services for IoT	4	Black Board
		7	Black Board
UNIT V	1		
	Case Studies of IoT Design:	4	Black Board
	Home Automation –Cities		

Environment Agriculture	4	PPT
ProductivityApplications.		
An IoT Tool: Chief - Chief Case	4	Black Board
Studies.		

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Ou	itcomes	(PSOs)		Mean scores of
(005)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.33
CO2	5	5	5	4	2	4	5	2	4	5	4	2	3.66
CO3	4	5	4	5	2	5	4	3	4	4	4	1	3.53
CO4	4	4	5	4	2	4	4	2	5	5	5	2	3.6
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.66
	•	•	•	•	Μ	ean Ove	rall Scor	re	•	•	•	•	3.56

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC <u>Value</u> Total No. of		<u>f</u>	Mean Overall Sco Total No. of COs	re of COs = $Tota$	al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner: Department of ComputerApplications.

Programme: M.C.A Semester : II Sub.Code : P22DSC2C

PartIII: Elective Hours : 4 P/W 60 Hrs.P/S Credits:4

TITLE OF THE PAPER: DIGITAL PRINCIPLES AND COMPUTER ORGANISATION

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	4	-	1	-	
PREAMBLE:						
Todevel	opknowle	edgeindigitall	ogic,combinationa	llogiccircuit,flip-flops,	1	registers, basic
structur	e of com	puter, I/O sy	stem, memory sys	stem, and processing unit.		
		COUR	SE OUTCOME		Unit	Hrs P/S
At the end of th	ne Semes	ter, the Stud	ents will be able to	0		
UNIT 1 CO1 :	Understa	nd the conce	pt of Gates and it	s circuit designs.	1	12
			-	-		
UNIT 2 CO2 :	Understa	nd the desig	n principles of Fli	p Flop s and counters.	2	12
		_				
UNIT 3 CO3 :	Compreh	end basic in	put/output functio	ning including program	3	12
controlled I/O a	and interr	upt I/O and	design Instruction	formats .		
UNIT 4 CO4 :	Understa	nd the desig	n and functioning	of a machines central	4	12
processing unit	(CPU).					
			nization of memor	ry hierarchies including	5	12
Cache and Virt	ual Mem	ory.				

SYLLABUS

UNIT - I

Describing logic circuits: Boolean constants and variables, Truth tables, OR operations with OR Gates, AND operations with AND Gates, NOT operation, Describing logic circuit algebraically, Evaluating logic circuit operations, Implementing circuits from Boolean expressions, NOR Gates and NAND Gates, Boolean Theorems, Demorgan's Theorems, Universality of NAND Gates and NOR Gates. **Combinational logic circuits :** Sum of Products form, Simplifying logic circuits, Algebraic simplification, Designing combinational logic circuits, Karnaugh map method, Exclusive OR and Exclusive NOR circuits.

UNIT - II

Flip-Flops and their Applications: Clock Signals and clocked Flip-Flops, Clocked S-R Flip-Flop, Clocked J-K Flip-Flops, Clocked D Flip-Flops, D Latch, Master/Slave Flip-Flops, Asynchronous (Ripple) Counter, Asynchronous Down Counter, Synchronous (Parallel) counters, Integrated circuit registers: Parallel – in / Parallel –out, Serial – in / Serial – out, Parallel – in / Serial – out, Serial – in / Parallel – out.

UNIT - III

Instruction Codes – Computer Registers – Computer Instruction – Timing and control – Instruction Cycle – Memory reference Instruction – Input – Output and Interrupt – Programming the Basic Computer – Assembly Language – The Assember – Program loops – subroutines.

UNIT - IV

Central Processing Unit – General Register Organization – Stack Organization – Instruction formals – Addressing mode – Data Transfer and manipulation – Program Control.

UNIT - V

Input-Output organization – Input-Output Interface – Priority Interrupt – DMA – IOP. – Memory Organisation – Memory Hierarchy – Associative memory – Cache memory – Virtual memory.

TEXT BOOK(S)

- 1. Computer System Architecture by M.Morris Mano, III-Edn, 1998. UNIT III, IV &V
- 2. Digital Systems Principles and Applications by Ronald J. Tocci, Neal S. Widmer, Gregory L.Moss, Pearson Prentice Hall, Sixth Edition. UNIT I &II

UNIT I: Chapters 3.1 – 3.12, 4.1 – 4.6 UNIT II: Chapters: 5.4 – 5.8, 5.13, 7.1,7.4, 7.6, 7.18 – 7.22 UNIT III: Chapter 5.1 – 5.7, 6.3 – 6.5, 6.7 UNIT IV: Chapter: 8.2 – 8.7 UNIT V: Chapter 11.2,11.5 – 11.7,12.1, 12.4 – 12.6.

REFERENCE BOOK(S)

- 1. Digital Principles And Applications by D.P. Leach and A.P. Malvino, Tata McGrawHill, New Delhi, 6th Edition,2006.
- 2. Computure Organization by Carl Hamacher, ZvonkoVranesic, SafwatZaky, TataMcGraw Hill, 5th Edition, 2002.

E-LEARNING RESOURCES:

- 1. http://nptel.ac.in/courses/117106086/1
- 2. https://swayam.gov.in/courses/1392-digital-circuits-and-systems
- 3. https://nptel.ac.in/courses/117/105/117105078/
- 4. https://www.tutorialspoint.com/computer_organization/index.asp
- 5. https://www.studytonight.com/computer-architecture/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Describinglogiccircuits:Booleanconstants and variables, Truth tables, ORoperationswithORGates,ANDoperationswithANDGates,NOToperation,Describinglogiccircuit	4	Black Board
	algebraically, Evaluating logic circuit operations,		
	Implementing circuits from Boolean expressions, NOR Gates and NAND Gates, Boolean Theorems, Demorgan's Theorems, Universality of NAND Gates and NOR Gates.		Black Board
	Combinational logic circuits :Sum of Products form, Simplifying logic circuits, Algebraic simplification, Designing combinational logic circuits, Karnaugh map method, Exclusive OR and Exclusive NORcircuits.		Black Board
UNIT 11			
	Flip-Flops and their Applications: Clock Signals and clocked Flip-Flops, Clocked S-R Flip-Flop, Clocked J-K Flip-Flops, Clocked D Flip-Flops, D Latch, Master/Slave Flip-Flops,		PPT
	Asynchronous (Ripple) Counter, Asynchronous Down Counter, Synchronous (Parallel) counters,	4	Black Board
	Integrated circuit registers: Parallel – in / Parallel –out, Serial – in / Serial – out, Parallel – in / Serial – out, Serial – in / Parallel – out.	4	Black Board
UNIT III			
	Instruction Codes – Computer Registers – Computer Instruction – Timing and control –	4	Black Board
	Instruction Cycle – Memory reference Instruction – Input – Output and Interrupt –	4	PPT
	Instruction – Input – Output and Interrupt –		

	Programming the Basic Computer –	4	Black Board	
	Assembly Language – The Assembler –			
	Program loops – subroutines.			
UNIT IV				
	Central Processing Unit – General	4	Black Board	
	Register Organization –Addressing mode			
	– Data Transfer and manipulation –			
	Program Control.			
	Stack Organization – Instruction formals	4	Black Board	
	Addressing mode – Data Transfer and manipulation – Program Control.	4	Black Board	
UNIT V				
	Input-Output organization – Input- Output Interface – Priority Interrupt–	4	Black Board	
	DMA – IOP. – Memory Organisation –	4	PPT	
	Memory Hierarchy – Associative memory – Cache memory – Virtual memory.	4	Black Board	

Course Outcomes	Prog	ramme	Outco	omes ((Pos)		Progra	imme Sp	ecific Oı	itcomes	(PSOs)		Mean scores
(Cos)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	of Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.3
CO2	5	5	5	4	2	4	5	3	4	5	4	2	3.7
CO3	4	5	4	5	2	4	4	2	4	5	4	1	3.5
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.6
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.7
					Μ	lean Ove	erall Scor	·e					3.36

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. of		<u>f</u>	Mean Overall Sco Total No. of COs		al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department of Computer Applications .

Programme: M.C.A Semester : II Sub.Code : P22CC9P PartIII: Practical Hours : 5 P/W 75 Hrs.P/S Credits: 3

TITLE OF THE PAPER: CLIENT SERVER LAB

Pedagogy	Hours	PracticalLab	TUTORIAL	ICT
	5	4	1	-
PREAMBLE		-		
	To prome	ote programming kno E asbackend).	wledge on the Client Server C	oncepts (VB as frontend,
*	To develo		t real time requirement withrep	ports.
	1 0	COURSE OUT		
		er, the Students will client server applicat		
		a system functions	10118	
			back end applications.	
		1	<u></u>	I
LAB	CYCLE:			
	•	agement System (3ta	,	
	-	ntrol System (3tables		
	-	and Delivery System	n (2tables).	
		em (2tables).		
	•	lling System (2tables		
		Processing System (
7. Ai	rline – tick	et Reservation System	m (2tables).	

Programme: M.C.A

Semester : II Sub.Code : P22SEC2P(SEC PartIII: Practical Hours : 3 P/W 75 HrsP/S Credits : 2

TITLE OF THE PAPER: NETWORKING AND SECURITY Theory and LAB

Pedagogy	Hours	PracticalLab	TUTORIAL	ICT		
	5	4	1	-		
PREAMBL						
PKEANIDL	To develop programming skills on RMI, Networking (TCP/IP, UDP), COM and,					
Secu	Security Concepts.					
		COURSE OUTCOME				
At the end o	of the Semes	ter, the Students will be able t	0			
-		oncepts of RMI with client and				
		gram with COM technologies				
		an application with TCP and				
CO4 : able	to develop a	n application with Database c	onnectivity			
LAD	B CYCLE:					
	OCICLE:					
1. V	Write a RMI	program to print Fibonaccise	ries.			
2. 1	Write a RMI	program to check the PrimeN	lumber.			
3. V	Write a RMI	program to print arithmeticop	perations.			
4. \	Write a RMI	program to find the factorial	value of the givennumbe	r.		
5. V	Write a COM	I coding for basic Arithmetic	Operations.			
6. V	Write a COM	I Coding to handle PrimeNum	nber.			
7. 1	Write a COM	I program to check Odd or Ev	enNumber.			
8. H	Find the IP A	Address of LocalHost.				
9. 5	Send and rece	ive a packet usingTCP.				
10. 5	Send and rece	ive a packet usingUDP.				
11. H	Factorial Calc	ulation using TCP /UDP.				
12. H	Prime Numbe	r Checking using TCP /UDP.				
13. I	mplement the	e lowercase to uppercaseconversi	on.			
14. 5	Send the passy	word as a packet from client and	receive the related data fro	m theserver.		
15. 8	Send the filename from the client and receive a content of the file from the server usingURL.					
	16. Send the filename from the client and receive a content of the file from the server using FileInputStream.					
17. I	17. Implement Chatting.					
18. I	18. Date and Time display using TCP.					
	Implement JDBC (BackEnd – Oracle).					
	Implement JDBC (BackEnd – Oracle) – DDLCommand.					
21. I	Implement JDBC (BackEnd – Oracle) – DMLCommand.					

- 22. Implement Basic Ceaser Cipher Encryption and Decryptionalgorithm.
- 23. Implement Key based Ceaser Cipher Encryption and Decryptionalgorithm.
- 24. Implement Transposition based encryption and Decryptionalgorithm.
- 25. Implement Symmetric key based Encryption and Decryptionalgorithm.
- 26. Implement the following: Check the Status of Notepad, Connect with Google Server, Test for Host Reachability.
- 27. Implement PlayFair Algorithm for encryption andDecryption.

PartIII : Core Hours : 5 P/W 60 Hrs P/S Credits : 4

TITLE OF THE PAPER: ENTERPRISE WEB APPLICATIONS

Pedagogy						ICT			
	5	4	-	1	-				
PREAMBLI	 To fo To le To le 	arn the valida arn about the	ting and state mana various data bindin	with PHP andMYSQL. gement support of ASP.NET i g concepts (including XML) o .NET and using it at clientside	fASP.NE				
At the end of	the Semes		SE OUTCOME ents will be able t	to	Unit	Hrs P/S			
UNIT1CO1:	Unders	tand the deve		ver-side n-tierenterprise	1	12			
UNIT 2 CO2 polymorphism business obje	n excep	-	ys , abstraction, in g and the benefit o	nheritance and of developing reusable	2	12			
UNIT 3 CO3 database. And	-		nctionality to pro	tect the data in the	3	12			
UNIT 4 CO4 driven applic		and XML and	d describe its role	in an n-tier database-	4	12			
	•	-	of an application palso its protocols.	project utilize XML	5	12			
langua UNIT Functio Manip to Obj Catchi UNIT SQL a Tables Queryi	F - I ase applica ge – Introd - II ons – Typ ulation in ect Orient ng Excepti - III and Mysql , Inserting ing with D	lucing PHP - es – User d PHP – Regu ed Programr ons. – Database , Updating, Databases- Q	- Condition and E lefined functions lar Expression, D ning with PHP – Basics, MySQL and Deleting Da uerying a MYSQ	Web – Three tier Architer Branches – Loops. – Example: Arrays, String Pates and Times, Integers ar - Classes and Objects, Inhe Command Interpreter, Ma ta, Querying with SQL SE L Database Using PHP, P ar control – formatting the o	gs and A nd Floats eritance, anaging ELECT, J rocessing	Advanced Data - Introduction Throwing and Databases and Join Queries – g User Input –			

the dates – Validation – the validation controls – the validation process – the validator classes – Understanding regular expressions – literals and metacharacters – State management – The problem of state – Viewstate – Transferring Information – Custom cookies – Session State – Session stateconfiguration.

UNIT-IV

ADO.Net data access – about the ADO.NET examples, SQL Basics - accessing data - creating connection - using a command with data reader - updating data - accessing disconnected data - selecting multiple tables - modifying disconnected data - updating disconnected data. data binding – Introducing data binding – single value data binding – repeated value data binding – data binding with databases. Using XML - XML hidden role in .NET - XML explained - XML classes - XML validation - XML display and transforms - XML inADO.Net.

UNIT-V

Web services architecture - WSDL - SOAP - Web service discovery & UDDI - Creating web services – web service Basics - stock quote web service - documenting web service – Testing - Web services data types - ASP.Net intrinsic objects - other web service options - Using web services –consuming a web service-using a proxy class - example with terra service - windowsclients.

TEXT BOOKS

Web Database Applications with PHP and MySQL.By Hugh. E. Williams & David Lane, II-Edition, SPD-Oreilly.

2. The Complete Reference - ASP.Net, Mathew MacDonald - Tata McGraw Hill, 2008.

UNIT I – Text Book 1 - Chapter 1, 2.1 to 2.3 UNIT II – Text Book 1 – Chapter 2.4 to 2.8, Chapters 3, 4 UNIT–III– Text Book 1 – Chapter 5, 6,7 Text Book 2 - Chapter 9, 10. UNIT – IV – Text Book 2 - Chapter 13, 14,17. UNIT –V– Text Book 2 - Chapter 18, 19,20.

REFERENCE BOOKS:

1. ASP.Net VB.Net Web Programming, Matt.J.Crouch - PearsonEducation.

2. ASP.Net for Developers - Michael Amundsen PaulLitwin

UNITS	TOPIC			LECTURE HOURS	MODE OF TEACHING
UNIT 1					
	Database	applications	and	4	Black Board
	the V	Veb –			
	The Web –	Three tier		4	Black Board

[
	Architecture – PHP Scripting		
	language –	4	
	Introducing PHP – Condition and	4	Black Board
	Branches – Loops.		
UNIT 11			
	Functions – Types – User defined	4	Black Board
	functions – Example: Arrays,		
	Strings and Advanced		
	DataManipulation in PHP –		
	Regular Expression, Dates and	4	PPT
	Times, Integers and Floats -		
	Introduction to Object Oriented	4	Black Board
	Programming with PHP – Classes		
	and Objects, Inheritance,		
	Throwing and Catching		
	Exceptions.		
UNIT III			
	SQL and Mysql – Database	4	Black Board
	Basics, MySQL Command		
	Interpreter, Managing Databases		
	and Tables, Inserting, Updating,		
	and Deleting Data, Querying with		
	SQL SELECT, Join Queries –		
	Querying with Databases-		
	Querying a MYSQL Database		
	Using PHP, Processing User		
	Input –		
	Pear – Validation and rich	4	Black Board
	controls. The calendar control –		
	formatting the calendar –		
	restricting the dates – Validation		
	- the validation controls - the		
	validation process – the validator		
	classes – U		
	Understanding regular	4	Black Board
	expressions – literals and		
	metacharacters – State		
	management – The problem of		
	state – Viewstate – Transferring		
	Information – Custom cookies –		
	Session State – Session state		
	configuration.		
	configuration.		
UNIT IV			
	ADO.Net data access – about the	4	Black Board
	ADO.NET examples, SQL		Linea Doura
L	ADO. ALI CAMIPICS, SQL		

Basics - accessing data - creating connection - using a command with data reader - updating data - accessing disconnected data -data binding with databases. Using XML - XML hidden role in .NET - XML explained - XML classes - XMLvalidation - XML display and transforms - XML in ADO.Net.		
selecting multiple tables - modifying disconnected data - updating disconnected data. data binding – Introducing data binding – single valuedata binding – repeated value data binding –	4	РРТ
data binding with databases.Using XML - XML hidden rolein .NET - XML explained - XMLclasses - XMLvalidation- XML display and transforms -XML in ADO.Net.UNIT V	4	Black Board
Web services architecture - WSDL - SOAP - Web service discovery & UDDI - Creating web services – web service Basics - stock quote web service - documenting web service	4	Black Board
Testing - Web services data types - ASP.Net intrinsicobjects - other web service options - Using web services-	4	Black Board
consuming a web service - using a proxy class - example with terra service - windowsclients.		РРТ

Course Outcomes (Cos)	Prog	gramme	Outco	omes ((Pos)		Progra	ımme Sp	ecific Ou	itcomes	(PSOs)		Mean scores of
(005)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.3
CO2	5	5	5	4	2	4	5	3	4	5	4	2	3.7
CO3	4	5	4	5	2	4	4	2	4	5	4	1	3.4
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.5
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.6
	•		•		Μ	ean Ove	erall Scor	·e	•		•		3.6

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
$\frac{\text{Mean Score of COs} = \frac{\text{Total of}}{\text{Value}\text{Total No. of Pos} \\ \text{Wean Score of COs} = \frac{\text{Total of}}{\text{Value}\text{Total No. of Pos} \\ \text{Value}\text{Total No. of Pos} \\ \text{Value}Total $			Mean Overall Sco Total No. of COs	re of COs = <u>Tota</u>	l of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner:

Department of ComputerApplications.

Programme: M.C.A Semester : III Sub.Code : P22CC11

PartIII: Core Hours: 5 P/W 60 HrsP/S Credits: 4

TITLE OF THE PAPER: PYTHON PROGRAMMING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	4	-	1	-	
PREAMBLE:						
]	To enable	the students	to learn the basic	functions, principles and co	oncepts o	of Python
Program	ming.					
0	0					
COURSE OUTCOME					Unit	Hrs P/S
At the end of the Semester, the Students will be able to						
UNIT 1 CO1: To design and develop simple Python programs.					1	12
UNIT 2 CO2: Understand object oriented programming					2	12
UNIT 3 CO3: Understand principles of Python					3	12
UNIT4CO4 : learn the concepts of LISTs Understand the pros and cons on					4	12
scripting languages vs. classical programming languages						
UNIT 5 CO5 :	using	file concept	s Understand how	Python can be used for	5	12
application development as well as quick programming						

SYLLABUS

UNIT-I:

Introduction: Getting started with Python –Elementary programming: Writing a simple Program –Reading Input from the Console- Identifiers –Variables, Assignment and Expressions – Simultaneous Assignments –Named Constants –Numeric Data Types and operators – Evaluating Expressions and operator precedence –Type conversions and Rounding.

UNIT-II:

Functions, Strings and objects :Common Python functions –Strings and Characters – Introduction to Objects and strings –**Selections:** Boolean Types ,values and Expressions – If statements –Two way if-else statements –Nested If and Multi-way if-elif-else statements- Logical operators –conditional expressions.

UNIT-III:

Loops: while loop – for loop –nested loop – Minimizing numerical errors –Functions:

Defining function – calling function – functions with/without return values **Objects and Classes** : Defining classes for objects – Immutable objects vs. Mutable objects –Hiding data fields –class abstraction and encapsulation.

UNIT-IV:

Lists: List basics – copying lists – passing Lists to Functions –Returning a List from a function- Inheritance and polymorphism: Super classes and sub classes – overriding methods – object class- polymorphism and dynamic binding.

UNIT-V:

Files and Exception Handling: Text input and output – File Dialogs- Exception Handling.

TEXT BOOKS

Y. Daniel Liang, "Introduction to Programming using Python", PHI Publications 2013.

REF. BOOK(S):

- 1. David Beazley, Brian K Jones "Python CookBook", O'Reily2013
- 2. Michael Dawson, "Python programming for the absolute beginners", Cengage Learning 2010.

E-LEARNING RESOURCES:

1. https://nptel.ac.in/courses/106/106/106106145/

UNIT 1		LECTURE HOURS	MODE OF TEACHING
	·		· · · ·
	Introduction: Getting started with Python –Elementary programming: Writing a simple Program	4	Black Board
	Reading Input from the Console- Identifiers –Variables, Assignment and Expressions – Simultaneous Assignments – Named Constants –	4	Black Board
	NumericDataTypesandoperators-EvaluatingExpressionsandoperatorprecedence-TypeconversionsandRounding.	4	PPT

	Functions, Strings and objects :	4	Black Board
	Common Python functions –	-	Diack Doard
	Strings and Characters		
	Introduction to Objects and	4	PPT
	strings		
	Selections: Boolean Types	4	Black Board
	values and Expressions – If		
	statements –Two way if-else		
	statements -Nested If and Multi-		
	way if-elif-else statements-		
	Logical operators –conditional		
	expressions.		
UNIT III			
	Loops: while loop – for loop –	4	Black Board
	nested loop – Minimizing		
	numerical errors		
	Functions: Defining function -	4	Black Board
	calling function – functions		
	with/without return values		
	Objects and Classes :Defining	4	PPT
	classes for objects - Immutable		
	objects vs. Mutable objects -		
	Hiding data fields –class		
	abstraction and encapsulation.		
UNIT IV			
	Lists: List basics – copying lists –	4	Black Board
	passing Lists to Functions -		
	Returning a List from a function-		
	Inheritance and polymorphism:	4	Black Board
	Super classes and sub classes		
	overriding methods object	4	Black Board
	class- polymorphism and		
	dynamicbinding.		
UNIT V		4	
	Files and ExceptionHandling:	4	Black Board
	Text input and output	4	Dissis Descrit
	Files and Exception Handling:-	4	Black Board
	File DialogsFiles and ExceptionHandling:	4	Black Board
	Exception Handling.	4	DIACK DUALU
	Exception manufing.		

Course Outcomes (Cos)	Programme Outcomes (Pos)			Programme Specific Outcomes (PSOs)					Mean scores of				
(000)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	5	4	2	4	4	2	5	3	4	1	3.3
CO2	5	5	5	4	2	4	5	3	4	5	5	2	3.8
CO3	4	5	4	5	2	4	4	3	4	5	4	1	3.5
CO4	4	3	4	4	2	5	4	2	4	4	4	2	3.3
CO5	4	5	5	5	2	5	4	2	5	4	4	2	3.6
Mean Overall Score							3.52						

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC <u>Value</u> Total No. of	-	<u>f</u>	Mean Overall So Total No. of CO		otal of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
APPLI	20%	20%

CourseDesigner: Department of Computer Applications

Programme: M.C.A Semester : III Sub. Code : P22CC12

PartIII: Core Hours : 5 P/W 60 HrsP/S Credits : 4

TITLE OF THE PAPER: DIGITAL IMAGE PROCESSING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
0 05	5	-				
PREAMBLE:						
•	. To learn	the image for	rmation model and	various representations of anin	nage.	
•	To inculc	ate the proces	sing techniques on	the image and featureextraction	n.	
•	To learn t	the image seg	mentation and vario	ous analysismethodologies.		
			SE OUTCOME		Unit	Hrs P/S
At the end of	f the Semes	ter, the Stud	ents will be able t	0		
UNIT 1 CO	1: Review t	the fundame	ntal concepts of a	digital image processing	1	12
system.						
UNIT 2 CO	2: Analyze	images in th	e frequency doma	ain using various	2	12
transforms.						
UNIT 3 CO	3: Evaluate	the techniqu	ues for image enha	ancement and image	3	12
restoration in	n color imag	ge processin	g.			
UNIT 4 CO	4: Understa	and the wave	let and Morpholo	gical operations and its	4	12
applications						
UNIT 5 CO	5: Image se	gmentation	and pattern class i	dentifications for high	5	12
level process	sing.					
SYLLABU	U S					
UNI	Γ-I Introdι	iction:				
	Digital I	mage Proces	sing- Simple ima	ge formation - Image Samp	ling and	Quantization-
Basic	relationshi	ips between	pixels - Histogran	n processing.		
UNI			tion and Reconst			
				f sampled functions: Sampl		
				quency domain - Image S		
				Restoration in Noise - Sp	atial Fil	tering - Image
		from projecti				
UNI		r Image Pro	0			
	Color fu	ndamentals	- Color models -	Pseudo color image process	sing - Fu	Ill color image
proce	essing - Col	lor transform	nations - Smoothin	ng and Sharpening- Image S	Segment	ation based on
Color.						
UNIT-IV Wavelets and Morphological Image Processing:						
				ion and two dimensions		
Trans	sform - Erc	sion and Di	lation - Opening	and Closing - Hit or Miss	transfori	nation - Basic
Morr	phological a	lgorithm - C	ray ScaleMorpho	logy.		
UNI	Г-V Segme	ntation and	Object Recognit	tion:		
Fundamentals - Point, Line and Edge detection – Thresholding - Region based						
Segmentation - Segmentation using Morphological Watersheds- Motion in Segmentation -						

Patterns and Pattern classes - Recognition based on decision theoretic methods.

TEXT BOOKS

Rafael C.Gonzalez, Richard E.Woods, "Digital Image Processing", Prentice Hall 3rd Edition, 2008.

UNIT 1: 1.1, 2.3.4, 2.4, 2.5, 3.3 UNIT 2: 4.3: 4.3.1, 4.3.2, 4.7.3, 4.8, 4.9, 5.3, 5.11 UNIT 3: 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 UNIT 4: 7.3, 7.4, 7.5, 9.2, 9.3, 9.4, 9.5, 9.6 UNIT 5: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 12.1, 12.2

REFERENCES BOOK(S):

- 1. Rafael C.Gonzalez, Richard E.Woods, Steven L.Eddins, "Digital Image ProcessingUsing MATLAB", Prentice Hall, 2004.
- 2. Bernd Jahne, "Digital Image Processing", Springer, 5threvisededition.
- 3. <u>JayaramanS, VeerakumarT, Esakkirajan S</u>, DIGITAL IMAGE PROCESSING, McGrawHill, 2009.
- 4. <u>PoonamYadav, AbhishekYadav</u>, Digital Image Processing, University Science Press, 2010.
- 5. Wilhelm Burger, Mark J Burge, Digital Image Processing, Springer, 2008.

E-LEARNING RESOURCES:

1. https://nptel.ac.in/courses/106/105/106105032/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Digital Image Processing- Simple image formation - Image Sampling and Quantization Histogram processing.	4	Black Board
	Basic relationships between pixels	4	Black Board
	Histogram processing.	4	PPT
UNIT 11			
	Sampling and the Fourier transform of sampled functions: Sampling- Fourier transform of sampled functions. Filtering in the frequency domain -	4	Black Board
	Image Smoothing and Image Sharpening using frequency domain filters –	4	Black Board
	Restoration in Noise – Spatial Filtering - Image Reconstruction from projections.	4	РРТ

UNIT III			
	Color fundamentals - Color models - Pseudo color image processing	4	Black Board
	Full color image processing - Color transformations - Smoothing and Sharpening	4	PPT
	Image Segmentation based on Color.	4	Black Board
UNIT IV			
	Wavelet transforms in one dimension and two dimensions - The Fast Wavelet Transform - Basic Morphological algorithm - Gray Scale Morphology.	4	Black Board
	Erosion and Dilation - Opening and Closing - Hit or Miss transformation -	4	РРТ
	Basic Morphological algorithm - Gray Scale Morphology.	4	Black Board
UNIT V			
	Fundamentals - Point, Line and Edge detection – Thresholding - Region based Segmentation -	4	Black Board
	SegmentationusingMorphologicalWatershedsMotion in Segmentation -	4	Black Board
	Patterns and Pattern classes - Recognition based on decision theoretic methods.	4	PPT web materials

Course Outcomes (Cos)	Prog	gramme	Outco	omes ((Pos)		Progra	imme Sp	ecific Oı	itcomes	(PSOs)		Mean scores of
(005)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
	1	2	5	4	e	1	2	5	4	5	0	/	
CO1	4	4	4	4	3	5	4	2	5	3	4	2	3.5
CO2	5	5	5	4	2	4	5	3	4	5	4	2	3.7
CO3	4	5	4	5	2	4	4	2	5	5	4	3	3.8
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.6
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.7
Mean Overall Score							3.7						

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. of		_	Mean Overall Sco Total No. of COs	ore of COs = $\underline{\text{Tota}}$	al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%
CourseDesigner	Department of Comp	uter Applications

CourseDesigner: Department of Computer Applications .

Programme	e: N	I.C.A
Semester	:	IV
Sub.Code	:]	P22CC16

Part III: Core Hours : 5 P/W 60 Hrs P/S Credits : 4

TITLE OF THE PAPER: DATA WAREHOUSING AND MINING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	-				
PREAMBLE	:					
To ena	ble the st	udents to un	derstand the esser	nce of data warehousing and	mining a	and explore
the var	rious unde	erlying techn	iques.			
	1 0		SE OUTCOME		Unit	Hrs P/S
			lents will be able			
UNIT 1 CO1: warehousing co			ionality of the varie	ous data mining and data	1	12
			necessity of Data N	Aining & Warehousing for	2	12
the society and	-	-				
UNIT 3 CO3	: To develo	op ability to d	esign various algoi	rithms based on data	3	12
mining tools.		· ·				
			6	sed in data mining and data	4	12
ware housing p						
		d apply diff	erent methods of a	cluster analysis.	5	12
SYLLABUS UNIT I						
Model Attribu	Data Pre Transford Data Wa ing: Data ute-Orient Data Cu	mation and I rehousing a Cube and (ed Inductior be Technolo	Data Discretization nd Online Analyti DLAP - Data Wa n.	ata Cleaning – Data Integrat n. ical Processing: Basic Conce rehouse Implementation – I Computation: Preliminary C	epts – Data Ger	ata Warehouse neralization by
-	utation M	ethods.				
	Mining l Concepts Evaluati	– Frequent onMethods.	t Item set Minin	ns, and Correlations: Basic O g Methods – Which Patter ning: A Road Map – Patterr	ms Are	Interesting? –
Multid UNIT	limension IV	al Space – C	onstraint-Based F	requent Pattern Mining.	-	
	ds – Rul ve Classif	le-Based Cl ication Accu	assification – M racy.	Decision Tree Induction – odel Evaluation and Selec	tion – '	Techniques to
	Classific	ation: Adva	nced Methods: Ba	yesian Belief Networks – C	lassificat	tion by Back

Propagation – Support Vector Machines – Classification Using Frequent Patterns – Lazy Learners (or Learning From Your Neighbors) – Other Classification Methods – Additional Topics Regarding Classification.

UNIT V

Cluster Analysis: Basic Concepts and Methods: Cluster Analysis – Partioning Methods – Hierarchical Methods – Density-Based Methods – Grid-Based Methods – Evaluation of Clustering.

Outlier Detection: Outliers And Outlier Analysis – Outlier Detection Methods – Statistical Approaches – Proximity-Based Approaches – Clustering Based Approaches – Classification Based Approaches.

TEXT BOOKS

1. Data Mining Concepts and Techniques – Jiawei Han, MichelineKamber& Jain Pei, Morgan Kaufmann Publishers, Third edition 2012.

Chapters: 1.2 - 1.7, 2.1, 2.2, 3.1 - 3.5, 4.1, 4.2, 4.4, 4.5, 5.1, 5.2, 6.1 - 6.3, 7.1 - 7.3, 8.1 - 8.6, 9.1 - 9.7, 10.1 - 10.6, 12.1 - 12.6.

REFERENCE BOOKS:

- 1. Usama M. Farrad, GeogoryPiatetsky Shapiro, padhrai Smyth and RamasamyUthurusamy, "Advances in Knowledge Discovery and Data Mining", The M.I.T.press.
- 2. Ralph Kimball, "The Data Warehouse Life Cycle Toolhit", John Wiley & SonsInc.
- 3. Sean Kelly, "Data warehousing in Action", John Wiley & SonsInc.
- 4. K.P. Soman, "ShyamDiwakar, V. Ajay "Insights into data Mining", Theory and Practice, PHI Publications Eastern Economy Edition 6th Printing,2012.

E-LEARNING RESOUCES:

1. https://nptel.ac.in/courses/106/105/106105174/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction: What Is Data	4	Black Board
	Mining? – What Kind of Data can		
	be mined? - What Kindof		
	Patterns can be mined? – Which		
	Technologies are used?		
	– Major Issues in Data Mining.	4	PPT
	Getting to know your data: Data		
	Objects and Attribute Types		
	Basic Statistical Description of	4	Black Board
	Data.		
UNIT 11			
	Data Preprocessing: AnOverview	4	Black Board
	– Data Cleaning – Data		
	Integration – Data Reduction –		
	Data Transformation and Data		
	Discretization.		

	Data Warehousing and Online Analytical Processing: Basic Concepts – Data Warehouse Modeling: Data Cube and OLAP - DataWarehouseImplementation – Data Generalization by Attribute-Oriented Induction.	4	Black Board
	Data Cube Technology: Data Cube Computation: Preliminary Concepts – Data Cube Computation Methods.	4	Black Board
UNIT III			
	Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and methods: Basic Concepts – Frequent Item set Mining Methods	4	Black Board
	Which Patterns Are Interesting? – Pattern Evaluation Methods.	4	РРТ
	Advanced Pattern Mining: PatternMining: A Road Map – PatternMining inMultilevel,MultidimensionalSpace –Constraint-BasedFrequentPattern Mining.	4	Black Board
UNIT IV		4	D1-1-D1
	Classification: Basic Concepts – Decision Tree Induction – Bayes Classification Methods – Rule- Based Classification – Model Evaluation and Selection – Techniques to Improve Classification Accuracy.	4	Black Board
	Classification: Advanced Methods: Bayesian Belief Networks – Classificationby Back Propagation – Support Vector Machines	4	Black Board
	Classification Using Frequent Patterns – Lazy Learners (or Learning From Your Neighbors) – Other Classification Methods – Additional Topics Regarding Classification.	4	PPT

UNIT V			
I	Cluster Analysis: Basic Concer	pts 4	Black Board
	and Methods: Cluster Analysis	-	
	Partioning Methods	-	
	Hierarchical Methods - Densit	ty-	
	Based Methods – Grid-Bas	ed	
	Methods – Evaluation	of	
	Clustering.		
	Outlier Detection: Outliers Ar	nd 4	PPT
	Outlier Analysis – Outli	ier	
	Detection Methods – Statistical		
	Approaches		
	- Proximity-Based Approaches	- 4	Black Board
	Clustering Based Approaches	-	
	Classification Based Approaches	s.	

Course Outcomes (Cos)	Prog	rogramme Outcomes (Pos)					Programme Specific Outcomes (PSOs)						Mean scores of
(000)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	5	4	5	4	2	5	4	2	5	4	4	1	3.5
CO2	5	5	5	4	2	4	5	2	4	5	4	2	3.6
CO3	4	5	4	5	2	4	4	3	4	5	4	1	3.6
CO4	4	3	5	5	2	5	5	2	5	4	5	2	3.6
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.6
				1	М	lean Ove	erall Scor	e			1	1	3.6

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. of			Mean Overall Sco Total No. of COs		al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner: Department of Computer Applications .

Programme: M.C.A Semester : III Sub.Code : P22DSC3A PartIII: Elective Hours: 5 P/W 60 HrsP/S Credits: 4

TITLE OF THE PAPER: HUMAN RESOURCE MANAGEMENT

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT				
	5 4 - 1								
PREAMBLE:									
	To develop skills on Human Resource Management Activities.								
		-		-					
		COURS	SE OUTCOME		Unit	Hrs P/S			
At the end of th	ne Semes	ter, the Stude	ents will be able to	0					
UNIT 1 CO1:	Contribut	te to the deve	elopment, implem	entation, and evaluation	1	12			
of employee ree	cruitment	t, selection, a	and retention plans	s and processes.					
UNIT 2 CO2 :	Manage of	own professi	onal development	t and provide leadership to	2	12			
others in the ac	hievemer	nt of ongoing	g competence in h	uman resources					
professional pra	actice.								
UNIT 3 CO3:	Develop,	implement,	and evaluate emp	loyee orientation, training,	3	12			
and developme			-						
UNIT 4 CO4:	Develop,	implement,	and evaluate orga	nizational development	4	12			
	-	*	zational effective	-					
	÷			t and provide leadership to	5	12			
others in the ac	others in the achievement of ongoing competence in human resources								
professional pra	actice.	0 0							
SYLLABUS					•				
UNIT I									

Introduction – importance of HRM – functions – qualities of HR manager – evolution and growth of HRM – trends and opportunities – HRM in global environment – legal and ethical context – laws for discrinatory practices – equal opportunity employment.

UNIT II

HR policies – need, type and scope – human resource planning – job analysis – recruiting goals – recruiting sources – global perspective – selection process – pre-employment testing – interviews – job offers – hiring mistakes – key element for successful predicators.

UNIT III

Socialization – new employee orientation, training, development – organizational development – methods – evaluating training – international training and development issues – career development – value for organization and individual – mentoring and coaching – traditional career stages.

UNIT IV

Appraisal process – methods – factors distort appraisal – team appraisal – international

appraisal – rewards – Theories of motivation – compensation administration – job evaluation and a pay structure – special cases of compensation – executive compensation programs – employee benefits.

UNIT V

Occupational safety and health act – issues – stress – assistance program – labor management – employee unions – labor legislation. Promotion, demotion, transfer and separation – employee grievances – redressal methods.

TEXT BOOKS

- 1. Decenzo and Robbins, Human Resource Management, Wilsey, 10thedition, 2012.
- 2. Mamorica C.B. and Mamoria.S., Personnel Management, Himalaya Publishing Company, 1997.

REFERENCE BOOK(S)

- 1. Mirza S. Saiyadain Human Resource Management, Tata McGraw Hill, 4th edition2009
- 2. Euence Mckenna and Nic Beach Human Resource Management, Pearson Education Limited, 2002.

E-LEARNING RESOUCES:

1. https://nptel.ac.in/courses/122/105/122105020/

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
UNIT 1			
	Introduction – importance of	4	Black Board
	HRM – functions – qualities of		
	HR manager – evolution and		
	growth of HRM.		
	– trends and opportunities – HRM	4	Black Board
	in global environment – legal and		
	ethical context		
	laws for discrinatory practices –	4	Black Board
	equal opportunity employment.		
UNIT 11			
	HR policies – need, type and	4	PPT
	scope – human resource planning		
	– job analysis – recruiting goals –		
	interviews - job offers - hiring		
	mistakes – key element for		
	successful predicators.		
	recruiting sources – global	4	Black Board
	perspective – selection process –		
	pre-employment testing –		
	interviews – job offers – hiring	4	Black Board

	mistakes – key element for		
	successful predicators.		
UNIT III			
	Socialization – new employee orientation, training, development – organizational development – methods .	4	Black Board
	evaluating training – international training and development issues – career development	4	РРТ
	value for organization and individual – mentoring and coaching – traditional career stages.	4	Black Board
UNIT IV			
	Appraisal process – methods – factors distort appraisal – team appraisal – international appraisal – rewards — special cases of compensation – executive compensation programs – employee benefits.	4	Black Board
	compensation administration – job evaluation and a pay structure	4	rrı
	special cases of compensation – executive compensation programs – employee benefits.	4	Black Board
UNIT V			
	Occupational safety and health act – issues – stress – assistance program	4	PPT
	labor management – employee unions – labor legislation. Promotion, demotion, transfer and separation	4	Black Board
	employee grievances – redressal methods.	4	Black Board

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	ımme Sp	ecific Ou	itcomes	(PSOs)		Mean scores of
(003)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	2	4	2	4	3	5	4	2	2	3	4	4	3.3
CO2	2	5	2	4	4	4	5	3	2	2	4	3	3.4
CO3	2	5	2	5	4	4	4	2	2	3	4	4	3.46
CO4	2	3	2	5	3	5	4	2	2	2	5	5	3.4
CO5	1	5	2	5	4	5	4	3	2	2	4	4	3.46
	•		•	•	Μ	ean Ove	rall Scor	re				•	3.41

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. o			Mean Overall Sco Total No. of COs	ore of COs = $\underline{\text{Tota}}$	al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner: Department of Computer Applications

Programme: M.C.A Semester : III Sub.Code : P22DSC3B

PartIII: Elective Hours: 5 P/W 60 HrsP/S Credits: 4

Pedagogy Hours Lecture Peer Teaching GD/VIDOES/TUTORIAL ICT 4

TITLE OF THE PAPER: ARTIFICIAL INTELLIGENCE

PREAMBLE:

To Introduce the basic principles, techniques, and applications of Artificial Intelligence. To address difficulties by utilising Artificial Intelligence technologies. To provide an overview of the ideas of Styles of Learning and Planning.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
UNIT 1 CO1: Analyze the Fundamentals of Artificial Intelligence		
UNIT 2 CO2 : Learns about Predictive Calculus and Knowledge Representation.		
UNIT 3 CO3: Becomes acquainted with Depth searches and Problem Backtracking.		
UNIT 4 CO4 : Recognizes the importance of knowledge inference.		
UNIT 5 CO5: Learns the fundamentals of planning and the many styles of learning.		

SYLLABUS

UNIT - I:

Introduction: Introduction to Artificial Intelligence, Intelligence Problems and Al techniques, Solving problems by searching, Problem Formulation. Intelligent Agents: Structure of Intelligent agents, Types of Agents, Agent Environments PEAS representation for an Agent. Un informed Search Techniques: DFS. BFS, Uniform cost search.

UNIT – II:

Depth Limited Search, iterative Deepening, Bidirectional search, Comparing Different Techniques. Informed Search Methods; Heuristic functions, Hill Climbing, Simulated Annealing, Best First Search, A*, IDA*, SMA*, Crypto Anthmetic Problem, Backtracking for CSP, Performance Evaluation. 6 Adversarial Search: Game Playing, Min-Max Search, Alpha Beta Pruning.

UNIT - III:

Knowledge and Reasoning: A Knowledge Based Agent, WUMPUS 08 WORLD Environment, Propositional Logic, First Order Predicate Logic, Forward and Backward Chaining, Resolution., Introduction to PROLOG.

UNIT - IV:

Planning: Introduction to Planning, Planning with State Space Search, Partial Ordered planning. Hierarchical Planning, Conditional Planning, Planning with Operators. Uncertain Knowledge and Reasoning: Uncertainly, Representing Knowledge in an Uncertain Domain, Conditional Probability, Joint Probability, Bays theorem, Belief Networks, Simple Inference in Belief Networks.

UNIT - V:

Learning: Learning from Observation, General Model of Learning Agents, Inductive Learning, Learning Decision Trees, Rote Learning, Learning by Advice, Learning in Problem Solving, Explanation based Learning. Expert Systems: Representing and using Domain Knowledge, Expert System-shell, Explanation, Knowledge Acquisition.

Reference Books:

- 1. Elaine Rich, Kevin Knight, Shivshankar B Nair, Artificial Intelligence, McGraw Hill, 3rd Edition.
- 2. Elaine Rich, Kevin Knight, Artificial intelligence, Tata McGraw Hill, 2nd Edition. University of Mumbai, Information Technology).
- 3. George Lugar, .Al-Structures and Strategies for Complex Problem. Solving., 4/e, 2002, Pearson Education.
- Nils J, Nilsson, Principles of Artificial Intelligence, Narosa Publication.
 Patrick H. Winston, Artificial Intelligence. 3rd edition, Pearson Education,
- 5. Deepak Khemani, A First Course in Artificial Intelligence, McGraw Hill Publication.

E-RESOURCES

- 1. https://www.ibm.com/in-en/cloud/learn/what-is-artificial-intelligence
- 2. https://www.javatpoint.com/artificial-intelligence-tutorial
- 3. https://www.javatpoint.com/knowledge-representation-in-ai
- 4. https://www.javatpoint.com/search-algorithms-in-ai
- 5. https://en.wikipedia.org/wiki/Partial-order_planning
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial

intelligence-fall-2010/tutorials.

Programme	: M.C.A	PartIII:	Elective
Semester	: III	Hours :	5 P/W 60 HrsP/S
Sub.Code	: P22DSC3C	Credits:	4

TITLE OFTHEPAPER: SOFT COMPUTING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	5	4	-	1	-		
PREAMBLE	:		·				
• 7	o focus on	the major co	mponents of soft co	omputing components–Neural	Netw	orks, Fuzzy	
		d Genetic Alg				·	
•	Detailed e	explanation of	f Soft computing co	ncepts			
•	To study of	on various Ar	tificial Neural Netv	vork architectures			
•	Descriptio	on on Fuzzy I	logic techniques and	d Genetic Algorithms			
		-					
	Unit	Hrs P/S					
At the end of t							
UNIT 1 CO1:]	Evaluate va	arious techniq	ues of soft computi	ng to defend the best	1	12	
working solution	ns.			-			
UNIT 2 CO2	2	12					
of network strue	cture.						
UNIT 3 CO3	Apply So	ft computing	techniques the solve	e character recognition,	3	12	
pattern classific							
UNIT 4 CO4	UNIT 4 CO4: Understand the application development in fuzzy systems						
UNIT 5 CO5	Under sta	and the appl	ication developme	ent using Genetic	5	12	
Algorithms .			1	-			

SYLLABUS

UNIT-I

Neural Networks: Introduction: Neural Networks – Application Scope of Neural Networks - Fuzzy Logic - Genetic Algorithm - Hybrid Systems - Soft Computing.

Artificial Neural Network: An Introduction - Fundamental Concept - Evolution of Neural Networks - Basic Models of Artificial Neural Network - Important Terminologies of ANNs - McCulloch-Pitts Neuron.

UNIT-II

Neural Networks : Supervised Learning Neural Network: Perception networks – Adaline - Back Propagation Network – Radial basis function network - Bidirectional Associative Memory Network, Kohonen Self-Organizing Feature Map

UNIT-III

Fuzzy Logic : Introductions to Fuzzy Logic, Classical Sets, and Fuzzy Sets: Introduction to Fuzzy logic - Classical Sets – Operations on Classical sets, Properties of Classical Sets, Function Mapping of Classical Sets, Fuzzy Sets – Fuzzy Set Operations, Properties of Fuzzy Sets. Classical Relations and Fuzzy Relations: Fuzzy Relations -Tolerance and Equivalence Relations Membership Functions: Introduction -Features of the Membership Functions – Fuzzification - Methods of Membership Value Assignments.

UNIT-IV

Fuzzy Logic : Defuzzification: Introduction, Lambda-Cuts for Fuzzy Sets (Alpha-Cuts), Lambda-Cuts for Fuzzy Relations, Defuzzification Methods – Max-Membership Principle, Centroid Method, Weighted Average Method, Mean-Max Membership, Center of Sums, Center of Largest Area, First of Maxima (Last of Maxima) Genetic Algorithm: Introduction, Genetic Algorithm and Search Space – Search Space, Genetic Algorithms World, Evolution and Optimization, Evolution and Genetic Algorithms Basic definitions and terminology, Set theoretic operations, Fuzzy sets, Fuzzy relations, tolerance and equivalence relations, membership functions, defuzzification Fuzzy, decision making.

UNIT-V

Genetic Algorithms: Terminologies - General Genetic Algorithm, Operators in Genetic Algorithm –Encoding, Selection, Crossover, Mutation – Stopping Condition for Genetic Algorithm Flow – Hybrid Genetic Algorithms – Genetic Programming – The Production System, The Bucket Brigade Algorithm, Rule Generation, Genetic Programming – Applications of Genetic Algorithm.

TEXT BOOKS

- Principles of Soft Computing, Second Edition by S. N. Sivanandam, S. N. Deepa, Wiley India Publications,2011.
 REFERENCES BOOKS:
- 1. Godberg, David E., "Genetic Algorithms in Search, Optimization and Machine Learning", Addison-Wesley, NewDelhi.
- 2. Timothy J Ross, "Fuzzy Logic with Engineering Application" Tata McGraw Hill, New Delhi2006.

UNIT I : Chapters 1, 2.1,2.3, 2.4, 2.5 UNIT II: Chapters 3.2, 3.3, 3.5, 3.6, 4.5, 5.3 UNIT III: Chapters 7, 8.4, 8.5, 9 UNIT IV: Chapters 10, 15.1, 15.4 UNIT V: Chapters 15.6, 15.8, 15.9, 15.10, 15.14.3, 15.16, 15.18

E-LEARNING RESOUCES:

1. https://nptel.ac.in/courses/106/105/106105173/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Neural Networks: Introduction: Neural Networks – Application Scope of Neural Networks - Fuzzy Logic – Genetic Algorithm - Hybrid Systems -	4	Black Board

Soft Com	0	4	Black Board
Introductio	Neural Network: An on - Fundamental Evolution of Neural		
	odels of Artificial	4	PPT – Web materials
Neural N Terminolo	etwork - Important gies of ANNs - n-Pitts Neuron.		
UNIT 11			
Learning Perception Adaline Associativ Network,	- Bidirectional	4	Black Board
	agation Network – is function network -	4	Black Board
	nal Associative Jetwork, Kohonen nizing Feature Map	4	Black Board
UNIT III			
Fuzzy Lo and Fuzzy to Fuzzy lo – Operat sets, Prop Sets, Rel Functions:	gic : Introductions to gic, Classical Sets, y Sets: Introduction ogic - Classical Sets ions on Classical actions Membership Introduction - of the Membership -Fuzzification- of Membership gnments.	4	Black Board
Sets, Fuz Operations Sets. Cla Fuzzy Rel - Toleranc	Mapping of Classical zy Sets – Fuzzy Set s, Properties of Fuzzy assical Relations and ations: Fuzzy Relations e and Equivalence	4	PPT
Relations Functions:	Membership Introduction -	4	Black Board

	Features of the Membership Functions –Fuzzification – Methods of Membership Value Assignments.		
UNIT IV			
	Fuzzy Logic : Defuzzification: Introduction, Lambda-Cuts for Fuzzy Sets (Alpha-Cuts), Lambda-Cuts for Fuzzy Relations, Defuzzification Methods – Max-Membership Principle, Centroid Method, Weighted Average Method, Mean-Max Membership, Center of Sums, Center of Largest Area, First of Maxima (Last ofMaxima) , Fuzzy sets, Fuzzy relations, tolerance and equivalence relations, membership functions, defuzzification Fuzzy, decision making.	4	Black Board
	Genetic Algorithm: Introduction, Genetic Algorithm and Search Space – Search Space, Genetic Algorithms World, Evolution and Optimization, Evolution and Genetic Algorithms Basic definitions and terminology, Set theoretic operations	4	PPT
	, Fuzzy sets, Fuzzy relations, tolerance and equivalence relations, membership functions, defuzzification Fuzzy, decisionmaking.	4	Black Board
UNIT V	1		
	GeneticAlgorithms:Terminologies-GeneticAlgorithm, OperatorsinGeneticAlgorithm-	4	Black Board
	Encoding, Selection, Crossover, Mutation – Stopping Condition for Genetic Algorithm Flow– Hybrid Genetic Algorithms.	4	Black Board

Genetic Programming – The	4	PPT
Production System, The		
Bucket Brigade Algorithm,		
Rule Generation, Genetic		
Programming – Applications		
of Genetic Algorithm.		

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Oı	itcomes ((PSOs)		Mean scores of
(003)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.33
CO2	5	5	5	4	2	4	5	3	4	5	4	2	3.7
CO3	4	5	4	5	1	4	4	2	4	5	4	1	3.26
CO4	4	3	5	5	2	5	5	2	5	4	5	2	3.66
CO5	4	5	4	5	1	5	4	3	5	4	4	1	3.46
	Mean Overall Score							3.49					

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. of		-	Mean Overall Sco Total No. of COs	re of COs = $\underline{\text{Tota}}$	ll of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications .

Programme: M.C.A Semester : III Sub.Code : P22CC13 Part III: Practical Hours : 5 P/W 75 HrsP/S Credits : 3

TITLE OF THE PAPER: PYTHON PROGRAMMINGLAB

	5			
	5	4	1	-
PREAMBLE:				
The basic	aim of this j	paper is to develop the pro	gramming skill to the stude	ents to solve the
problems	using Python	1.		
		COURSE OUTCOME		
At the end of the	e Semester, t	he Students will be able to)	
CO1 : Able to	write simple	python program with a stu	udy of working	
environment.	-			
CO2 : understa	nding the co	ncepts of OOPs Implemer	ntations	
CO3 : develop	a application	using GUI		

LAB CYCLE:

- 1. Write a program that asks the user to enter a series of positive numbers (The user should enter a negative number to signal the end of the series) and the program should display the numbers in order and their sum.
- 2. Write a program to find the product of two matrices.
- 3. Write recursive and non-recursive functions for the following:
 - a. To find GCD of two integers.
 - b. To find the factorial of positive integer
 - c. To print Fibonacci Sequence up to given number n.
- 4. Write a program that writes a series of random numbers to a file from 1 to n and display.
- 5. Write a program to reverse a string word byword.
- 6. Write a program to create file, write the content and display the contents of the file with each line preceded with a line number (start with 1) followed by acolon.
- 7. Write a program that opens a specified text file and then displays a list of all the unique words found in the file. (Store each word as an element of aset.)
- 8. Write a program to implement the Inheritance and Dynamic Polymorphism.
- 9. Write a GUI program that displays your details when a button is clicked.
- 10. Write a GUI program that converts Celsius temperatures to Fahrenheit temperatures.

E-LEARNING RESOURCES:

- 1. https://www.studytonight.com/python/
- 2. http://spoken-tutorial.org/tutorial-search/?search_foss=Python&search_language=English

Programme: M.C.A	PartIII:	Practical
Semester : III	Hours :	5 P/W 75 HrsP/S
Sub.Code : CL6	Credits :	3

TITLE OF THE PAPER: Enterprise WEB APPLICATION LAB

Pedagogy	Hours	Practical Lab	TUTORIAL	ICT
	5	4	1	-
	F •	-		
PREAMBL		knowledge about web d	latabase applications and program	ming skills with PHP and
·	MYSQL.	Knowledge about web u	and program	ining skins with TTT and
•	-	te the form before submi	itting it to server using validators.	
•		ain the state of a website		
•		ate data binding concepts	S	
(/	red model		
	ii)disconnec			
(-	data binding of ASP.NE		
•		and manipulate the XM		1.
•	To create	the web services using A	ASP.NET and using it at client sic	le
	•	COURSE OUT	COME	
At the end of	the Semes	ster, the Students will b	be able to	
		concepts of PHP progr		
CO2 : able			<u> </u>	
LAB CYCL	E			
рнр	& MYS	OL.		
<u> </u>				
		P Coding for:		
		Times Table		
i	i. Use Inclu	de File Concept		
2. 1	Write a PHP	Coding to handle:		
	i. Global Va			
	ii. Static Va	riable		
3. V	Write o DLID	Coding for:		
	. Pass by R	Coding for:		
		Default Parameter		
1	Hundhing	2 cruait i arainetei		

- 4. Write a PHP Coding to handle Array Functions:
 - i. Counting number of elements
 - ii. Finding Min, and Max
 - iii. Explode and Implode

iv. Sorting

- v. Cm to inch calculation for all array element
- 5. Write a PHP Coding to handle String Functions:
 - i. Padding
 - ii. Change Case
 - iii. Trimming
 - iv. Finding the Positions of Characters
 - v. Handling Substring
 - vi. Handling String Replace
- 6. Write a PHP Coding for handlingConstructor.
- 7. Write a PHP Coding for handlingDestructor
- 8. Write a PHP Coding for handling Private MemberFunction.
- 9. Write a PHP Coding for handling Static MemberVariables.
- 10. Write a PHP Coding for handlingInheritance.
- 11. Write a PHP Coding for Exceptionhandling.
- 12. Write a PHP Coding to connect PHP with MYSQL usingPEAR.
- 13. Write a PHP Coding for database connectivity (PHP & MYSQL).
- 14. Write a PHP Coding for database connectivity (PHP & MYSQL) with errorhandling.
- 15. Write a PHP Coding for database connectivity (PHP & MYSQL) and format theoutput.
- 16. Write a PHP Coding for database connectivity (PHP & MYSQL) using templateconcept.
- 17. Write a PHP Coding to pass parameter to PHP using HTML forms, Hyperlinks, and Browser.

ASP.NET LAB CYCLE

WORKING WITH WEB CONTROLS

1. Creation of online shopping website using label, list, combo, text and table webcontrols

WORKING WITH HOT SPOT

2. Creating HOT SPOT in image and linking an image with many webpages

WORKING WITH DATA BASE

- 3. Student Mark listprocessing
- 4. Employee Pay rollprocessing
- 5. Working with disconnected datamodel

DATA BINDING CONCEPT

Working with repeated data binding concept

WORKING WITH FILES

Working with file & directory supporting concepts

WORKING WITH XML

Creation of XML, Searching for a tag & binding XML data in data grid

WEB SERVICES

1. Arithmet ic operations

2. Temperature conversion

WORKING WITH AJAX AND ADROTATOR CONTOL

Illustrate the use of AJAX in showing advertisements in repeated way based on weightage assigned to each advertisement.

WORKING WITH VALIDATOR CONTROLS

Validating values entered by the user in bio-data form

WORKING WITH STATE MANAGEMENT SUPPORT OF .NET

1. Creation and using cookies in banking application

- 2. Transferring information and preparing ticket in flight reservation system.
- 3. Creating session for every user and maintains his state information.

Morgan Kaufmann Publishers, Third edition 2012.

Chapters: 1.2 - 1.7, 2.1, 2.2, 3.1 - 3.5, 4.1, 4.2, 4.4, 4.5, 5.1, 5.2, 6.1 - 6.3, 7.1 - 7.3, 8.1 - 8.6, 9.1 - 9.7, 10.1 - 10.6, 12.1 - 12.6.

REFERENCE BOOKS:

- 1. Usama M. Farrad, GeogoryPiatetsky Shapiro, padhrai Smyth and RamasamyUthurusamy, "Advances in Knowledge Discovery and Data Mining", The M.I.T.press.
- 2. Ralph Kimball, "The Data Warehouse Life Cycle Toolhit", John Wiley & SonsInc.
- 3. Sean Kelly, "Data warehousing in Action", John Wiley & SonsInc.
- 4. K.P. Soman, "ShyamDiwakar, V. Ajay "Insights into data Mining", Theory and Practice, PHI Publications Eastern Economy Edition 6th Printing, 2012.

E-LEARNING RESOUCES:

1. https://nptel.ac.in/courses/106/105/106105174/

Programme: M.C.A Semester : IV Sub.Code : ECD1

PartIII: Elective Hours: 5 P/W 60 HrsP/S Credits: 4

TITLE OF THE PAPER: MOBILE COMPUTING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
0.01	5	4	-	1	-	
PREAMBLE	E:					
To enr	ich knowle	dge about M	Iobile Communica	ations Concepts of:		
•	Several N	Media Acces	s Schemes	-		
•	Different	Wireless Co	ommunicationSys	tems		
•	Mobile I	P, the extens	ion of the Internet	t Protocol into Mobile doma	ain, Ad-l	noc networks
	with thes	e requirement	nts for specific rol	utingprotocols.		
•	Transmis	sion Control	lProtocol			
•	WAP sta	ndard that er	nables Wireless ar	nd Mobile devices to use par	rts of the	WWW from
				1		
	today's F	ixedInternet				
	today's F	FixedInternet				
	today's F		SE OUTCOME		Unit	Hrs P/S
At the end of		COUR		0	Unit	Hrs P/S
	the Semes	COUR ter, the Stud	SE OUTCOME		Unit 1	Hrs P/S
	the Semes	COUR ter, the Stud	SE OUTCOME ents will be able t			
UNIT 1 CO1	the Semes I: To under	COUR ter, the Stud	SE OUTCOME ents will be able t ncept of cellular c			
UNIT 1 CO1 UNIT 2 CO2	the Semes I: To under 2: Knowled	COUR ter, the Stud stand the co	SE OUTCOME ents will be able t ncept of cellular c	communication cation standard, its	1	12
UNIT 1 CO1 UNIT 2 CO2 architecture, 1	the Semes I: To under 2: Knowled logical cha	COUR ter, the Stud rstand the co lge of GSM nnels, advan	SE OUTCOME ents will be able t ncept of cellular c mobile communic tages and limitation	communication cation standard, its	1	12
UNIT 1 CO1 UNIT 2 CO2 architecture, 1 UNIT 3 CO3	the Semes I: To under 2: Knowled logical cha	COUR ter, the Stud rstand the co lge of GSM nnels, advan	SE OUTCOME ents will be able t ncept of cellular c mobile communic tages and limitation	communication cation standard, its ons.	1 2	12 12
UNIT 1 CO1 UNIT 2 CO2 architecture, 1 UNIT 3 CO3 standards .	the Semes 1: To under 2: Knowled logical cha 3: To under	COUR ter, the Stud rstand the co lge of GSM nnels, advan rstand the ba	SE OUTCOME ents will be able t ncept of cellular c mobile communic tages and limitation sics of universal w	communication cation standard, its ons.	1 2	12 12
UNIT 1 CO1 UNIT 2 CO2 architecture, 1 UNIT 3 CO3 standards . UNIT 4 CO4	the Semes I: To under 2: Knowled logical cha 3: To under I: Understa	COUR ter, the Stud rstand the co lge of GSM nnels, advan rstand the ba	SE OUTCOME ents will be able t ncept of cellular c mobile communic tages and limitation sics of universal w le network layer w	communication cation standard, its ons. vireless communication	1 2 3	12 12 12

SYLLABUS

UNIT - I

INTRODUCTION: Medium access control – Motivation for a specialized MAC, SDMA, FDMA, TDMA, CDMA, Satellite systems – History, Basics – GEO, LEO, MEO – Routing – Localization – Handover – Examples..

UNIT - II

Telecommunication Systems: GSM – Mobile services, System architecture, Radio Interface, Protocols, Localization and calling, Handover, Security, New data services, DECT – System architecture, Protocol architecture, TETRA.

UNIT - III

STANDARDS: Wireless LAN: Infra red Vs radio transmission, Infrastructure and ad-hoc network - IEEE 802.11 – System architecture, Protocol architecture, Physical Layer, Medium

Access Control Layer, MAC management, 802.11b, 802.11a.

UNIT – IV

Mobile Network Layer: Mobile IP – Goals, assumptions and requirements, Entities and terminology, IP packet delivery, Agent Discovery, Registration, Tunneling and Encapsulation, Optimizations, Reverse Tunneling, IPv6, IP micro-mobility support, Dynamic Host Configuration Protocol – Mobile Ad-Hoc networks – Routing, Destination sequence distance vector, Dynamic source routing, alternative metrics, overview of ad-hoc routing protocols.

UNIT - V

Mobile Transport Layer: Traditional TCP – Classical TCP Improvements – Indirect TCP, Snooping TCP, Mobile TCP, Fast retransmit / Fast Recovery, Transmission / Time – out freezing, Selective retransmission, Transaction-oriented TCP

Wireless Application Protocol: Architecture, Wireless Datagram Protocol, Wireless transport layer security, Wireless transaction protocol, Wireless session protocol, Wireless application environment.

TEXT BOOKS

1. Jochen Schiller, Mobile Communications, Second Edition, Addison Wesley, 2003 (Eleventh Impression, 2013)

UNITI: Chapters3,5 UNIT II: Chapters 4.1 –4.3

UNIT III: Chapters 7.1 - 7.3 UNIT IV: Chapters 8 UNIT V: Chapters 9.1,9.2, 10.3.1-10.3.6

REF. BOOK

1. William C.Y.Lee, Mobile Communication Design Fundamentals, John Wiley.

E-LEARNING RESOURCES:

1. https://nptel.ac.in/courses/106/106/106106147/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	INTRODUCTION: Medium access control – Motivation for a specialized MAC, SDMA, FDMA, TDMA, CDMA,Satellite systems	4	Black Board
	History, Basics – GEO, LEO, MEO – Routing –	4	Black Board
	Localization – Handover – Examples	4	РРТ
UNIT 11			
	TelecommunicationSystems:GSM – Mobile services, Systemarchitecture, Radio Interface,	4	Black Board

	Protocols, Localization and	4	Black Board
	calling, Handover, Security, New	-	Diack Doard
	data services, DECT –		
	System architecture, Protocol	4	Black Board
	architecture, TETRA.		
UNIT III			
	STANDARDS: Wireless LAN:	4	Black Board
	Infra red Vs radio transmission,		
	Infrastructure and ad-hoc		
	network,		
	IEEE 802.11 – System	4	PPT
	architecture, Protocol		
	architecture, PhysicalLayer,		
	Medium Access Control Layer,	4	Black Board
	MAC management, 802.11b,		
	802.11a.		
UNIT IV	Mahila Natwork Lavan Mahila	4	Black Board
	Mobile Network Layer: Mobile IP – Goals, assumptions and	4	DIACK DUALU
	requirements, Entities and		
	terminology, IP packet delivery,		
	Agent Discovery,Registration,–		
	Tunneling and Encapsulation,	4	Black Board
	Optimizations, Reverse		
	Tunneling, IPv6, IPmicro-		
	mobility support, Dynamic Host		
	Configuration Protocol		
	Mobile Ad-Hoc networks –	4	Black Board
	Routing, Destination sequence		
	distance vector, Dynamic source		
	routing, alternative metrics,		
	overview of ad-hoc routing		
	protocols.		
UNIT V			
	Mobile Transport Layer:	4	Black Board
	Traditional TCP – Classical		
	TCPImprovements – Indirect		
	TCP, Snooping TCP, Mobile		
	TCP, Fast retransmit / Fast		
	Recovery, Transmission / Time –		
	out		
	freezing, Selective		
	retransmission,		
	Transaction-oriented TCP	4	Black Board
	Wireless Application Protocol:		
	Architecture, WirelessDatagram		

Protocol, Wireless transport layer security,	
Wireless transaction protocol Wireless session protocol Wireless application environment.	РРТ

Course Outcomes (Cos)	Programme Outcomes (Pos) Programme Specific Outcomes (PSOs)					Mean scores of							
	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	4	4	4	2	5	4	2	5	3	4	1	3.3
CO2	5	5	5	4	2	4	5	3	4	5	4	2	3,7
CO3	4	5	4	5	2	4	4	2	4	5	4	1	3.5
CO4	4	3	5	5	2	5	4	2	5	4	5	2	3.6
CO5	4	5	5	5	2	5	4	3	5	4	4	2	3.7
Mean Overall Score										3.6			

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO <u>Value</u> Total No. of		-	Mean Overall Sco Total No. of Cos	ore of COs = $\underline{\text{Tota}}$	al of Mean Score

BLOOM'S	INTERNAL	EXTERNAL
TAXANOMY		
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

CourseDesigner: D

Department of Computer

Programme : M.C.A Semester : IV Sub. Code : ECD3 Part III: Elective Hours : 5 P/W 60 Hrs P/S Credits : 4

TITLE OF THE PAPER: MACHINE LEARNING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	4	-	-	1	
PREAMBLE:						
	To unde	erstand the	machine learning	theory and build tree and	l rule base	d models.
		COU	RSE OUTCOME		Unit	Hrs P/S
At the end of	the Semest	er, the Stud	lents will be able	to		
UNIT 1 CO 1 Լ	Inderstand	various ma	chine learning Te	chniques.		
			of selecting suital	ble model parameters for	2	12
different machine learning techniques						
UNIT 3 CO3: L	earn the al	gorithm and	d different model	s used in Machine	3	12
Learning Proc						
UNIT 4 CO4: A	4	12				
ime Applications						
UNIT 5 CO5: A	5	12				
Process for Re	eal time Ap	plications				

SYLLABUS

UNIT – I :

Introduction: Well-Posed Learning Problems – Designing a Learning System – Choosing the Training Experience – Choosing the Target Function – Choosing a Representation for the Target Function – Choosing a Function Approximation Algorithm

 The Final Design – Perspective and Issues in Machine Learning – Issues in Machine Learning – Concept Learning and the General-to-Specific Ordering –A Concept Learning Task

– Notation – The Inductive Learning Hypothesis – Concept Learning as Search – General-to-Specific Ordering of Hypotheses.

UNIT – II :

Tree Models – Decision Trees – Ranking and Probability Estimation Trees – Tree Learning as Variance Reduction – Rule Models – Learning Ordered Rule Lists – Learning Unordered Rule Sets – Descriptive Rule Learning – First-Order Rule Learning - Linear Models – The Least-Square Method – Support Vector Machines – Obtaining Probabilities from Linear Classifiers – Going Beyond Linearity with Kernel Methods.

UNIT – III :

Distance-based Models – Neighbours and Exemplars – Nearest-Neighbour Classification – Distance-Based Clustering – Hierarchical Clustering – Probabilistic Models – The Normal Distribution and its Geometric Interpretations – Probabilistic Models for Categorical Data – Discriminative Learning by Optimising Conditional likelihood – Probabilistic Models with Hidden Variables.

UNIT - IV:

Artificial Neural Networks – Introduction – Biological Motivation – Neural Network Representations – Appropriate Problems for Neural Network Learning – Perceptrons – Representational Power of Perceptrons – The Perceptron Training Rule – Gradient Descent and the Delta Rule – Remarks – Multilayer Networks and the BACKPROPAGATION Algorithm – A Differentiable Threshold Unit – The BACKPROPAGATION Algorithm – Derivation of the BACKPROPAGATION Rule – Bayesian Learning – Introduction – Bayes Theorem – An Example – Bayes Theorem and Concept Learning – Brute-Force Bayes Concepts Learning – MAP Hypotheses and Consistent Learners – Maximum Likelihood and Least-Squared Error Hypotheses – Maximum Likelihood Hypotheses for Predicting Probabilities.

UNIT - V:

Genetic Algorithms – Motivation – Genetic Algorithms – Representing Hypotheses – Genetic Operators – Fitness Function and Selection – An Illustrative Example – Extensions – Hypothesis Space Search – Population Evolution and the Schema Theorem – Genetic Programming – Representing Programs – Illustrative Example – Remarks on Genetic Programming – Reinforcement Learning – Introduction – The Learning Task – Q-Learning – the Q Function – An Algorithm for Learning Q – An Illustrative Example – Convergence – Experimentation Strategies – Updating Sequence – Nondeterministic Rewards and Actions – Temporal Difference Learning.

TEXT BOOKS

1. P. Flach, "Machine Learning: The art and science of algorithms that make sense of data", Cambridge University Press, 2012.

2. T. M. Mitchell, "Machine Learning", McGraw Hill, 1997.

UNIT	CHAPTERS
Ι	1.1, 1.2, 1.3, 2.2, 2.3 (TB2)
II	5, 6, 7(TB1)
III	8, 9(TB1)
IV	4.1, 4.2, 4.3, 4.4, 4.5.1, 4.5.2, 4.5.3(TB2)
V	9.1, 9.2, 9.3, 9.4, 9.5, 13.1, 13.2, 13.3, 13.4, 13.5(TB2)

UNITS	ΤΟΡΙϹ	LECTURE HOURS	MODE OF TEACHING
UNIT 1		HUUKS	
	Introduction: Well-Posed Learning Problems – Designing a Learning System – Choosing the Training Experience – Choosing the Target Function – – Concept Learning and the General-to-Specific Ordering –A Concept Learning Task – Notation – The Inductive Learning Hypothesis – Concept Learning as Search – General-to- Specific Ordering of Hypotheses.	4	Black Board
	Choosing a Representation for the Target Function – Choosing a Function Approximation Algorithm – The Final Design – Perspective and Issues in Machine Learning – Issues in Machine Learning	4	Black Board
	Concept Learning and the General-to- Specific Ordering –A Concept Learning Task – Notation – The Inductive Learning Hypothesis – Concept Learning as Search – General-to- Specific Ordering of Hypotheses.	4	Black Board
UNIT 11			
	Tree Models – Decision Trees – Ranking and Probability Estimation Trees – Tree Learning as Variance Reduction – Linear Models – The Least-Square Method – Support Vector Machines – Obtaining Probabilities from Linear Classifiers – Going Beyond Linearity with Kernel Methods.	4	Black Board
	Rule Models – Learning Ordered Rule Lists – Learning Unordered Rule Sets – Descriptive Rule Learning – First-Order Rule Learning -	4	ICT – WEB NOTES

	Linear Models – The Least- Square Method – Support Vector Machines – Obtaining Probabilities from Linear Classifiers – Going Beyond Linearity with Kernel Methods.	4	Black Board
UNIT III			
	Distance-based Models – Neighbors and Exemplars – Nearest-Neighbor Classification – Distance-Based Clustering – Probabilistic Models for Categorical Data – Discriminative Learning by Optimizing Conditional likelihood – Probabilistic Models with Hidden Variables.	4	Black Board
	Hierarchical Clustering – Probabilistic Models – The Normal Distribution and its Geometric Interpretations –	4	Black Board
	Probabilistic Models for Categorical Data – Discriminative Learning by Optimizing Conditional likelihood – Probabilistic Models with Hidden Variables.	4	Black Board
UNIT IV			
	Artificial Neural Networks – Introduction – Biological Motivation – Neural Network Representations – Appropriate Problems for Neural Network Learning – Perceptron's – Representational Power of Perceptron's – The Perceptron Training Rule –Bayesian Learning – Introduction – Bayes Theorem – An Example – Bayes Theorem and Concept Learning – Brute-Force Bayes Concepts Learning – MAP Hypotheses and Consistent Learners – Maximum Likelihood and Least-Squared Error Hypotheses – Maximum Likelihood Hypotheses for Predicting Probabilities.	4	Black Board

	Gradient Descent and the Delta Rule – Remarks – Multilayer Networks and the BACKPROPAGATION Algorithm – A Differentiable Threshold Unit – The BACKPROPAGATION Algorithm – Derivation of the BACKPROPAGATION Rule –	4	ICT WEB NOTES
	 Bayesian Learning – Introduction – Bayes Theorem – An Example – Bayes Theorem and Concept Learning – Brute- Force Bayes Concepts Learning – MAP Hypotheses and Consistent Learners Maximum Likelihood and Least-Squared Error Hypotheses – Maximum Likelihood Hypotheses for Predicting Probabilities. 	4	Black Board
UNIT V			
	 Genetic Algorithms – Motivation Genetic Algorithms – Representing Hypotheses – Genetic Operators – Fitness Function and Selection – An Illustrative Example – Reinforcement Learning – Introduction – The Learning Task – Q-Learning – the Q Function – An Algorithm for Learning Q – An Illustrative Example – Convergence – Experimentation Strategies – Updating Sequence – Nondeterministic Rewards and Actions – Temporal Difference Learning. 	4	Black Board
	Extensions – Hypothesis Space Search – Population Evolution and the Schema Theorem – Genetic Programming – Representing Programs – Illustrative Example – Remarks	4	Black Board

on Genetic Programming –	
Reinforcement Learning – Introduction – Learning Task – Q-Learning – the Q Function – An Algori	ICT- WEB NOTES
for Learning Q – An Illustrative Example Convergence – Experimentation Strategie Updating Sequence – Nondetermin Rewards and Actions – Temporal Differe Learning.	e – s – stic

Course Outco mes	Programme Outcomes (Pos)								Programme Specific Outcomes (PSOs)					nes		Mean scores of Cos
(Cos)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	
CO1	2	3	4	4	5	4	4	2	5	4	2	5	3	4	2	3.4
CO2	2	2	5	5	4	4	5	2	4	5	3	4	5	4	2	3.7
CO3	2	1	4	5	5	5	4	2	4	4	2	4	5	4	1	3.5
CO4	2	2	5	3	4	5	4	2	5	4	2	5	4	5	2	3.6
CO5	1	1	5	5	5	5	4	2	5	4	3	5	4	4	2	3.7
	Mean Overall Score											3.6				

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of Total No. of PO		of Value		/lean Overall Sc otal No. of COs		otal of Mean Score

INTERNAL	EXTERNAL
50%	50%
30%	30%
20%	20%
	50% 30%

Course Designer:

Department of Computer Applications.

Part III: Elective Hours: 5 P/W 60 HrsP/S Credits:4

TITLE OF THE PAPER: PRINCIPLES OF COMPILER DESIGN

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	5	4	-	-	1	
PREAMBLI • •	To learn a To unders Analysis,	stand the con Semantic Ar	cepts of various p nalysis, Intermedi	d Programming Languageco bhases of compilers: Lexical ate Code generation, Code C ection and correctionmethod	Analysi Optimiza	· · · ·
At the end of	the Semes		SE OUTCOME ents will be able t	to	Unit	Hrs P/S
			ign aspects of a ty		1	12
UNIT 2 CO2 Acceptor, Ve			s of Finite Autom	nata and Machines as	2	12
UNIT 3 CO3 languages, Ex				and interpret Regular	3	12
UNIT 4 CO4 And Design of				utomata as Simple Parser.	4	12
UNIT5CO5: languages, Ex		-	n, construct, analy rs with symboltab	ze and interpret Regular le.	5	12
structu Optim High-l syntac	- I action to 0 re of a con- ization – 0 evel progr tic structur tents – P	mpiler – Lex Code generat amming lang re of a langu	tical Analysis – S ion – Book keep guages – definitio age – Data eleme	ranslators – Why do we n Syntax Analysis – Intermed bing – Error handling - Pro ons of programming langua ents – Data structures – Ope ronments – Parameter tra	iate cod grammin ges – T erators –	e generation ng Languages he lexical an Assignment
the de expres	Automata sign of le sions to fi	exical analy	zers – Regular	ble of the lexical analyzer – expressions – Finite autor the number of states of a D	mata –	From regula
UNIT		ecification c	of Programming	Languages: Context_free.gr	ammara	Derivation

The Syntactic specification of Programming Languages: Context-free grammars – Derivations and parse trees – Capabilities of context-free grammars - Basic Parsing Techniques: Parsers –

Shift-reduce parsing – Operator-precedence parsing – Top-down parsing – Predictive parsers.

UNIT - IV

Syntax-Directed Translation: Syntax-directed translation schemes – Implementation of syntaxdirected translators – Intermediate code – Postfix notation – Parse trees and syntax trees – Threeaddress code, quadruples, and triples – Translation of assignment statements – Boolean expressions – Statements that alter the flow of control – Postfix translations – Translation with top-down parser.

UNIT - V

Symbol Tables: The contents of a symbol table – Data structures for symbol tables – Representing scope information - Introduction to Code Optimization: The principal sources of optimization – Loop optimization – The DAG representation of basic blocks.

TEXT BOOKS

Principles of Compiler Design by Alfred V.Aho Jeffrey D.Ullman, Narosa Publishing House, New Delhi, Reprint 2002.

UNIT-I : Chapters: 1.1 - 1.10, 2.1-2.12 UNIT-II : Chapter 3.1to 3.7 UNIT-III: Chapters: 4.1 - 4.3, 5 UNIT IV : Chapter 7 UNIT-V: Chapters: 9, 12.1, 12.2, 12.3.

REFERENCE BOOKS

- 1. Compilers: Principles, Techniques and Tools by Alfred V. Aho, Monica S. Lam, RaviSethi, Jeffrey D. Ullman, Pearson, 2nd Edition,2012.
- 2. Comprehensive Approach to Principles of Compiler Design by A. A. Puntambekar, 2012.

E-LEARNING RESOURCES:

1. https://nptel.ac.in/courses/106/105/106105190/

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction to Compilers: Compilers and Translators – Why do we need translators – Thestructure of a compiler – Lexical Analysis – Syntax Analysis	4	Black Board
	Intermediate code generation – Optimization – Code generation – Book keeping – Error handling - Programming Languages: High- level programming languages – definitions of programming languages –	4	Black Board
	The lexical and syntactic structure of a language – Data elements – Data structures – Operators–	4	Black Board

	Assignment – Statements – Program units – Data environments – Parameter transmission – Storage management.		
UNIT 11			
	Finite Automata and Lexical Analysis: The role of the lexical analyzer –Minimizing the number of states of a DFA – A language for specifying lexical analyzers.	4	Black Board
	A simple approach to the design of lexical analyzers – Regular expressions – Finite automata – From regular expressions to finite automata –	4	ICT – Web notes
	Minimizing the number of states of a DFA – A language for specifying lexical analyzers.	4	Black Board
UNIT III			·
	The Syntactic specification of Programming Languages: Context-free grammars1`	4	Black Board
	Derivations and parse trees – Capabilities of context-free grammars -	4	Black Board
	Basic Parsing Techniques: Parsers – Shift-reduce parsing – Operator-precedence parsing – Top-down parsing – Predictive parsers.	4	ICT – Web notes
UNIT IV			•
	Syntax-DirectedTranslation:Syntax-directedtranslationschemes–Implementation of syntax-directed translators –	4	Black Board
	Intermediate code – Postfix notation – Parse trees and syntax trees – Three-address code, quadruples, and triples – Translation of assignment statements – Boolean expressions	4	Black Board

	Statements that alter the flow of control – Postfix translations – Translation with top-down parser.	4	Black Board
UNIT V			
	Symbol Tables: The contents of a symbol table – Data structures for symbol tables	4	Black Board
	Representing scope information – Introduction to Code Optimization:	4	Black Board
	-The principal sources of optimization – Loop optimization – The DAG representation of basic blocks.	4	ICT – Web Notes

Course Outcomes (Cos)	Prog	ramme	Outco	omes ((Pos)		Progra	mme Sp	ecific Ou	itcomes	(PSOs)		Mean scores of
(005)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	Cos
CO1	4	5	4	4	2	5	4	2	5	3	4	1	3.4
CO2	5	4	5	4	2	4	5	3	4	5	5	2	3.73
CO3	4	5	5	5	2	4	5	2	4	5	4	1	3.6
CO4	4	3	5	5	2	5	4	3	5	4	5	2	3.66
CO5	4	5	4	5	2	5	5	2	5	4	4	2	3.6
Mean Overall Score													3.6

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of Co Value Total No. o		<u>f</u>	Mean Overall Sco Total No. of COs		al of Mean Score

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications.