SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI – 625 002.

DEPARTMENT OF COMPUTER APPLICATIONS

M.Phil. COMPUTER APPLICATION

SYLLABUS INTRODUCED FOR THE ACADEMIC YEAR 2022-2023

OUTCOME BASED EDUCATION

UNDER C.B.C.S.

SRI MEENAKSHI GOVT ARTS COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF COMPUTER APPLICATIONS

DEPARMENT NAME: COMPUTER APPLICATIONS

INTRODUCTION

The Department of Computer Applications blossomed in the year 1998 offering Master of Computer Applications course approved by AICTE. M.Phil Computer Application course was started in Year 2017. In August 2018 B.C.A course was started. The Department has an enterprising faculty team of 3 Assistant Professors, 2 Guest faculties and 1 Programmer. It has more than 100 research publications to its credit. They contribute their share of knowledge to academic community through Invited Talks and Paper presentations in National / International Conferences. The Department takes continuous efforts in upgrading the course content and enhancing students skills.

COURSES OFFERED:

- **B.C.A**
- M.C.A
- M.Phil. COMPUTER APPLICATIONS

VISION

Enabling Students to become enterprising Academicians, Young Entrepreneurs and Responsible Citizens.

MISSION

Imparting Quality Knowledge and Essential Virtues Treading Towards Holistic Development.

PROGRAMME OUTCOME (PO) of M.Phil.

At the end of the programme, the students will be able to:

- PO1: Apply the concepts of computing in various research domains
- **PO2:** Use machine learning to resolve environmental issues.
- **PO3:** Practice professional ethics to accomplish holistic development.
- **PO4:** Enhance the quest for lifelong learning.
- **PO5:** Apply knowledge of Computing, in all the fields of learning including higher research and its extensions.

Programme Specific Outcome (PSO) of M.Phil.

- PSO 1: To pursue qualitative research in the field of computing.
- PSO 2: To assimilate computing ideas in various domains
- PSO 3: To improve research skills and innovations.
- PSO 4: To instill virtues and social responsibility.

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI – 625 002.

DEPARTMENT OF COMPUTER APPLICATIONS

M.Phil. Computer Application Syllabus – OBE-CBCS (For those who are admitted from June 2021 onwards)

	Sub.	Title of the Paper		Marks		Credits
	Code		Int.	Ext	Total	01Cu100
		I - Semester				
Core Paper-1	MPCA1	Research Methodology	40	60	100	5
Core Paper-2	MPCA2	Information Security	40	60	100	5
Elective Papers		e Papers	40	60	100	5
Option-1	MPCE1	Deep Learning				
Option-2	MPCE2	Mobile Communications				
Option-3	MPCE3	Data Mining and Warehousing				
Option-4	MPCE4	Digital Image processing and Machine Vision				
	II - Semester					
	MPCPW	Dissertation and Viva- voce	25	75	100	21
Total					400	36

(This syllabus will come into effect from the Academic Year 2019-2020 onwards)

- The programme will consist of two semesters with 36 credits.
- In the First Semester there will be three papers, with 5 credits each.
- a. Research Methodology
- b. Information Security
- c. Elective Course related to the Dissertation Work

In the Second Semester the students will have to do a dissertation with 21 credits

The last date for the submission of dissertation is on or before 31st July. Attendance is compulsory. Fieldwork and library visits pertaining to research can be done with prior permission.

Current Assessment for Semester I

Two Monthly Tests	$2 \times 10 = 20$ Marks
Model Exam	: 1 x 10 = 10 Marks
Seminar and Assignment	: 10 Marks
Total	: 40 Marks

Question paper Pattern for Core and Elective Courses :

Students will answer five essay questions out of 10, in 1200 words each.

Duration of examination	:	3 Hours
Maximum Marks	:	60 Marks

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI – 625 002.

DEPARTMENT OF COMPUTER APPLICATIONS

M.Phil. Degree Model Question Paper

BLUE PRINT

UNIT / PART	А
Ι	2
П	2
III	2
IV	2
V	2

PART-A

 $5 \ge 12 = 60$ (5 out of 10)

Total Marks = 60

Programme : M.Phil.Part III: CoreSemester: IHours : 6 P/W 90 Hrs P/SSub. Code: MPCA1Credits : 5TITLE OF THE PAPER: Research Methodology

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	6	2	1	1	2	
2. To in	mprove th	thesis writing e problem sol rch tools and		research ethics.		
At the end of th	e Semest		SE OUTCOME ents will be able to)	Unit	Hrs P/S
UNIT 1 CO1:	Analyze	the elements	s of thesis writing.		1	18
UNIT 2 CO2:	Apply the	e concept of	data structures for	r NP Complete Problems.	2	18
UNIT 3 CO3: S	Study the	principles o	f formal language	s and finite automata.	3	18
UNIT 4 CO4:	Acquire t	he basics of	Probability		4	18
	0	nd develop p earch integri	0 0	ATLAB,R and appraise	5	18

SYLLABUS

UNIT I: Basic Elements: Thesis Elements – Paper Elements – Order of Thesis and Paper Elements – Concluding Remarks – Identification of the Author and His Writing: Author's Name and Affiliation – Joint Authorship of a Paper: Genuine Authorship and Order of Authors. Identification of Writing: Title, Keyboards, synopsis, preface and abstract – Typical Examples. Chapters and Sections: Introductory Chapters and Section – Core Chapters and Sections. Text-Support materials: Figures and Tables – Mathematical Expressions and Equations – References – Appendixes and Annexure – Listing of Materials. Numbering of elements: Pagination

 Numbering of Chapters, Sections and Subsections – Numbering of figures and Tables – Equation Numbering – Appendix Numbering – Reference Numbering.

UNIT II: Elementary data structures – Greedy method: Knapsack problem – job sequencing with deadlines – Optimal merge patterns. Dynamic Programming: Multistage graphs – Optimal binary search trees – 0/1 Knapsack – Reliability design – The traveling salesman problem – Flow shop scheduling – Basic search and traversal techniques: The Techniques for Code Optimization. Bi-connected components and depth – first search. Backtracking the 8 – Queens problem – Sum of subsets – Hamiltonian cycles – Knapsacks Problem.

UNIT III: Formal Languages and Finite Automata: Context free Grammars – Derivation Trees simplification of context free grammars – Chomsky normal forms – Greiback Normal Forms – The Pumping Lemma for context free Languages

Finite State systems: Basic Definitions – Non-Deterministic Finite Automata(NFA) – Finite Automata with Epsilon Moves – Regular Expression – Applications of Finite Automata (Stress on theorem statement and problems only)

UNIT IV: Decision Making: Introduction – Baye's Theorem – Multiple Features – Conditionally Independent Features – Decision Boundaries – Unequal Costs of Error – Estimation of Error Rates – The Leaving – One – Out Technique – Characteristic Curves – Estimating the Composition of Populations – Problems – Clustering: Introduction – Hierarchical Clustering – Partitioned Clustering – Problems.

UNIT V: R Programming: Clustering, Classification and association rule mining with R Tool.

Matlab: Functions, plotting, statistics. Histogram and probability using mathematics tools and image processing tool. Data set: airline.arff, iris.arff, soybean.arff.

Research integrity practices: Introduction–Values Underlying Research Integrity–Framework for Good Academic Research Practices–Research Design–Planning–Research Questions and Documentation–Literature Review–Data, Research Methods, and Analytical Approach–Conducting Research–Research Execution, Documentations and Data Storage–Checks for Plagiarism, Falsification, Fabrication and Misrepresent–Collaboration and Authorship–Intellectual Property–Dissemination–Selection of the Right Medium for Publication–Choosing the Right Journal for Publication–Translation of Research.

TEXT BOOKS:

- 1. B.N. Basu, "Technical Writing", PHI. Pvt. Ltd., New Delhi, 2007. (chapters : 4,5,6,7 and 8).
- 2. Alfred V. Aho. John E. Hopcroft, Jeffrey D. Ullman," Data Structures and Algorithms, Addison Wesley Publishing Company, 1987.
- 3. Ellis Horowitz Sartaj Sahini. "Fundamentals of Computer Algorithms", Galgotia Publications(P), Ltd., 1993.
- 4. Earl Gose, Richard Johnson Baugh, Steve Jost, "Pattern Recognition and Image Analysis" PHI, 1997. (chapters: 3,5).
- 5. S.N.Sivanantham, S.Sumathi, S.N. Deepa Introduction to Neural Networks using Matlab 6.0, TMH, 2008 (chapters:12.13 15.5).

REFERENCES:

• "Good Academic Research Practices", Published by UGC, New Delhi, September 2020.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT – I			
	Basic Elements: Thesis Elements – Paper Elements – Order of Thesis and Paper Elements – Concluding Remarks – Identification of the Author and His Writing: Author's Name and Affiliation.	6	Lecture
	Joint Authorship of a Paper: Genuine Authorship and Order of Authors. Identificationof Writing: Title, Keyboards, synopsis,	2	Peer teaching

	preface and abstract – Typical Examples. Chapters and Sections: Introductory Chapters and Section – CoreChapters and Sections	2	Videos
	Text-Support materials:Figures and Tables –Mathematical Expressions andEquations – References–Appendixes and Annexure – Listing of Materials. Numberingof elements: Pagination – Numbering ofChapters, Sections and Subsections– Numbering of figures and Tables – Equation Numbering – Appendix Numbering – Reference Numbering.	8	ICT
UNIT - II			
	Elementary data structures – Greedy method: Knapsack problem – job sequencing with deadlines – Optimalmerge patterns.	6	Lecture
	Dynamic Programming:Multistage graphs – Optimal binary search trees – 0/1 Knapsack – Reliability design – Thetraveling salesman problem – Flow shopscheduling	4	Peer teaching
	Basic search andtraversal techniques:The Techniques for Code Optimization. Bi- connected components and depth – first search. Backtracking the 8 – Queens problem – Sum of subsets – Hamiltonian cycles –Knapsacks Problem.	8	ICT
UNIT III			
	Formal Languages and FiniteAutomata:ContextfreeGrammars-DerivationTreessimplificationofcontextfreegrammars-Chomsky normal forms-GreibackNormalForms-freeLanguages.	6	Lecture
	Finite State systems: Basic Definitions –Non-Deterministic	9	Peer teaching
	Finite Automata(NFA) – Finite Automata with Epsilon Moves –Regular Expression – Applications of FiniteAutomata (Stress on theorem statement and problems only)	3	videos

UNIT IV			
	Decision Making: Introduction – Baye's Theorem – Multiple Features – Conditionally Independent Features – Decision Boundaries Unequal Costs of Error – Estimation of Error Rates – The Leaving – One – Out Technique – Characteristic Curves – Estimating the Composition of Populations – Problems	12	Lecture
	Clustering: Introduction – Hierarchical Clustering – Partitioned Clustering – Problems.	6	Videos
UNIT V			
	Matlab, R tools and Research Integrity	14	ICT
	Practices.	4	Videos

Course Outco mes	Progra	Programme Outcomes (Pos)					Programme Specific Outcomes (PSOs)			Mean scores of Cos
(Cos)	PO1	PO2	PO 3	PO4	PO5	PSO1	PSO2	PSO3	PSO 4	
CO1	3	4	2	5	5	4	4	4	3	3.8
CO2	5	3	1	3	4	3	4	4	2	3.2
CO3	3	4	2	5	5	4	4	4	2	3.7
CO4	4	3	1	5	4	3	4	4	2	3.3
CO5	5	3	2	4	3	4	5	5	2	3.7
						Mean C	Overall S	Score		3.5

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = $\frac{\text{Total of Value}}{\text{Total No. of Pos & PSOs}}$					l of Mean Score al No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : M.Phil Semester : I Sub. Code : MPCA2 Part III: Core Hours : 6 P/W 90 Hrs P/S Credits : 5

TITLE OF THE PAPER: INFORMATION SECURITY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	6	2	1	1	2	
PREAMBL	E:					
1. T	To focus Info	rmation secu	rity model.			
2. To	o learn abou	t working prii	nciples and challeng	es with various security algorithms	hms.	
					- -	
			SE OUTCOME		Unit	Hrs P/S
At the end of	the Semes	ter, the Stud	ents will be able to	0		
UNIT 1 CO1	UNIT 1 CO1 : understand the basic techniques of Information Security.					18
UNIT 2 CO2	2: know the	various encry	ption techniques an	d algorithms.	2	18
				-		
UNIT 3 CO3	3: learn abo	ut key mana	gement.		3	18
		2	~			
UNIT 4 CO4: Know about digital signatures and firewalls.					4	18
		8	0			
UNIT 5 CO5: Learn about electronic mail security.					5	18
	. Douin uo				Ŭ	
SVI I ADI	IC				L	

SYLLABUS

UNIT I: History – What is Information Security – Critical Characteristics of Information, NSTISSC Security Model, Components of an Information System, Securing the Components, Balancing Security and Access. The SDLC The Security SDLC – Need for Security – Business Needs, Threats, Attacks, Legal, Ethical and Professional issues.

UNIT II: Introduction: Security Trends – The OSI Security Architecture – Security Attacks – Security Services – Security Mechanisms – A Model for Network Security – Classification Encryption Techniques. Symmetric Cipher Model – Substitution Techniques – Transposition Techniques – Steganography. Block Ciphers and the Data Encryption Standard : Block Cipher Principles – The Data Encryption standard – Advanced Encryption Standard: Evaluation Criteria for AES – The AES Cipher – More on Symmetric Ciphers: Multiple Encryption and Triple DES – Stream Ciphers and RC4 – Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems - The RSA Algorithm.

UNIT III: Key Management: Key Management – Diffie-Hellman Key Exchange- Elliptic Curve Arithmetic – Elliptic Curve Cryptography – Message Authentication and Hash Functions: Authentication. Requirements – Authentication Functions – Message Authentication Codes – Hash Functions – Security of Hash Functions and MACs – Hash and MAC Algorithms: Secure Hash Algorithm – HMAC – CMAC.

UNIT IV: Digital Signatures and Authentication Protocols: Digital Signatures – Authentication Protocols – Digital Signature Standard – Authentication Applications: Kerberos – X.509 Authentication Service – Public-Key Infrastructure – Firewalls: Firewall Design Principles – Trusted Systems.

UNIT V: Electronic Mail Security: Pretty Good Privacy – IP Security: IP-Security- Overview – IP Security Architecture – Authentication Header – Encapsulating Payload – Combining Security Associations – Key Management – Web Security: Secure Socket Layer and Transport Layer Security – Secure Electronic Transaction.

TEXT BOOKS:

1. William Stallings, Cryptography and Network Security Principles and Practices, Prentice-Hall of India, New Delhi, 4th Edition 2007.

REFERENCES:

- 1. William Stallings, Network Security Essentials: Applications and Standards, Pearson Education, Delhi, 2004.
- 2. Micki Krause, Harold F. Tiptott, Handbook of Information Security Management, vol-3 CRCPressLLC,2004.
- 3. Stuart Mc Clure, Joel Scrambray, George Kurtz, "Hacking Exposed", Tata McGrawHill, 2003.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	History – What is Information Security – Critical Characteristics of Information, NSTISSC SecurityModel,	6	Lecture
١			
	Components of an Information System, Securing the Components, Balancing Security and Access	6	Peer teaching
	The SDLC The SecuritySDLC – Need for Security – Business Needs, Threats, Attacks, Legal, Ethical andProfessional issues	6	videos
UNIT 11			
	Introduction: Security Trends – The OSI Security Architecture –Security Attacks – Security Services – Security Mechanisms – A Model for Network Security – Classification	6	Lecture

	Encryption Techniques.Symmetric Cipher Model – Substitution Techniques – Transposition Techniques – Steganography.		
	Block Ciphers and the Data Encryption Standard : Block CipherPrinciples – The Data Encryption standard – Advanced Encryption Standard: Evaluation Criteria for AES – TheAES Cipher	4	Peer teaching
	More on Symmetric Ciphers:Multiple Encryption and Triple DES – Stream Ciphersand RC4 – Public-KeyCryptography and RSA: Principles of Public-KeyCryptosystems - TheRSA Algorithm.	8	ICT
UNIT III	1		
	Key Management: Key Management – Diffie- Hellman Key Exchange-Elliptic Curve Arithmetic – EllipticCurve Cryptography	6	Lecture
	Message Authenticationand Hash Functions: Authentication. Requirements – Authentication Functions – Message jAuthentication Codes –Hash Functions – Security of Hash Functions and MACs	9	Peer teaching
	Hash and MAC Algorithms: Secure Hash Algorithm – HMAC – CMAC.	3	Videos
UNIT IV		12	
	Digital Signatures and	12	Lecture

	Authentication Protocols: Digital Signatures – Authentication Protocols – DigitalSignature Standard		
	Authentication Applications: Kerberos – X.509 AuthenticationService – Public-Key Infrastructure	4	Videos
	Firewalls: Firewall Design Principles – Trusted Systems.	2	Peer teaching
UNIT V			
	Electronic Mail Security: Pretty GoodPrivacy	9	Peer teaching
	IP Security: IP-Security-Overview – IP Security Architecture – Authentication Header –Encapsulating Payload – Combining Security Associations – KeyManagement	6	Lecture
	Web Security: SecureSocket Layer and Transport Layer Security – Secure Electronic Transaction.	14	ICT

Course Outco mes	Programme Outcomes (Pos)				Programme Specific Outcomes (PSOs)				Mean scores of Cos	
(Cos)	PO1	PO2	PO 3	PO4	PO5	PSO1	PSO2	PSO3	PSO 4	
CO1	4	3	2	3	4	4	4	4	3	3.4
CO2	4	3	1	5	4	3	4	3	2	3.2
CO3	4	4	2	5	5	4	4	4	2	3.8
CO4	4	3	1	5	5	3	4	4	2	3.4
CO5	5	3	2	4	5	4	5	4	2	3.7
Mean Overall Score								3.5		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = $\frac{\text{Total of Value}}{\text{Total No. of Pos & PSOs}}$					l of Mean Score al No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications

Programme : M.Phil. Semester : I Sub. Code : MPCE1

Part III: ELECTIVE Hours : 6 P/W 90 Hrs P/S Credits : 5

TITLE OF THE PAPER: DEEP LEARNING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT	
	6	2	1	1	2	
	The perce The decisi Feed-forw Supervise Identify the error Define PA probabilit	ptron algorith ion boundary vard neural ne ed Learning ne properties AC and explain y	of a learning setting	fication [CIML]		-
At the end of th	e Semes		SE OUTCOME ents will be able t	0		Hrs P/S
UNIT 1 CO1: operations and the			•	Flow, its main functions,	1	18
and traverse the	UNIT 2 CO2: Implement deep learning algorithms, understand neural networks 2 18 and traverse the layers of data abstraction which will empower the student to 18 understand data moreprecisely. 18					
UNIT 3 CO3: Learn topics such as convolutional neural networks, recurrent neural 3 18 networks, training deep networks and high-level interfaces 3 18					18	
UNIT 4 CO4 . U networks	nderstan	d the langua	ge and fundament	al concepts of artificial neural	4	18
UNIT 5 CO5: B	uild own	deep learni	ng project		5	18

SYLLABUS

UNIT I: Introduction to TensorFlow :Computational Graph, Key highlights, Creating a Graph,Regression example, Gradient Descent, TensorBoard, Modularity, Sharing Variables,Keras Perceptrons: What is a Perceptron, XOR Gate

UNIT II: Activation Functions : Sigmoid, ReLU, Hyperbolic Fns, Softmax **Artificial Neural Networks :** Introduction, Perceptron Training Rule, Gradient Descent Rule

UNIT III: Gradient Descent and Backpropagation: Gradient Descent, Stochastic Gradient Descent, Backpropagation, Some problems in ANN

Optimization and Regularization :Overfitting and Capacity, Cross Validation, FeatureSelection, Regularization, Hyperparameters

UNIT 4:

Introduction to Convolutional Neural Networks: Introduction to CNNs, Kernel filter, Principles behind CNNs, Multiple Filters, CNN applications

Introduction to Recurrent Neural Networks: Introduction to RNNs, Unfolded RNNs,Seq2Seq RNNs, LSTM, RNN applications

UNIT 5:

Deep Learning applications: Image Processing, Natural Language Processing, Speech Recognition, Video Analytics

Text Book

1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.

References

- 1. Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G.,H., and Van Loan,C.,F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Introduction to TensorFlow :Computational Graph, Key highlights, Creating a Graph,Regression example, Gradient Descent, TensorBoard, Modularity, Sharing Variables,Keras	6	Lecture
	Perceptrons: What is a Perceptron, XOR Gate	8	ICT
		2	Peer teaching
		2	Videos
UNIT 11		6	Lesture
	Activation Functions : Sigmoid,ReLU, Hyperbolic Fns,Softmax	6	Lecture
	Artificial Neural Networks : Introduction, Perceptron Training Rule, Gradient Descent Rule	4	Peer teaching
		8	ICT
UNIT III			

	Gradient Descent and Backpropagation: Gradient Descent, Stochastic Gradient Descent, Backpropagation, Some problems in ANN Optimization and Regularization :Overfitting and Capacity, Cross Validation, FeatureSelection, Regularization, Hyper parameters.	6	Lecture
		9	Peer teaching
		3	videos
UNIT IV			-
	Introduction to Convolutional Neural Networks: Introduction to CNNs, Kernel filter, Principles	12	Lecture
	behind CNNs, Multiple Filters, CNN applications Introduction to Recurrent Neural Networks: Introduction to RNNs, Unfolded RNNs,Seq2Seq RNNs, LSTM, RNN applications	6	Videos
UNIT V			
	Deep Learning applications: Image Processing, Natural Language Processing, SpeechRecognition, Video Analytics	14	ICT

4

Videos

Course Outco mes	Programme Outcomes (Pos)				Programme Specific Outcomes (PSOs)				Mean scores of Cos	
(Cos)	PO1	PO2	PO 3	PO4	PO5	PSO1	PSO2	PSO3	PSO 4	
CO1	2	4	2	4	3	5	4	3	2	3.2
CO2	3	4	1	5	3	4	4	3	2	3.3
CO3	3	4	2	5	4	4	4	3	1	3.3
CO4	5	4	1	5	5	4	4	4	2	3.7
CO5	5	3	1	4	5	4	4	4	1	3.9
	Mean Overall Score								3.5	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = $\frac{\text{Total of Value}}{\text{Total No. of Pos & PSOs}}$					of Mean Score al No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%

Programme : M.Phil. Part III: ELECTIVE Semester Hours : 6 P/W 90 Hrs P/S : I Sub. Code : MPCE2 Credits : 5 **TITLE OF THE PAPER: MOBILE COMMUNICATION**

Peer Teaching GD/VIDOES/TUTORIAL ICT Hours Lecture Pedagogy 6 2 1 1 2 **PREAMBLE:** To enrich knowledge about Mobile Communications Concepts of: Several Media Access Schemes Different Wireless Communication Systems • Mobile IP, the extension of the Internet Protocol into Mobile domain, Ad-hoc networks with these requirements for specific routing protocols & TCP. WAP standard that enables Wireless and Mobile devices to use parts of the WWW from today's Fixed Internet **COURSE OUTCOME** Unit Hrs P/S At the end of the Semester, the Students will be able to UNIT 1 CO1: Gain the knowledge about various types of Wireless Data 1 18 Networks and Wireless Voice Networks. UNIT 2 CO2: Understand the architectures, the challenges and the Solutions of 2 18 Wireless Communication those are in use. UNIT 3 CO3: Realize the role of mobile networks. 3 18 UNIT 4 CO4: Learn about Transmission Control Protocol. 4 18 UNIT 5 CO5: Know about various protocols. 5 18

SYLLABUS

UNIT I: Medium Access Control – Motivation for Specialized MAC – SDMA – FDMA – TDMA – CDMA- Comparison of Access Mechanisms - Tele communications - GSM - DECT - TETRA -UMTS – IMT – 200 – Satellite Systems Basics – Routing – Localization – Handover – Broadcast Systems Overview – Cyclic Repetition of Data – Digital Audio Broadcasting – Digital Video Broadcasting.

UNIT II: Wireless LAN Infrared Vs Radio Transmission - Infrastructure Networks - Ad hoc Networks - IEEE 802.11 - HIPERLAN - Bluetooth - Wireless ATM Working Group - Services - Reference Model - Functions - Radio Access Layer - Handover - Location Management - Addressing Mobile Quality of Service - Access Point Control Protocol.

UNIT III: Mobile IP Goals – Assumptions and Requirement – Entities – IP Packet Delivery – Agent Advertisement and Discovery – Registration – Tunneling and Encapsulation – Optimization – Reverse Tunneling – IPv6 – DHCP – Ad hoc Networks.

UNIT IV: Traditional TCP – Indirect TCP – Snooping TCP – Mobile TCP – Fast Retransmit/ Fast Recovery – Transmission/ Timeout Freezing – Selective Retransmission – Transaction Oriented TCP.

UNIT V: Architecture – Datagram Protocol – Transport Layer Security – Transaction Protocol – Session Protocol – Application Environment – Wireless Telephony Application.

REFERENCES:

- 1. Jochen Schiller, Mobile Communications, Second Edition, Addison Wesley, 2003 (Eleventh Impression, 2013)
- 2. William Stallings, Wireless Communication and Networks, Pearson Education, 2005.
- 3. Singhal, WAP: Wireless Application Protocol, Pearson Education, 2003.
- 4. Lother Merk, Martin S. Nicklaus and Thomas Stober, Principles of Mobile Computing, 2nd Edition, Springer, 2003.
- 5. William C. Y. Lee, Mobile Communication Design Fundamentals, John Wiley, 1993.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1	·		
	Medium Access	6	Lecture
	Control – Motivation		
	for Specialized MAC		
	- SDMA - FDMA -		
	TDMA – CDMA–		
	Comparison of Access	8	ICT
	Mechanisms – Tele		
	communications –		
	GSM – DECT –	2	Peer teaching
	TETRA – UMTS –		i eer teaening
	IMT – 200 – Satellite		
	Systems Basics –		
	Routing –		
	Localization –	2	Videos
	Handover – Broadcast		
	Systems Overview –		
	Cyclic Repetition of		
	Data – Digital Audio		
	Broadcasting – Digital		
	Video Broadcasting.		
UNIT 11		l	
	Wireless LAN	6	Lecture
	Infrared Vs Radio		
	Transmission –		

r	1		
	Infrastructure	4	Peer teaching
	Networks – Ad hoc		
	Networks – IEEE		
	802.11 – HIPERLAN		
	– Bluetooth –		
	Wireless ATM		
	Working Group –	8	ICT
	Services – Reference	0	
	Model – Functions –		
	Radio Access Layer –		
	Handover – Location		
	Management –		
	Addressing Mobile		
	Quality of Service –		
	Access Point Control		
	Protocol.		
UNIT III			
	Mobile IP Goals -	6	Lecture
	Assumptions and	0	Locture
	Requirement –		
	Entities – IP Packet		
	Delivery – Agent		
	Advertisement and		
	Discovery –		
	Registration –		
	Tunneling and		
	Encapsulation –		
	Optimization –		
	Reverse Tunneling –		
	IPv6 – DHCP – Ad		
	hoc Networks.		
		9	Peer teaching
		3	videos
UNIT IV		5	14005
	Traditional TCP –	12	Lecture
	Indirect TCP –	12	Lecture
	Snooping TCP –		
	Mobile TCP – Fast		
	Retransmit/ Fast		
	Recovery –		
	Transmission/		
	Timeout Freezing -	6	Videos
	Selective		
	Retransmission –		
	Transaction Oriented		
	TCP.		
	101.		

UNIT V							
	Architecture –	14	ICT				
	Datagram Protocol –						
	Transport Layer						
	Security – Transaction						
	Protocol – Session		T T T				
	Protocol –	4	Videos				
	Application						
	Environment –						
	Wireless Telephony						
	Application.						

Course Outco mes	Progra	amme	Outco	omes (Po	s)	Programme Specific Outcomes (PSOs)				Mean scores of Cos
(Cos)	PO1	PO2	PO 3	PO4	PO5	PSO1	PSO2	PSO3	PSO 4	
CO1	4	3	2	4	4	5	4	4	3	3.7
CO2	5	3	1	5	4	3	4	3	2	3.3
CO3	4	4	2	5	5	4	4	4	1	3.6
CO4	4	4	2	5	5	4	4	4	2	3.7
CO5	5 3 2 4 5						5	4	1	3.7
	Mean Overall Score									3.6

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CO	$Ds = \frac{\text{Total of}}{\text{Total No. of }}$				l of Mean Score al No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer: Department of Computer Applications

Programme : M.Phil.Part III: ELECTIVESemester: IHours : 6 P/W 90Hrs P/SSub. Code: MPCE3Credits : 5TITLE OF THE PAPER: DATA MINING AND WAREHOUSING

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
0.01	6 2 1 1		2				
				ehousing and mining and exp ds in Data Mining.	lore the	various	
At the end of	the Semes			0	Unit	Hrs P/S	
UNIT 1 CO1	: Store vo	luminous da	ta for online proc	essing	1	18	
	2	18					
COURSE OUTCOME At the end of the Semester, the Students will be able to UNIT 1 CO1: Store voluminous data for online processing UNIT 2 CO2: Preprocess the data for mining applications. Apply the association rules for mining the data. UNIT 3 CO3: Design and deploy appropriate classification techniques. Cluster the high dimensional data for better organization of the data. UNIT 4 CO4: Discover the knowledge imbibed in the high dimensional system. Evolve Multidimensional Intelligent model from typical system.					3	18	
UNIT 4 CO4 : Discover the knowledge imbibed in the high dimensional system. Evolve Multidimensional Intelligent model from typical system.						18	
UNIT 5 CO5	UNIT 5 CO5: Evaluate various mining techniques on complex data objects.						
SVITABUS						<u> </u>	

SYLLABUS

UNIT I: Introduction: What Is Data Mining? – What Kind of Data can be mined? - What Kind of Patterns can be mined? – Which Technologies are used? – Major Issues in Data Mining. Getting to know your data: Data Objects and Attribute Types – Basic Statistical Description of Data. Data Preprocessing: An Overview – Data Cleaning – Data Integration – Data Reduction – Data Transformation and Data Discretization. Data Warehousing and Online Analytical Processing: Basic Concepts – Data Warehouse Modeling: Data Cube and OLAP - Data Warehouse Implementation – Data Generalization by Attribute-Oriented Induction. Data Cube Technology: Data Cube Computation:Preliminary Concepts – Data Cube Computation Methods.

UNIT II: Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and methods: Basic Concepts – Frequent Item set Mining Methods – Which Patterns Are Interesting? – Pattern Evaluation Methods. Advanced Pattern Mining: Pattern Mining: A Road Map – Pattern Mining in Multilevel, Multidimensional Space – Constraint-Based Frequent Pattern Mining.

UNIT III: Classification: Basic Concepts – Decision Tree Induction – Bayes Classification Methods – Rule-Based Classification – Model Evaluation and Selection – Techniques to Improve Classification Accuracy. Classification: Advanced Methods: Bayesian Belief Networks – Classification by Back Propagation – Support Vector Machines – Classification Using Frequent Patterns – Lazy Learners (or

Learning From Your Neighbors) – Other Classification Methods – Additional Topics Regarding Classification.

UNIT IV: Cluster Analysis: Basic Concepts and Methods: Cluster Analysis – Partioning Methods – Hierarchical Methods – Density-Based Methods – Grid-Based Methods – Evaluation of Clustering. Outlier Detection: Outliers And Outlier Analysis – Outlier Detection Methods – Statistical Approaches – Proximity-Based Approaches – Clustering Based Approaches – Classification Based Approaches.

UNIT V: Data Mining Trends and Research Frontiers: Mining complex data types : Mining Sequence data: Time-Series, Symbolic Sequence and Biological Sequences – Mining Graphs and Networks – Mining Other Kinds of Data . Other Methodologies of Data Mining: Statistical Data Mining – Views on Data Mining Foundations – Visual and Audio Data Mining. Data Mining Applications: Data Mining for Financial Data Analysis - Data Mining for Retail and Telecommunication Industries - Data Mining in Science and Engineering - Data Mining for Intrusion Detection and Prevention - Data Mining and Recommender Systems. Data Mining and Society: Ubiquitous and Invisible Data Mining – Privacy, Security, and Social Impacts of Data Mining – Data Mining Trends.

TEXT BOOKS:

Data Mining Concepts and Techniques – Jiawei Han, Micheline Kamber & Jain Pei, Morgan Kaufmann Publishers, Third edition 2012.

REFERENCES:

- 1. Usama M. Farrad, Geogory Piatetsky Shapiro, padhrai Smyth and Ramasamy Uthurusamy, "Advances in Knowledge Discovery and Data Mining", The M.I.T. press.
- 2. Ralph Kimball, "The Data Warehouse Life Cycle Toolhit", John Wiley & Sons Inc.
- 3. Sean Kelly, "Data warehousing in Action", John Wiley & Sons Inc.
- 4. K.P. Soman, "Shyam Diwakar, V. Ajay "Insights into data Mining", Theory and Practice, PHI Publications Eastern Economy Edition 6th Printing, 2012.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1		•	
	Introduction: What Is Data Mining? – What Kind of Data can be mined? - What Kind of Patterns can be mined? – Which Technologies are used? – Major Issues in Data Mining. Getting to know your data: Data Objects and Attribute Types – Basic Statistical Description of Data.		Black Board Lecture
	Data Preprocessing: An Overview – Data Cleaning – Data Integration		

	 Data Reduction – Data Transformation and Data Discretization. Data Warehousing and Online Analytical Processing: Basic Concepts – Data Warehouse Modeling: Data Cube and OLAP - Data Warehouse Implementation – Data Generalization by Attribute- Oriented Induction. 	6	PPT Door touching
	Data Cube Technology: Data CubeComputation:PreliminaryConcepts–DataComputation Methods.	6	Peer teaching
UNIT 11			
	Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and methods:	5	PPT
	Basic Concepts – Frequent Item set Mining Methods – Which Patterns Are Interesting? – Pattern Evaluation Methods.	5	Lecture
	Advanced Pattern Mining: Pattern Mining: A Road Map – Pattern Mining in Multilevel, Multidimensional Space – Constraint-Based Frequent Pattern Mining.	8	ICT
UNIT III	Classification: Basic Concepts -		
	Decision Tree Induction – Bayes Classification Methods – Rule- Based Classification – Model Evaluation and Selection – Techniques to Improve Classification Accuracy.	6	Lecture
	Classification:AdvancedMethods:BayesianBeliefNetworks – Classification by BackPropagation – SupportVector	6	РРТ

	Machines		
	Classification Using Frequent Patterns – Lazy Learners (or Learning From Your Neighbors) – Other Classification Methods – Additional Topics Regarding Classification.	6	Lecture
UNIT IV			
	Cluster Analysis: Basic Concepts and Methods: Cluster Analysis – Partioning Methods – Hierarchical Methods – Density-Based Methods – Grid-Based Methods	6	Lecture
	Evaluation of Clustering. Outlier Detection: Outliers And Outlier Analysis – Outlier Detection Methods	6	РРТ
	Statistical Approaches – Proximity-Based Approaches – Clustering Based Approaches – Classification Based Approaches.	6	Lecture
UNIT V			
	Data Mining Trends and Research Frontiers: Mining complex data types : Mining Sequence data: Time- Series, Symbolic Sequence and Biological Sequences – Mining Graphs and Networks – Mining Other Kinds of Data .	7	Lecture
	Other Methodologies of Data Mining: Statistical Data Mining – Views on Data Mining Foundations – Visual and Audio Data Mining.	5	PPT
	Data Mining Applications: Data Mining for Financial Data Analysis - Data Mining for Retail and Telecommunication Industries - Data Mining in Science and Engineering - Data Mining for Intrusion Detection and Prevention - Data Mining and Recommender		

Systems.		
Data Mining and Socie Ubiquitous and Invisible D Mining – Privacy, Security, a Social Impacts of Data Mining Data Mining Trends.	ata ind 6	Lecture

Course Outco mes	Progr	amme	Outco	omes (Po	s)	Programme Specific Outcomes (PSOs)			Mean scores of Cos	
(Cos)	PO1	PO2	PO 3	PO4	PO5	PSO1	PSO2	PSO3	PSO 4	
CO1	5	3	2	4	5	5	4	4	2	3.7
CO2	5	3	1	5	4	3	4	3	2	3.3
CO3	5	4	2	5	5	4	4	4	1	3.8
CO4	4	4	2	4	5	5	4	5	2	3.7
CO5	5 3 2 4 5 4 5 4 1							1	3.7	
	Mean Overall Score									3.7

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = $\frac{\text{Total of Value}}{\text{Total}}$ No. of Pos & PSOs					l of Mean Score al No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer: Department of Computer applications

Programme : M.Phil. Semester : I Sub. Code : MPCE4 Part III : ELECTIVE Hours : 6 P/W 90 Hrs P/S Credits :5

TITLE OF THE PAPER: DIGITAL IMAGE PROCESSING AND MACHINE VISION

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT		
	6	2	1	1	2		
PREAMBLE	:	•		•	•		
• To une	derstand t	he represent	ation of digital in	nages and apply the technique	es in rea	l time	
system	ns and apr	olications.					
-							
 Analyz 	e and imp	olement Imag	ge processing algo	orithms.			
		COUR	SE OUTCOME		Unit	Hrs P/S	
At the end of the Semester, the Students will be able to							
UNIT 1 CO1 : Understand the various steps in Digital image processing. 1						18	
UNIT 2 CO2: Analyze about image transformation and filters.218						18	
	T 1					10	
UNIT 3 CO3:	Learn ab	out various i	mage processing	techniques.	3	18	
UNIT A COA	a processing	4	18				
01111 4 004.	Acquiret	the knowledg	ge on colour imag	se processing.	+	10	
UNIT 5 CO5: Know the applications of image processing. 5							
0.00	i ino o un		s of muge proces				
SVITARUS					1	1	

SYLLABUS

UNIT I: Digital Image Processing: Origins of Digital Image Processing, Steps in Digital Image Processing, Digital Image Fundamentals: Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization, Basic Relationships between Pixels, Mathematical Tools used in Digital Image Processing.

UNIT II: Image Transformation & Filters: Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filter, Sharpening Spatial Filters, Combining Spatial Enhancement methods, Fuzzy techniques for Intensity Transformation and Spatial Filtering. Filtering in the Frequency Domain: Preliminary Concepts, Sampling and the Fourier Transforms of Sampled Functions, The Discrete Fourier Transform (DFT), Properties of the 2-D DFT, Filtering in the Frequency Domain, Image Smoothing and Sharpening using Frequency Domain Filters, Selective Filtering.

UNIT III: Image Restoration, Reconstruction and Image Segmentation: Image Degradation/Restoration process, Noise Models, Restoration in the presence of Noise only-Spatial Filtering, Periodic Noise Reduction by Frequency Domain Filtering, Linear, Position-Invariant Degradations, Estimating the Degradation Functions, Inverse Filtering, Wiener Square Error Filtering, Constrained Least Square Filtering, Geometric Mean Filter, Image Reconstruction from Projections. Image Segmentation: Point, Line and Edge Detection, Thresholding, Region-Based Segmentation, Segmentation Using Morphological Watersheds, Use of Motion in Segmentation.

UNIT IV: Color Image Processing: Color Fundamentals, Color Models, Pseudocolor Image Processing, Full Color Image Processing, Color Transformation, Smoothing and Sharpening, Image Segmentation Based on Color, Noise in Color Images. Wavelets and Multiresolution Processing: Multiresolution Expansion, Wavelet Transforms in One Dimension, The Fast Wavelet Transforms, Wavelet Transforms in Two Dimensions, Wavelet Packets. Image Compression: Fundamentals, Basic Compression Methods, Digital Image Watermarking.

UNIT V: Morphological Image Processing: Erosion and Dilation, Opening and Closing, The Hit-Or-Miss Transformation, Basic Morphological Algorithms, Gray-Scale Morphology. Object Recognition: Patterns and Pattern Classes, Recognition Based on Decision-Theoretic Methods. Applications of Image Processing, Medical Image Processing, Remote Sensed Image Processing. Machine Vision.

TEXT BOOKS:

- 1.Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", 3rd Edition, Pearson Education, 2008.
- Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing using MATLAB",2nd Edition, Prentice Hall of India, 2002.
- 3. E.R. Davies, Machine Vision-Theory Algorithms Practicalities, 3rd Ed. Elsevier. 2005.

REFERENCES:

- 1. A.Jain,"Fundamentals of Digital Image Processing", Prentice Hall of India.
- 2. Milan Sonka, V. Hlavac and R. Boyle, Image Processing Analysis and Machine Vision,

Brooks/colic, Thompson Learning, 1999.

- 3. B. Chanda and D.D. Majumder, Digital Image Processing and Analysis, PHI
- 4. W.K. Pratt, Digital Image Processing, John Wiley, 2006
- 5. David Saloman, Data Compression: The Complete Reference, Springer
- Ramesh C. Jain, Brian G. Schunck, Rangachar Kasturi, Macine Vision, McGraw-Hill, 1995.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1			
	Digital Image Processing: Origins of Digital Image Processing,	6	Lecture
	Steps in Digital Image Processing, Digital Image Fundamentals	2	Peer teaching
	Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization,	2	Videos
	Basic Relationships between Pixels, Mathematical Toolsused in Digital Image Processing.	8	ICT
UNIT 11		I	1
	Image Transformation & Filters: Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial	6	Lecture

	Filter, Sharpening Spatial Filters, Combining Spatial Enhancement methods, Fuzzy techniques for Intensity Transformation and Spatial Filtering.	4	Peer teaching
	Filtering in the Frequency Domain: Preliminary Concepts, Sampling and the Fourier Transforms of Sampled Functions, The Discrete Fourier Transform (DFT), Properties of the 2-D DFT, Filtering in the Frequency Domain, Image Smoothing and Sharpeningusing Frequency Domain Filters, Selective Filtering.	6	Lecture
UNIT III	Image Restoration, Reconstruction and Image Segmentation: Image Degradation/Restoration process, Noise Models, Restoration in the presence of Noise only-Spatial Filtering, Periodic Noise Reduction by Frequency Domain Filtering, Linear, Position-Invariant Degradations, Estimating the Degradation Functions, Inverse Filtering, Wiener Square Error Filtering, Constrained Least Square Filtering, Geometric Mean Filter, Image Reconstruction from Projections.	6	Lecture

	Image Segmentation: Point, Line and Edge Detection, Thresholding, Region-Based Segmentation, Segmentation Using Morphological Watersheds, Use of Motion in Segmentation.	9 3	Peer teaching videos
UNIT IV			
	 Color Image Processing: Color Fundamentals, Color Models, Pseudocolor Image Processing, Full Color Image Processing, Color Transformation, Smoothing and Sharpening, Image Segmentation Based on Color, Noise in Color Images. Wavelets and Multiresolution Processing: Multiresolution Processing: Multiresolution Expansion, Wavelet Transforms in One Dimension, The Fast Wavelet Transforms, Wavelet Transforms in Two Dimensions, Wavelet Packets. 	12	Lecture
	Image Compression:	6	Videos
	Fundamentals,BasicCompression Methods,DigitalImage Watermarking.		
UNIT V			
	Morphological Image Processing: Erosion and Dilation, Opening and Closing, The Hit-Or-Miss Transformation, Basic Morphological Algorithms, Gray-Scale Morphology.	14	ICT

Object Recogn	ition: Patterns	4	Vide
and Patter	n Classes,		
Recognition Bas	sed on Decision-		
Theoretic	Methods.		
Applications	•		
Processing, N	U		
Processing, R			
Image Processin	lg.		

Course Outco mes	Progr	Programme Outcomes (Pos)					Programme Specific Outcomes (PSOs)			Mean scores of Cos
(Cos)	PO1	PO2	PO 3	PO4	PO5	PSO1	PSO2	PSO3	PSO 4	
CO1	4	3	2	5	5	5	4	4	1	3.6
CO2	4	3	1	5	4	4	4	4	2	3.4
CO3	4	2	2	5	5	4	4	4	1	3.4
CO4	4	2	2	4	5	5	5	5	2	3.8
CO5	5	3	2	5	4	4	5	4	1	3.7
Mean Overall Score								3.6		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
$Mean Score of COs = \frac{Total of Value}{Total No. of Pos \& PSOs}$					l of Mean Score al No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer:

Department of Computer Applications