
SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN (A)

MADURAI-02

DEPARTMENT OF CHEMISTRY

CBCS SYLLABUS FOR M.Sc CHEMISTRY FROM

2022 ONWARDS

DEPARTMENT OF CHEMISTRY

The department of chemistry was established in the year 1965 for the pre-university course. Bachelor's degree of Chemistry was started in the year 1968 with a few staff members. The department has been upgraded to post graduate department in 2017.

FACULTY

The Department comprises of a goal-oriented group of highly qualified, experienced and dynamic faculty members. The Department of Chemistry has 16 faculty members, of which 14 are Ph.D., holders. At present, two of our staff members are pursuing their Ph.D. degree. Their areas of expertise and research include organic, inorganic, physical, electrochemistry, phytochemistry, nanotechnology and supramolecular chemistry.

ACTIVITIES AND ACHIEVEMENTS

Most of the staff members are actively involved in research and various important decision-making committees at the College level and act as expertise in Boards of studies at college as well as University level. The staff members have been serving as NSS & NCC coordinators, Science Forums coordinator, Autonomy-in-charge, RUSA Coordinator, women-empowerment cell, remedial/ special coaching coordinators, Sports committee member, Thaatha-paattikuzhu coordinator, Admission committee member, admission coordinator, Career guidance cell coordinator, Controller of examinations, additional controller of examinations, Deputy warden in college hostel, Youth welfare association coordinator, Parent Teacher Association treasurer, Old student's association, Course coordinators, syllabus committee representatives, question paper setters and external examiners at undergraduate as well as postgraduate levels. Faculty members have contributed to academics by publishing books, contributing research articles in journals, presenting papers in conferences and delivering guest lectures. Faculty members have been recognized by national agencies and Universities with awards for their contribution to research.

Four staff members (retired from service) were elevated to the cadre of Principal, Regional Joint Director and have served as efficient administrators at various colleges and regional offices. Some of the staff members are carrying out UGC funded minor research projects, received research awards, awards from All India Radio serial programme and have also served as editors in peer journals like Elsevier.

COURSE

At present our department caters to the needs of 294 (UG -243 and PG - 51) major chemistry students and 230 Ancillary chemistry students. Our march towards the zeal will continue in the forthcoming years also.

DEPARTMENT HIGHLIGHTS

The Department organizes National Conferences, workshops, visiting faculty lectures and faculty Development Programmes for the benefit of students. The Department, with a focus on enhancing the knowledge and skills of the students, has been conducting inter-Departmental and inter-collegiate activities, through the Chemistry Association, Science Forum and Chemistry Club. It has also been actively involved in various outreach programmes for the upliftment of society. Equal opportunity centre program has been conducted by our department.

RESOURCES

The Department has five laboratories which are fully equipped with instruments for teaching and research activities. The instruments available in the laboratories include UV-visible spectrophotometer, Conductometer, Potentiometer, pH meter, Polarimeter, turbidity meter, LCD projector, colorimeter etc.

The Department has an excellent library for the benefit of students, faculty members and research scholars. Library has a large collection of books covering various branches of Chemistry like organic, inorganic, physical, electrochemistry, green chemistry and nano chemistry. Internet facility is available in the department.

ALUMNI ACTIVITIES

During 55 years of successful journey our department has produced flourishing alumni who have occupied various positions in different sectors like academic, administrative, research, innovative scientists, overseas employment, banking and recent blooming fields like information technology.

The alumni of the department had served as the Principal in Govt. Arts College, HOD and eminent professor in the School of chemistry at MKU, Madurai. It is a privilege to specify that, 22 alumni of chemistry department are serving as Associate Professors and Assistant Professors in various esteemed institutions. Alumni meet for the 1991 – 94 batch of B.Sc., Chemistry was organized on 8thJanuary 2017.

We have further goals to enrich our department as research department for the benefits of the students.

COURSES OFFERED:

UG COURSES: B.Sc CHEMISTRY

PG COURSES: M.Sc CHEMISTRY

VISION

To create an academically sound environment that nurtures, motivates and inspires excellence in teaching along with concern for society.

MISSION

To impart theoretical and practical training in different areas of chemistry, which encourages creativity, insight development and a passion for science.

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI-2

Programme : M.Sc Chemistry

SEMESTER -I

Course	Code Title of the Course		Hrs.	Credits		M		
Type			/W		Hrs.	Int	Ext	Total
CCI	P22CD1	Core Course I Inorganic Chemistry I	5	4	3	25	75	100
CC II	P22CD2	Core Course II Organic Chemistry I	6	4	3	25	75	100
CC III	P22CD3	Core Course III Physical Chemistry I	6	4	3	25	75	100
CCIV	P22CD4P	Core Course IV Inorganic Chemistry Practical	6	4	6	40	60	100
DSEC- I	P22DSD1	Discipline Specific Elective Course I Molecular Spectroscopy & Analytical Chemistry I Industrial Chemistry	5 4		3	25	75	100
SEC -I	P22SED1	Skill Enhancement Course I (Practical)	2	2	3	40	60	100
526 1		Analysis of Soil, Food and Cosmetics				.0	00	100
	To	tal	30	22				600
	SI	EMESTER –II						
CC V	P22CD5	Core Course V Inorganic Chemistry II	6	4	3	25	75	100
CCVI	P22CD6	Core Course VI Organic Chemistry II	5	4	3	25	75	100
CC VII	P22CD7	Core Course VII Physical Chemistry II	6	4	3	25	75	100
CCVIII	P22CD8P	Core Course VIII Organic Chemistry Practical	6	4	6	40	60	100
DSEC-II	P22DSD2	Discipline Specific Elective Course II Molecular Spectroscopy & Analytical Chemistry II Polymer Chemistry	5	4	3	25	75	100
SEC- II	P22SED2P	Skill Enhancement Course II (Practical) Computational Software in Chemistry	2	2	3	40	60	100
	To	tal	30	22				600

		SEMESTER -III						
CC- IX	P22CD9	Core Course IX Inorganic Chemistry III	6	5	3	25	75	100
CC – X	P22CD10	Core Course X Organic Chemistry III	-					100
CC – XI	P22CD11	Core Course XI Physical Chemistry III	5	5	3	25	75	100
CC-XII	P22CD12P	Core Course XII Physical Chemistry Practical	6	4	6	40	60	100
DSEC-III	P22DSD3	Discipline Specific Elective Course-III Nanochemistry Environmental Chemistry	5	4	3	25	75	100
NMEC -I	P22NMEC1	Non Major Elective Course: Cosmetology (Offered to other programmes)	2	2	3	25	75	100
			20					C00
		Total	30	25				600
		Total SEMESTER -IV	30	25				600
CC-XIII	P22CD13		6	4	3	25	75	100
CC-XIII	P22CD13 P22CD14	SEMESTER –IV Core Course XIII Organic Chemistry IV Core Course XIV Selected Topics in			3	25 25	75 75	
		SEMESTER –IV Core Course XIII Organic Chemistry IV	6	4				100
CC-XIV	P22CD14	SEMESTER –IV Core Course XIII Organic Chemistry IV Core Course XIV Selected Topics in Chemistry Core Course XV Inorganic & Organic	6	4	3	25	75	100
CC-XIV CC-XV	P22CD14 P22CD15P P22CDPW	SEMESTER –IV Core Course XIII Organic Chemistry IV Core Course XIV Selected Topics in Chemistry Core Course XV Inorganic & Organic quantitative Analysis Practical	6 5 6	4 4	3	25 40	75 60	100

COURSE STRUCTURE ABSTRACT FOR M.Sc Chemistry Programme

PART	COURSES	TOTAL NO. OF COURSES	HOURS	CREDIT	MARK
III	Core Course	15	86	63	1500
III	Core Project	1	8	5	100
III	Discipline Specific Elective Course	4	20	16	400
III	Non-Major Elective Course	1	2	2	100
III	Skill Enhancement Course	2	4	4	200
	Total	23	120	90	2300

PROGRAMME OBJECTIVES FOR ALL POSTGRADUATE PROGRAMMES

- PO1: Getting enriched by the existing knowledge in their respective disciplines and apply appropriate methodology for research and implementation.
- PO2: Develop technology compatible to new perceptions and evolve innovative pedagogy in their discipline.
- PO3 Design creative projects and translate it to the present-day scenario.
- PO4 Evaluate the issues and challenges pertaining to their disciplines and synergize them with the growing needs in their arena.
- PO5 Explore the diverse value systems of our nation and contribute towards building an egalitarian society.

M.Sc., CHEMISTRY PROGRAMME SPECIFIC OUTCOMES (PSO)

Curriculum of M.Sc., Chemistry is designed to prepare postgraduates to attain the following program specific outcomes:

- PSO 1: Ability to appreciate the potential of Inorganic, Organic, Physical, Analytical, Nano and Green chemistry.
- PSO 2: Ability to update with the current Chemistry and search for further higher studies, employment and research.
- PSO 3: Ability to apply the gained knowledge and other concepts to new systems, thereby, recognizing the need for life-long learning in the broadest view of changing advances in Chemistry.
- PSO 4: Demonstrate the theory behind the experiment and able to handle the experiments independently, able to use modern instruments efficiently and sequentially recording the results of the experiment.
- PSO 5: Communicating efficiently on the topic chosen for Discussion/Seminar by appropriate designing, making effective documentation & presentations and comprehending in an appropriate way.

LEVELS OF MAPPING AND QUESTION PATTERN

Mapping	1- 20%	21 - 40%	41 – 60 %	61 – 80%	81 – 100%		
Scale	1	2	3	4	5		
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0		
Quality	Very Poor	Poor	Moderate	High	Very High		
	•						
Mean Sco	re of $COs = Total$	of value	Mean Overall Score of COs = <u>Total of Mean Score</u>				
	Total No. of I	POs and PSOs	Total No. of COs				
	Total No. of I	Os and 1 3Os	Total No. of COs				

BLOOM'S TAXONOMY	INTERNAL	EXTERNAL
K1 (Remembering / Recalling)	20%	20%
K2 (Understanding / Comprehension)	20%	20%
K3 (Application and analysis)	30%	30%
K4 (Synthesis & evaluation)	30%	30%

Year	K1	K2	К3	K4
	Part-A (1 question)	Part-A (1 question)	Part-A (1 question)	Part-A (2 questions)
I & II	$1 \times 5 = 5$	$1 \times 5 = 5$	$1 \times 5 = 5$	$2 \times 5 = 10$
	Part-B (1 question)	Part-B (1 question)	Part-B (1 question)	Part-B (2 questions)
	$1 \times 10 = 10$	$1 \times 10 = 10$	$1 \times 10 = 10$	$2 \times 10 = 20$

Programme: M.Sc Chemistry CORE 1

Semester: I Hours: 5 /W, 75 Hrs./S

Sub. Code : P22CD1 Credits : 4

TITLE OF THE PAPER: INORGANIC CHEMISTRY I

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem	ICT		
			solving session/Quiz/videos/Library session.			
	5	3	1	1		
PDEAMRIE : The objectives of the course is to understand the concents and theories of acids						

PREAMBLE: The objectives of the course is to understand the concepts and theories of acids and bases, Pearson and HSAB concepts and its applications, lattice energy, ionic bonds, symmetry in crystals, types of crystals, Molecular orbital theory, wave mechanical treatment of covalent bonds, characteristics of p-block elements, the principle of stability constant, chelate effects, atomic states and term symbols of coordination complexes, various theories, spectral and magnetic properties of coordination complexes.

COURSE OUTCOME: At the end of the Semester, the Students will be able to	Unit	Hrs P/S
CO1: discuss the theories of Bronsted, Lewis and Lux concepts of acids and bases,	1	15
Pearson and HSAB concepts and its applications.		
CO2 : explain the fundamental knowledge of lattice energy, radius ratio of different	2	15
geometries, calculation of lattice energy, miller indices, symmetry in crystals and		
various types of crystals.		
CO3: discuss band theory of solids, electrical and optical properties of solids.	3	15
Compare neutron diffraction and X-ray diffraction, discuss the application of XRD		
CO4 : demonstrate the principle of coordination compound, describe the stability of	4	15
metal complexes by the use of different methods and parameters, and illustrate the		
stereoisomerism in inorganic complexes.		
CO5: draw the splitting of d-orbitals under various geometries, discuss the factors	5	15
affecting splitting, explain Jahn-Tellar distortion and chelation, identify the		
complexes using ORD and CD, draw the energy level diagrams of various		
complexes, compare CFT and MOT of bonding in octahedral complexes		

UNIT I

ACIDS AND BASES (15 Hours)

Bronsted and Lewis acid bases, pH, p K_a , acid base concept in non-aqueous media, buffer solution, Protonic acids- Proton Affinities –leveling solvents – acidic behaviour of the binary hydrides – strength of oxyacids – hydrolysis – Amphoteric oxides – Non protonic concept of acid-base reactions- Lux concept- Solvent Ion theory of acids and bases ammonia, acetic acid– Hard and Soft acid base concept – Pearson concept- Applications of HSAB principle.

UNIT II

CHEMISTRY OF SOLID STATE: I

(15 Hours)

Ionic bond – lattice energy – Radius ratio for tetrahedral, octahedral and cubic sites – applications of radius ratio – Calculations of lattice energies of ionic crystals – Born- Lande equation – Born Haber Cycle – symmetry in crystals- Miller indices – Close packing – Crystal types – AB, AB₂. Representative structures of AB, AB₂, types of compounds – rock salt, cesium chloride, wurtzite, zinc blende, rutile, fluorite, cadmium iodide. Structure of graphite and diamond.

UNIT III

CHEMISTRY OF SOLID STATE: II

basic principle. Applications of XRD.

(15 Hours)

Band theory of solids – non-stoichiometry – point defects – linear defects - effects due to dislocations – electrical properties of solids – conductor, insulator, semi-conductor – intrinsic – impurity semiconductors – optical properties – lasers and phosphors – elementary study of liquid crystals.

X-ray diffraction by single crystal – rotating crystal – powder diffraction Neutron diffraction: Elementary treatment- Comparison with X-ray diffraction. Electron diffraction –

UNIT IV

PRINCIPLES OF COORDINATION CHEMISTRY

(15 Hours)

Stability of complexes – Factors affecting stability of complexes, Thermodynamic aspects of complex formation, stepwise and overall formation constants, Statistical factors and chelate effect, Determination of stability constants and composition of the complexes; Formation curves and Bjerrum's half method Potentiometric and photometric methods, continuous variation method (Job's variation method) Stereochemical aspects – Stereoisomerism in inorganic complexes – Isomerism arising out of ligand distribution and ligand conformation.

UNIT V

CHEMISTRY OF COORDINATION COMPOUNDS

(15 Hours)

Crystal field theory – Splitting of d-orbital under various geometries – factors affecting splitting, CFSE, evidences for CFSE (Structural and thermodynamic effects) - Spectrochemical series – Jahn Teller distortion and chelation – Application of CFT – magnetic properties, spectral properties and kinetic properties. Limitations of CFT, evidences for M-L overlap. Application of ORD and CD in identification of complexes.

MOT- MO theory and energy level diagrams concept of weak and strong fields, sigma and pi bonding in octahedral, square planar and tetrahedral complexes. Nephlauxetic effect, comparison of CFT and MOT of bonding in octahedral complexes.

- 1. J.E. Huheey, Ellen A. Kaiter, Richard L. Kaiter & Okhil K. Medhi, Inorganic Chemistry, Principles of Structure & Reactivity, 4th Ed., Pearson, 2011.
- 2. F.A. Cotton, G.Wilkinson, G.A. Murillo& M. Bochmann, Advanced Inorganic Chemistry, 1st Ed., Wiley Student Edn, 2007.
- 3. R.S. Drago, Physical Methods in Inorganic Chemistry, 1st Ed., Affiliated East-West Press Pvt. Ltd., 1971.

- 4. M.C.Day and J.Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt.Ltd. 2nd Ed., 1985.
- 5. H.J. Emeleus & A.G. Sharpe, Modern aspects of Inorganic Chemistry, 4th Ed., ISBN, 1974.
- 6. Selected Topics in Inorganic Chemistry, Dr. Wahid U. Malik, Dr.G.D.Tuli, Dr. R.D. Madan, 8th edition.
- 7. B.R. Puri, L.R. Sharma & K.C.Kalia, Principles of Inorganic Chemistry, Vishal Pub.33 ed., 2017.
- 8. R. Gopalan & V.Ramalingam, Concise Coordination Chemistry, 1st Ed., Vikas Pub. House Pvt. Ltd., 2001.
- 9. Manas Chanda, Atomic Structure & Chemical Bond, 1st Ed., Tata McGraw Hill Pub. Co., 1992.
- 10. H.J.Emeleus & A.G.Sharpe, Modern aspects of Inorganic Chemistry, 4th Ed., ISBN, 1974.
- 11. S.F.A. Kettle, Coordination compounds, ELBS, 1972
- 12. D. Bannerjea, Coordination chemistry, TATA Mcgraw Hill, 1993

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1: AC	CIDS AND BASES		
	Bronsted and Lewis theories of acids and	4	Lecture
	bases, pH and pKa acid base concepts		
	acidic behavior of oxyacids, binary	3	Lecture
	hydrides, amphoteric oxides		
	Buffer solution and leveling solvents	2	Problem solving session
	Non protonic concept of acid and base	4	ICT
	reactions, Lux concept, solvent ion		
	theory,		
	HSAB and Pearson concepts and	2	Lecture and Group Discussion
	applications of HSAB		
UNIT II: CI	HEMISTRY OF SOLID STATE – I	Ī	
	Ionic bond, lattice energy and radius ratio	4	Lecture
	for tetrahedral, octahedral and cubic sites		
	calculation of lattice energy of ionic	4	Problem solving session with
	crystals- Born equation		the help of the teacher.
	Born Haber cycle and symmetry in	4	ICT
	crystals		
	Miller indices, closed packing and crystal	3	Seminar
	types		
UNIT III CI	HEMISTRY OF SOLID STATE – II		
	Band theory of solids – non-	2	Lecture
	stoichiometry – point defects – linear		
	defects- effects due to dislocations		
	electrical properties of solids –	4	Lecture
	conductor, insulator, semi-conductor –		
	intrinsic – impurity semiconductors –		
	optical properties – lasers and phosphors		
	– elementary study of liquid crystals.		
	Neutron diffraction: Elementary	4	Lecture with Demo using
	treatment- Comparison with X-ray		charts
	diffraction. Electron diffraction – basic		
	principle.		

	X-ray diffraction by single crystal –	3	ICT
	rotating crystal – powder diffraction	3	
		2	D: :
	Applications of XRD	2	Discussion
UNIT IV	PRINCIPLES OF COORDINATION CH		T + .
	Stability of complexes – Factors affecting	4	Lecture
	stability of complexes		
	Determination of stability constants and	5	Lecture
	composition of the complexes; Formation		
	curves and Bjerrum's half method		
	Potentiometric and photometric methods,	2	seminar
	continuous variation method (Job's	_	501111101
	variation method) Stereochemical aspects		
	- Stereoisomerism in inorganic		
	complexes		
	Isomerism arising out of ligand	4	ICT
	distribution and ligand conformation.		
UNIT V	CHEMISTRY OF COORDINATION C		
	Crystal field theory – Splitting of d-	4	Lecture
	orbital under various geometries – factors		
	affecting splitting, CFSE, evidences for		
	CFSE (Structural and thermodynamic		
	effects)		-
	Spectrochemical series – Jahn Teller	4	Lecture
	distortion and chelation – Application of		
	CFT – magnetic properties, spectral		
	properties and kinetic properties. Limitations of CFT, evidences for M-L		
	overlap		
	Application of ORD and CD in	1	Problem solving session
	identification of complexes.	1	1 10010111 301 ville 30331011
	-	1	ICT
	MOT- MO theory and energy level	4	ICT
	diagrams concept of weak and strong fields, sigma and pi bonding in		
	octahedral, square planar and tetrahedral		
	complexes		
	Nephlauxetic effect, comparison of CFT	2	Seminar / peer teaching
	and MOT of bonding in octahedral		Seminar / peer teaching
	_		
	complexes.		

Course	Programme Outcomes (POs)			Programme Specific Outcomes (PSOs)				Mean			
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	4	4	1	4	4	4	3	4	3.6
CO2	4	4	3	4	1	4	4	4	3	4	3.5
CO3	4	4	3	3	1	4	4	4	3	3	3.3
CO4	4	4	4	3	1	4	4	4	3	4	3.5
CO5	4	4	4	3	1	4	4	4	3	4	3.5
					Me	ean Overa	all Score				3.48

Result: The Score for this Course is 3.48 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K4	K2 / K3
II	K3 / K4(2.5m), K3(2.5m)	K1/ K4
III	K3(2.5m) ,K4(2.5m) / K1	K4 / K2
IV	K2 / K3	K3 / K3(5m), k4(5m)
V	K4 / K2	K3(5m), k4(5m) / K1

Programme :M.Sc Chemistry CORE 2

Semester: I Hours: 6/W, 90 Hrs./S

Sub. Code : P22CD2 Credits : 4

TITLE OF THE PAPER: ORGANIC CHEMISTRY I

Peda gogy	Hours	Lecture	Peer Teaching/seminar/discussion//problem solving session/quiz/videos/demonstration class/library session.	ICT
	6	4	1	1

PREAMBLE: The objective of the course is to make the student understand the concepts of electron displacement, resonance, H-bonding, Aromaticity and Stereochemistry, determination of reaction mechanisms by kinetic and non-kinetic methods and Aliphatic and aromatic substitution reactions.

COURSE OUTCOME: At the end of the Semester I, the students will be able to	Unit	Hrs./S
CO1: discuss the concepts of electron displacement, resonance, H-bonding and aromaticity.	1	18
CO2: describe optical activity of organic compounds, projection formulae-Newman, Sawhorse and Fischer Configuration, nomenclature, Geometrical isomerism - types and determination by physical and chemical methods.	2	18
CO3: explain various organic reaction intermediates, types of reactions, collision theory and Transition state theory-Hammond postulate-microscopic reversibility, kinetic and non-kinetic methods of determining reaction mechanisms.	3	18
CO4: explain aliphatic nucleophilic and electrophilic substitution reactions-their mechanisms, stereo chemistry of these reactions.	4	18
CO5: explain aromatic electrophilic and nucleophilic substitution reactions and their mechanisms, effect of substrate structure, leaving group and attacking nucleophile.	5	18

UNIT I

CHEMICAL BONDING AND AROMATICITY

(18 Hours)

Electron Displacement: Inductive and Field effects – Bond distances –Bond energies – Delocalized bonds – cross conjugation – Rules of Resonance – The resonance effect – Steric Inhibition of Resonance – Hyperconjugation – Hydrogen bonding – Bronsted and Lewis concepts – Factors affecting the strength of acids and bases.

Aromaticity: Aromaticity from NMR spectrum - Aromaticity in, six, five, and seven membered rings – Aromaticity in azulene, and heptalene – Alternant and Non alternant Hydrocarbons - Aromatic system with electron number other than six - Huckel's rule – Systems of 2 electron, 4 electron (antiaromaticity) 8 electron, 10 electron, more than 10 electron (4n+2e⁻) and 4ne⁻ - Meso Ionic Compounds - Homo Aromatic Compounds.

UNIT II

INTRODUCTION TO STEREOCHEMISTRY

(18 Hours)

Optical Isomerism: Optical Activity and Chirality- Classification of Optical active compounds - Newman, Sawhorse and Fischer Projection formulae – Configuration – Methods of determining configuration – Configurational Nomenclature – (Erythro and Threo – D & L, R & S Nomenclature)-Stereochemistry of allenes, spiranes, adamantoids and catenanes - Biphenyl derivatives and Atropisomerism - Stereochemistry of Ansa compounds and Cyclophanes - Concept of Prochirality, Topicity, Prostereo Isomerism, Equivalent, Enantiotopic and Diastereotopic Ligands - Stereospecific and Stereoselective Synthesis - Resolution, Racemisation and Asymmetric Synthesis - Cram's and Prelog rule.

Geometrical isomerism: Cis – Trans Isomerism E-Z nomenclature – determination of geometrical isomers using physical and chemical methods.

UNIT III

DETERMINATION OF REACTION MECHANISM

(18 Hours)

Organic reactive Intermediates: Generation and stability and reactivity of carbocation, carbanion, free radical, carbenes and nitrenes.

Types of Mechanism – Types of Reaction - Energy profile (Collision and Transition State Theory) – Kinetic and Thermodynamic control– Hammond postulate - microscopic reversibility – Methods of Determining Reaction Mechanism.

UNIT IV

ALIPHATIC SUBSTITUTION REACTION

(18 Hours)

Nucleophilic Substitution : S_N1 and S_N2 mixed S_N1 and S_N2 and S_N2 mechanism – Stereochemistry of substitution reactions - Steric Orientation in S_N1 and S_N2 mechanism - Neighbouring group mechanism - Neighbouring group participation Effect of substrate structure, attacking nucleophile, leaving group and reaction mechanism – Effect of the solvent - Nucleophilic substitution at an allylic, vinylic and aliphatic trigonal carbons - Ambident nucleophiles and ambident substrates - Mechanism of esterification and hydrolysis.

Electrophilic Substitution Reaction: Electrophilic Substitution reaction at aliphatic saturated carbon - S_E1 , S_E2 and S_Ei mechanism - Reactivity.

UNIT V

AROMATIC SUBSTITUTION REACTION

(18 Hours)

Electrophilic Substitution Reaction: π and Sigma complexes - S_E1 mechanism - Mechanism of Nitration, Halogenation, Sulphonation, Friedel Crafts Alkylation and Acylation reactions - Orientation and Reactivity in Monosubstituted rings.

Nucleophilic Substitution: SNAr, S_N1 and Benzyne Mechanism - Reactivity - Effect of substrate structure, leaving group, attacking nucleophile.

- 1. Peter Sykes, A Guidebook to Mechanisms in Organic Chemistry, 6thEd., Longmans Scientific and Technical, Essex, 1986.
- 2. S.M. Mukerjee and S.P. Singh, Reaction Mechanism in Organic Chemistry, Mc Milan India Ltd., 1975.
- 3. E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw Hill, 1962.
- 4. D. Nasipuri, Stereochemistry of Organic compounds, 2ndEd, New Age International, New Delhi, 1972.
- 5. E.L. Eliel, N.C. Allinger, S.J. Angyal and G.A. Morrison, Conformational Analysis, Interscience, New York, 1965.
- 6. Jerry March, Advanced Organic Chemistry, 4thEd., John Wiley, New York, 1992.
- 7. V.M. Potapov, Stereochemistry, MIR Publishers, Moscow 1979.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I	: CHEMICAL BONDING AND AROMATICITY		
	Inductive effect, Field effect, hyperconjugation, hydrogen bonding, Definition- Huckel's rule-systems of 2 electrons, 4 electron, 8 electron, 10 electron, more than 10 electrons.	3	ICT
	Inductive and Field effects – Bond distances –Bond energies – Delocalized bonds – cross conjugation – Rules of Resonance – The resonance effect – Steric Inhibition of Resonance – Hyperconjugation – Hydrogen bonding – Bronsted and Lewis concepts – Factors affecting the strength of acids and bases. Aromaticity from NMR spectrum, Alternant and Non-alternant hydrocarbons, Meso Ionic Compounds and Homo Aromatic Compounds	13	Lecture
	Steric inhibition of resonance, Hydrogen bonding, Classifying compounds as aromatic, non-aromatic and anti-aromatic.	2	Seminar/ Assignment /Quiz
Unit II	: INTRODUCTION TO STEREOCHEMISTRY		
	Definition of stereoisomerism, classification, explanation with suitable examples, Cram's and Prelog rule.	2	ICT
	Concepts of optical activity, methods of determining configuration, resolution, racemization, asymmetric synthesis, stereochemistry of allenes, spiranes, adamantoids, catenanes, cyclophanes, biphenyl derivatives and Atropisomerism, concepts of prochirality, topicity, prostereoisomerism, equivalent enantiotopic and diastereotopic ligands, stereospecific and stereoselective synthesis.	12	Lecture
	Assigning Erythro and Threo, R, S-configuration, E, Z configuration for alkenes, syn-anti configuration for oximes, classification of homotopic, enantiotopic and diastereotopic ligands.	2	seminar/as signment/ quiz

Ball and stick model for projection formula-Sawhorse for organic compounds, Cram's and prelog rule.	2	Animation videos
Unit III: DETERMINATION OF REACTION MECHANISMS		1
Energy profile diagram-collision and transition state theory	2	ICT
Generation and stability of reactive intermediates, their reactivity, types of reactions- kinetic and thermodynamic controlled, Hammond postulate, microscopic reversibility, kinetic and non-kinetic methods of determining reaction mechanisms.	14	Lecture
Identifying the kind of intermediates involved in the reactions, generation, stability and reactivity of carbocation, carbanion, free radicals, carbenes and nitrenes.	2	Quiz/Semi nar/Assign ment
Unit IV: ALIPHATIC SUBSTITUTION REACTION	l	1
S_N1 and S_N2 mixed S_N1 and S_N2 and S_{Ei} mechanism, Stereochemistry of substitution reactions - Steric Orientation in S_N1 and S_N2 mechanism. Neighbouring group mechanism - Neighbouring group participation	4	ICT
Concepts, mechanism, stereochemistry and factors influencing nucleophilic Substitution and Electrophilic Substitution Reaction	12	Lecture
Neighbouring group participation, Ambident nucleophiles and ambident substrates - Mechanism of esterification and hydrolysis.	2	Seminar
Unit V: AROMATIC SUBSTITUTION REACTION		
S _E 1 mechanism, S _N Ar, S _N 1 and Benzyne Mechanism	3	ICT
Electrophilic Substitution Reaction: π and Sigma complexes - S_E1 mechanism - Mechanism of Nitration, Halogenation, Sulphonation, Friedal Crafts Alkylation and Acylation reactions, Orientation and Reactivity in Monosubstituted rings, Nucleophilic Substitution: S_NAr , S_N1 and Benzyne Mechanism - Reactivity - Effect of substrate structure, leaving group, attacking nucleophile.	13	Lecture
Orientation and Reactivity in Monosubstituted rings, Effect of substrate structure, leaving group, attacking nucleophile.	2	Seminar

Course	Progra	mme O	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes										scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	3	3	3	3	3.5	3.5	4	3	1.5	4	3.2
CO2	3	3	3	3	3.5	3	3	3	1	4	3.0
CO3	3	3	3	3	3.5	4	3	3.5	1	4	3.1
CO4	3	3	3	3	3.5	4	4	3	1	4	3.2
CO5	3	3	3	3	3.5	4	4	3.5	1	4	3.2
Mean Overall Score										3.14	

Result: The Score for this Course is 3.6 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K4	K2 / K3(5m), K4(5m)
II	K4 / K3	K1/ K2
III	K2 / K4	K3/ K1
IV	K4(2.5m), K3(2.5m)/K2	K4 / K3
V	K3/K1	K3(5m), K4(5m) / K4

Programme :M.Sc Chemistry CORE 3

Semester: I Hours: 6/W, 90 Hrs./S

Sub. Code : P22CD3 Credits : 4

TITLE OF THE PAPER: PHYSICAL CHEMISTRY I

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving	ICT						
			session/Quiz/Lab session/videos/Demonstration class/Library							
l			session.							
İ	6	4	1		1					
	PREAMBLE: The objective of the course is to emphasize the concepts of Quantum Chemistry, Group Theory, Thermodynamics and Electrochemistry.									
COURSE OUTCOME: At the end of the Semester, the Students will be able to										
CO1: disceptation	cuss the	basic as	spects of quantum chemistry and derive Schrodinger wave	1	18					
CO2: explain symmetry elements and symmetry operations and point groups, and able to construct group multiplication table										
	lar qua	ntities, c	s of enthalpy, entropy, free energy concepts, hemical potential, fugacity, activity coefficients and Third	3	18					
CO4: desc	ribe the	concepts	s of conductometric titrations and solubility products	4	18					
-	CO5: explain Overvoltage, Corrosion and Prevention of Corrosion, Butler Volmer and Tafel equation & Different types of Storage batteries.									

UNIT I: QUANTUM CHEMISTRY I

(18 Hours)

Inadequacy of classical mechanics: Black body radiation - Planck's quantum theory -Postulates - Derivation of Planck's radiation law to explain cavity radiation - photoelectric effect, explanation by quantum theory - Compton effect - explanation by quantum theory and derivation of Compton shift in wavelength. Wave - particle dualism: De Broglie's concept of matter waves - experimental verification - Davisson and Germer experiment - Heisenberg Uncertainty principle. Postulates of quantum mechanics. Wave nature of electron, Interpretation of the wave function, Normalized and orthogonal wave function, Eigen functions and Eigen values - Significance- Linear and Hermitian operators - Significance - Schrodinger time-independent wave equation- derivation.

UNIT II GROUP THORY I

(18 Hours)

Symmetry elements and symmetry operations— - Groups –Properties of groups - Types of groups - group multiplication table (C_2V, C_3V) - Subgroups, similarity transformation and classes – Mulliken symbols – Reducible and irreducible representations – Reduction formula – Great Orthogonality theorem; Character table- Construction of character tables - C_2V , C_3V and D_{2h} .

UNIT III

THERMODYNAMICS I

(18 Hours)

General laws of enthalpy, entropy and free energy concepts - Systems of variable compositions - Partial molar quantities- definitions- physical significance - chemical potential- variation of chemical potential with temperature and pressure. Determination of partial molar properties - Gibbs Duhem equation - fugacity - Definition- determination of fugacity of real gases - variation of fugacity with temperature and pressure-activity coefficient- Determination of activity and activity coefficients of non-electrolytes. Third law of thermodynamics - Nernst heat theorem - Planck, Lewis and Randall statement-Determination of absolute entropy- Unattainability of absolute zero - Exceptions of third law.

UNIT IV

ELECTROCHEMISTRY I

(18 Hours)

Debye - Huckel theory - Derivation of Debye Huckel Onsager equation- Experimental verification - Wein Effect, Debye Falkenhagen effect - Debye Huckel limiting law- Conductometry - Conductometric titrations and its applications. Determination of solubility product, Degree of dissociation of weak acid - Standard electrode potential and EMF - Concentration cells with and without transference-Determination of equilibrium constants, dissociation constants and solubility product.

UNIT V

ELECTROCHEMISTRY II

(18 Hours)

Hydrogen oxygen overvoltage - Theories of overvoltage - Corrosion - Types of corrosion - Dry and Electrochemical - Factors influencing corrosion - Prevention of Corrosion : Sacrificial anodic method, impressed current cathodic protection, protective coatings, deaeration, dehumidification, inhibitors, passivation - Butler Volmer equation- Tafel equation- Storage battery- Lead acid storage battery - Nickel Cadmium cell- Fuel cells - Classification of fuel cells H_2 - O_2 fuel cell - Hydrocarbon - O_2 cell - Solar Cell.

- 1. G.R.Chatwal & S.K.Anand, Quantum Mechanics, 2nd Ed., Himalaya Pub. House, 1989.
- 2. R.K. Prasad, Quantum Chemistry, 4th, New Age International Publishers, Reprint 2015.
- 3. Puri, Sharma and Pathania, Principles of Physical Chemistry, Vishal publishers, 2014
- 4. A.K.Chandra, Introductory Quantum Chemistry 3rd Ed., Tata McGraw Hill Pub. Reprint 1993.
- 5. K.V.Raman, Group Theory and its Applications to Chemistry, 1st Ed., Tata McGraw Hill Pub.
- 6. S.Swarnalakshmi, T. Saroja &R.M.Ezhilarasi, A Simple Approach to Group Theory in Chemistry, 1st Ed., Universities Press, Reprint 2012.
- 7. J.Rajaram&J.C.Kuriacose, Thermodynamics, 2nd Ed., Vishal Pub. 1993.
- 8. B. Viswanathan, R. Venkataraman, K. Rengarajan, D. Sundaram&P. S. Raghavan, Electrochemistry, 1st Ed., S. Viswanthan Pub. Pvt Ltd., 2007.
- 9. Ramakrishnan & Gopinathan, Group theory in chemistry, Vishal publication, 2005.
- 10. F. Albert Cotton, Chemical Applications of Group Theory, 3rd Ed., Wiley India Edition
- 11. S. Glasstone, Thermodynamics for chemists, East West Press private Ltd.,
- 12. D.A. McQuarrie and J.D. Simon, Physical chemistry-A molecular Approach, Viva Books (p) Ltd.,
- 13. John O.M. Bockris & Amulya K.N. Reddy, Modern Electrochemistry Vol.2, 1st Ed., Plenum & Rosetta, Reprint 1977.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	QUANTUM CHEMISTRY I		
	Black body radiation, Planck's quantum theory, photoelectric effect, Davisson and Germer experiment.	3	ICT
	Compton effect, Planck's radiation law, Schrodinger time- independent wave equation, Heisenberg Uncertainty principle Eigen functions and Eigen values, Significance of operators.	12	Lecture
	Eigen functions and Eigen values, Significance of operators.	3	Problem solving
UNIT II:	GROUP THEORY I		
	Group multiplication table (C_2V, C_3V)	3	ICT
	Symmetry elements, symmetry operators and Types of groups.	9	Lecture
	Mulliken symbols – Reducible and irreducible representations – reduction formula – Great	6	Lecture
	Orthogonality theorem; Character table- Construction of character tables - C ₂ V, C ₃ V and D _{2h} .		
UNIT III	THERMODYNAMICS -I	I	
	Laws of enthalpy, entropy and free energy concepts, Partial molar quantities chemical potential.	11	Lecture
	Gibbs Duhem equation, fugacity, activity coefficients and absolute entropy.	3	ICT
	Third law of thermodynamics, Nernst heat theorem, Planck, Lewis and Randall statement.	4	Seminar
UNIT 1V	ELECTROCHEMISTRY I Debye - Huckel theory - Derivation of DebyeHuckel Onsager equation- Experimental verification - Wein Effect, Debye Falkenhagen effect - Debye Huckel limiting law Conductometry - Conductometric titrations and its	15	Lecture
	applications. Determination of equilibrium constants, dissociation constants and solubility product. Measurement of EMF	2	Demo in Lab
	Determination of solubility product, Degree of dissociation of weak acid - Standard electrode potential and EMF - Concentration cells with and without transference.	1	Seminar/ Assignment

UNIT V	ELECTROCHEMISTRY II		
	Hydrogen oxygen overvoltage - Theories of overvoltage - Butler Volmer equation- Tafel equation-	13	Lecture
	Corrosion - Types of corrosion - Dry and Electrochemical - Factors influencing corrosion - Prevention of Corrosion: Sacrificial anodic method, impressed current cathodic protection, protective coatings, deaeration, dehumidification, inhibitors, passivation.	3	Videos
	- Storage battery- Lead acid storage battery - Nickel Cadmium cell- Fuel cells - Classification of fuel cells H_2 - O_2 fuel cell - Hydrocarbon - O_2 cell - Solar Cell.	2	Seminar/ Assignment

Course Outcomes	Dutcomes								Os)	Mean scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	4	4	4	1	5	4	4	3	3	3.7
CO2	5	3	3	5	1	5	4	4	3	3	3.6
CO3	5	4	4	4	1	5	4	4	3	3	3.7
CO4	5	3	3	5	1	5	4	4	3	3	3.6
CO5	5	3	3	5	1	5	4	4	3	3	3.6
Mean Overall Score										3.64	

The Score for this Course is 3.64 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 (5m)	K2 (10 m)
II	K2 (5m)	K1 (10 m)
III	K3 (5m)	K4 (10 m)
IV	K3 (5m)	K4 (10 m)
V	K3(2.5m)/K1(2.5m)	K3 (10 m)

Programme: M.Sc Chemistry CORE 4

Semester : I & II Hours : 6 /W, 90 Hrs./S

Sub. Code : P22CD4P Credits : 4

TITLE OF THE PAPER: INORGANIC CHEMISTRY PRACTICAL

Pedagog	dagog Hours Lab session//Demonstration class/Viva voce									
y										
	6	6								
PREAMB	PREAMBLE: The objective of the course is to make the student understand the									
importano	ce of semi	i micro Qualitative analysis of given inorganic mixt	ure of	basic						
-	containing	• •								
inorganic	complexes	•								
COURSE	OUTCOM	IE: At the end of the Semester, the Students will be able	Unit	Hrs.						
to	to									
CO1: den	CO1: demonstrate the method of analyzing a mixture of basic radicals 1 70									
CO2: prep	are crude a	nd recrystallized samples of few inorganic complexes.	2	20						

INORGANIC CHEMISTRY PRACTICAL

I: INORGANIC PREPARATION

- 1. Preparation of potassium tris(oxalato)chromate (III) trihydrate
- 2. Hexathiourea lead (II) nitrate
- 3. Tris thioureacopper(I) sulphate complex
- 4. Tetramminecopper(II) sulphate
- 5. Preparation of microcosmic salt

II. SEMIMICRO QUALITATIVE ANALYSIS

Semimicro qualitative analysis of mixtures containing two common and two rare cations. The following are the rare cations to be included: W, Mo, Ti, Te, Se, Ce, Th, V and Li.

- 1. J. Bassett *et al*, Text Book of Quantitative Chemical Analysis", 5th Edition, ELBS, Longmann, U.K., 1989.
- 2. V.V. Ramanujam, "Inorganic Semimicro Qualitative Analysis", The National Publishing Co,Ed.3, 2007
- 3. V. Venkatesan, R. Veerasamy, A.R. Kulandaivelu, Basic Principles of Practical Chemistry, S. Chand and Sons, 2004.
- 4. S.Sundaram, P.Krishnan and P.S.Ragavan, Practical Chemistry, Viswanathan Printers and Publishers.,1993.
- 5. Subash-Satish, Advanced Inorganic Analysis.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
Unit 1:	Analysis of a mixture of inorganic radicals		
	Two Common Cations and two rare cations	75	Lab Session
	from Group I to Group VI and Zeroth group		
	Two Common Cations and two rare cations	10	Demonstration
	Two Common Cations and two rare cations	5	Viva
Unit 1:	Synthesis of inorganic complex of certain tr	ansition metals	
	Chromium, Lead, Copper(I), Copper (II), and microcosmic salt	35	Lab Session
	Crude and recrystallised sample	10	Demonstration
	Chromium, Lead, Copper(I), Copper (II), and microcosmic salt	5	Viva

Course	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean		
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	3	4	4	4	4	4	4	4	3.8
CO2	4	3	3	4	4	4	4	4	4	4	3.8
					Me	an Overa	all Score				3.5

The Score for this Course is 3.8 (High Relationship)

Programme: M.Sc Chemistry ELECTIVE: 1

Semester : I Hours : 5 /W, 75 Hrs./S

Sub. Code : P22DSD1 Credits :4

TITLE OF THE PAPER: MOLECULAR SPECTROSCOPY & ANALYTICAL CHEMISTRY I

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem	ICT			
1 cdagogy	110013	Lecture					
			solving session/Quiz/videos/Library session				
	5	3	1	1			
PREAMB	LE: The	objective	of the course is to make the student to comprehend	l the p	rinciple,		
instrument	ation ar	nd applica	tions of various spectra such as UV, IR, Rama	an, M	ass and		
Chromatog	graphic te	echniques.					
COURSE	OUTCO	ME: At th	e end of the Semester, the Students will be able to	Unit	Hrs. /S		
CO1: den	onstrate	the fundan	nentals of molecular spectroscopy and UV	1	15		
spectrosco	py.						
CO2: dem	onstrate	the fundam	entals of vibrational spectroscopy, the selection rules,	2	15		
Instrument	ation and	d the interp	retation of IR spectra.				
CO3: ex	kplain th	ne underly	ing principle of Rayleigh and Raman scattering,	3	15		
differentiat	differentiate stokes and antistokes lines, Raman and IR spectra and its applications						
in the structural determination of compounds.							
CO4: dem	onstrate 1	the fundam	entals of mass spectrometry and mass spectra of	4	15		
important	functiona	ıl groups.					

UNIT I

FUNDAMENTALS OF SPECTROSCOPY & UV SPECTROSCOPY

chromatography, HPLC and Electrophoresis.

CO5: explain the principle, instrumentation and applications of Gas liquid

(15 Hours)

15

Interaction of molecules with electromagnetic radiation – types of regions and representation of spectra. Resolution and intensity of spectral transition signal to noise ratio, width of spectral lines- collision broadening, Doppler broadening, and Heisenberg uncertainty principle - Intensity of spectral lines brief idea of selection rules and transition probability, Boltzmann distribution. Enhancing sensitivity of spectral lines: Fourier transform (FT) and computer averaging techniques (CAT).

Electronic spectra of molecules: Frank—Condon Principle, selection rules (brief idea), types of electronic transitions — Chromophore, auxochrome, bathochromic and hypsochromic shift- hyperchromic and hypochromic shift- Factors affecting absorbance, Woodward Fieser rules (only for conjugated dienes)-steric inhibition of resonance- Applications. A few examples of natural conjugated systems absorbing in visible region — instrumentation of double beam UV spectrophotometer.

UNIT II

VIBRATIONAL SPECTROSCOPY

(15 Hours)

IR spectroscopy – Bonds as anharmonic oscillator - Morse curve - Oscillation frequency (only equation) – explaining fundamental absorptions, first and second overtones with respect to Boltzmann distribution - selection rules – fundamental vibrations of polyatomic molecules, combination and difference bands-Instrumentation and sampling techniques in IR spectroscopy. Fermi resonance, fingerprint region, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, esters, amides,

ethers, phenols, amines, carbonyl compounds, acids. Effect of solvent and hydrogen bonding on vibrational frequencies, uses of group frequencies in the structural elucidation of metal complexes containing cyanide, nitro, ammine, thiocyanate and halogens as ligands – metal carbonyls.

UNIT III

RAMAN SPECTROSCOPY & ROTATIONAL SPECTROSCOPY (15 Hours)

Raman effect- Rayleigh and Raman scattering, Stokes and anti-Stokes radiation, molecular polarizability, Raman selection rules, rule of mutual exclusion, Depolarization ratio, instrumentation. Combined uses of IR and Raman spectroscopy in the structural elucidation of simple molecules like H₂O, ClF₃, SO₂, CO₂, N₂O. Advantages of Raman spectroscopy over IR spectroscopy. Differences between Raman and IR spectroscopy.

Microwave Spectroscopy: Rotational spectra of diatomic molecules, frequency separation – determination of moment of inertia and bond length.

UNIT IV (15 Hours)

MASS SPECTROMETRY

Mass spectrometry, ion production – electron impact and chemical ionization, field desorption, electrospray ionization, MALDI ion analysis- quadrupole mass spectrometry, time of flight. Determination of molecular formula: molecular ion peak, base peak, metastable peaks and isotope peaks, nitrogen rule, ring rule, fragmentation, retro Diels-Alder fragmentation- McLafferty rearrangement – Mass spectra of various functional groups containing compounds to be studied: aromatic, aliphatic hydrocarbons, ketones, acids, esters, amides, ethers, alcohols, amine and nitriles. Fragmentation patterns of heterocyclic compounds (furan, pyrrole and pyridine only)

UNIT V

CHROMATOGRAPHY

(15 Hours)

Chromatography: Gas- Liquid chromatography, Principles, retention volume, retention time, instrumentation- Column, Stationary phase, carrier gas, Detectors- Thermal conductivity, Flame Ionization, electron capture, Applications of GLC. High performance liquid chromatography - Ion exchange chromatography – applications.

Electrophoresis - principles and applications.

- 1. Jag Mohan, Organic Analytical Chemistry, Theory and Practice, 1st Ed., Narosa Publishing House, Reprint 2012.
- 2. P.S. Kalsi, Spectroscopy of organic Compounds, 1st Ed., Wiley Eastern Limited, 1993.
- 3. Y.R. Sharma, Elementary Organic Spectroscopy, 1st Ed., S. Chand and Company Ltd, 2011.
- 4. C.N. Banwell, Fundamentals of Molecular spectroscopy, 3rdEd., Tata McGraw-Hill Publishing company limited, 1992.
- 5. B.K. Sharma, Instrumental methods of chemical Analysis, 29th Ed., Goel Publishing house, 2013.
- 6. A.K. Srivastava and P.C. Jain, Chemical Analysis: An Instrumental Approach, 4th Ed., 2009.
- 7. R. Gopalan, Elements of Analytical chemistry, Sultan Chand & Sons, 2002.
- 8. G.R. Chatwal, Analytical Spectroscopy, 1st Ed., Himalaya Publishing House, 1996.

- 9. William Kemp, Organic Spectroscopy, 2nd Ed., English Language Book Society, Macmillan, 1987. 10. John R. Dyer, Applications of Absorption Spectroscopy of organic compounds, 1st Ed., Prentice Hall of India Private Ltd, Reprint 1987.
- 11. Skoog and West, Fundamentals of Analytical chemistry, 9th Ed., Saunders College Pub. 2004.
- 12. Robert M. Silverstein, G. Clayton Bassier & Terence C.Morrill, Spectrometric Identification of organic compounds, 1st Ed., Prentice Hall of India Pvt Ltd, Reprint 1987.
- 13. C.N.Banwell, Fundamentals of Molecular spectroscopy, 3rdEd., Tata McGraw-Hill Publishing company limited, 1992.
- 14. Willard, Merrit, Dean & Settle, Instrumental Methods of Analysis, 7th Ed., CBS Pub. 1986.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING						
UNIT 1:	UNIT 1: FUNDAMENTALS OF SPECTROSCOPY & UV SPECTROSCOPY								
	Instrumentation of UV, Steric inhibition of resonance	3	ICT						
	Fundamentals of molecular spectroscopy, Resolution, intensity, and width, selection rules, transition probability of spectral transitions, Fourier transform and CAT techniques Fundamentals of UV spectroscopy, Steric inhibition of resonance, Frank Condon principle, Factors affecting absorbance.	10	Lecture						
	Natural conjugated systems, Bathochromic shift and hypsochromic shifts with examples	2	Seminar						
UNIT II	VIBRATIONAL SPECTROSCOPY								
	Anharmonic oscillator, Overtones, Selection rules, Fermi resonance, and Group frequencies	9	Lecture						
	Calculation of fundamental vibration, Fingerprint region, Effect of solvent and hydrogen bonding.	3	Problem solving, Quiz, Seminar						
	Instrumentation and sampling techniques, and Examples of IR spectral interpretation.	3	ICT						
UNIT III	RAMAN SPECTROSCOPY AND ROTATIONAL SPECT								
	Rayleigh and Raman Scattering, Stokes and Anti stokes lines, Rule of mutual exclusion, Combined uses of IR and Raman spectroscopy in the structural elucidation. Microwave spectroscopy, Rotational spectra of diatomic molecules, Determination of moment of Inertia	;	Lecture						
	Difference between Raman and IR, Advantages uses of Raman spectroscopy	3	Peer teaching, seminar						
	Instrumentation and Structural elucidation of simple molecules	3	ICT						
UNIT IV	MASS SPECTROMETRY								
	Instrumentation of Mass spectrometry, MALDI ion Analysis, Quadrupole mass spectrometry, Time of flight	3	ICT						

Identifying the compounds using mass spectra	2	Problem solving						
Fundamentals of mass spectrometry, Different ionization techniques, Determination of molecular formula using natural abundance, discussing different peaks involved, McLafferty rearrangement, Mass spectra of various functional groups	10	Lecture						
UNIT V CHROMATOGRAPHY								
Principles of Chromatography, GC, HPLC, Ion exchange chromatography and Electrophoresis	9	Lecture						
Applications of GC, HPLC and Electrophoresis	3	Group discussion, Seminar.						
Instrumentation and working of GC, HPLC and Electrophoresis	3	ICT						

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	4	3	1	4	4	4	3	4	3.4
CO2	4	3	3	3	1	4	4	4	3	4	3.3
CO3	4	3	4	3	1	4	4	4	3	4	3.4
CO4	4	3	3	3	1	4	4	4	3	4	3.3
CO5	4	3	3	3	1	4	4	3	3	4	3.2
Mean Overall Score										3.32	

The Score for this Course is 3.32 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern			
I	K1 / K4	K2 / K3(5m), K4(5m)			
II	K4 / K3	K3(5m), K4(5m) / K4			
III	K2 / K4	K3/ K1			
IV	K4(2.5m), K3(2.5m)/K2	K4 / K3			
V	K3/K1	K1/ K2			

Programme: M.Sc Chemistry ELECTIVE: 1

Semester : I Hours : 5 P/W, 75 Hrs./S

Sub. Code : P22DSD1 Credits : 4

TITLE OF THE PAPER: INDUSTRIAL CHEMISTRY

Pedagog	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem solving	ICT					
y			session/Quiz/videos/Library session.						
	5	3	1 1						
PREAMI	BLE: The	objective	of the course is to make the student understand p	rincip	les of				
chemical	technolog	gy and to	know about raw materials and energy for chemical	al indu	ıstry,				
cement,	ceramics,	glass and	fertilizers, small scale chemical industries & suga	r and	agro				
chemicals	S.								
COURSE	E OUTCO	ME: At the	e end of the Semester, the Students will be able to	Unit	Hrs				
GO1 :	1 1 1	1 .		1	P/S				
_		ge on basic	s of Commercial manufacturing process technology of	1	15				
various che									
CO2 : ide	ntify and	analyze th	e raw materials and source of energy for chemical	2	15				
industries									
CO3 : ap	preciate tl	ne chemisti	ry of selected industrial processes including cement,	3	15				
ceramics	glass and f	ertilizers.							
CO4: rec	ognize em	ployment	opportunities in areas of small chemical enterprisers	4	15				
	which manufacture goods of personal or household services with the help of relatively								
	smaller machines and a few workers and employees.								
CO5: ide	ntify and	discuss the	basics of sugar and agrochemicals like insecticides,	5	15				
fungicides	fungicides, herbicides and various pesticides.								

UNIT I

PRINCIPLES OF CHEMICAL TECHNOLOGY

(15 Hours)

Introduction: Basic principles – importance – classification – designing and modeling of chemical plants – unit process and unit operations.

Basic requirements of industrial reactors – choice and selectivity of reactor – basic principles of homogeneous and heterogeneous processes and reactors with examples.

UNIT II

RAW MATERIALS AND ENERGY FOR CHEMICAL INDUSTRY (15 Hours)

Raw materials – Characteristics of raw materials and their resources – methods of raw material concentrations – integral utilization of raw materials.

Energy for chemical industry – Fuels – classification of fuels – coal – fuel gases and liquid fuels – petroleum – cracking – Octane number – cetane number – composition and uses of coal gas, water gas, producer gas, oil gas and gobar gas.

UNIT III

CEMENT, CERAMICS, GLASS AND FERTILIZERS

(15 Hours)

Cement: Manufacture – Wet Process and Dry process. Types, Analysis of major constituents, setting of cement, reinforced concrete. Cement industries in India.

Ceramics: Important clays and feldspar, glazing and verification.

Glass: Types, Composition, manufacture of Optical glass, colored glasses, lead glass and neutron absorbing glass.

Fertilizers: Fertilizer industries in India, Manufacture of ammonia, ammonium salts, urea, superphosphate, triple superphosphate and nitrate salts.

UNIT IV

SMALL SCALE CHEMICAL INDUSTRIES

(15 Hours)

Electrothermal and electrochemical industries: electroplating – surface coating industries – oils, fats and waxes – soaps and detergents – cosmetics. Match industries and fireworks: manufacture of some industrially important chemicals like potassium chlorate, and red phosphorus – metal powders.

UNIT V

SUGAR AND AGRO CHEMICALS

(15 Hours)

Sugar: Cane sugar manufacture, recovery of sugar from molasses, sugar estimation, sugar industries in India.

Agrochemical industries: Important categories of insecticides, fungicides, herbicides. Mode of action and synthesis of common pesticides like Gammexane, DDT, alathrin, Parathion, Malathion, Baygon, DDVP, Warfarin.

- 1. I.Mukhlyonov, Chemical Technology, Vol.1, Mir publication, Moscow, III edn., 1979.
- 2. A.K. De., Environmental Chemistry, Wiley Eastern Ltd., 11 edn., Meerut 1989. Chs 5-7
- 3. B.K Sharma Industrial chemistry Goel publishing house.
- 4. R. Norris Shreve and J.A. Brink, Jr. Chemical Process Industries. IV edn., McGraw Hill.
- 5. B.N. Chakrabarty, Industrial Chemistry, Oxford & IBH Publishing Co.
- 6. P.P. Singh, T.M. Joseph, R.G. Dhavale, College Industrial Chemistry, Himalaya Publishing House.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I:	PRINCIPLES OF CHEMICAL TECHNOLOGY		
	Basic principles, importance classification of chemical	5	Seminar/ peer
	industries		teaching
	Designing and modeling of chemical plants – unit process		
	and unit operations.	5	Lecture
	Basic requirements of industrial reactors – choice and		
	selectivity of reactor – basic principles of homogeneous and	5	ICT
	heterogeneous processes and reactors with examples.		
UNIT II	: RAW MATERIALS AND ENERGY FOR CHEMICA	L INDUS	TRY
	Characteristics of raw materials and their resources -	5	Lecture
	methods of raw material concentrations – integral utilization		
	of raw materials.		
	Fuels – classification of fuels – coal – fuel gases and liquid		
	fuels – petroleum – cracking – Octane number – cetane	5	ICT
	number	3	10.1

Composition and uses of coal gas, water gas, producer gas, oil gas and gobar gas.	5	Seminar / assignment							
UNIT III: CEMENT, CERAMICS, GLASS AND FERTILIZERS									
Manufacture of cement by Wet Process and Dry process,									
Types and Analysis of major constituents, setting of cement,									
reinforced concrete	5	Lecture							
Cement and fertilizer industries in India.	2	Assignment/							
Ceramics: Important clays and feldspar, glazing and		discussion/							
verification		Library session							
Glass: Types, Composition, manufacture of Optical glass, colored glasses, lead glass and neutron absorbing glass.	3	ICT							
Fertilizers- Manufacture of ammonia, ammonium salts, urea,	5	Seminar							
superphosphate, triple superphosphate and nitrate salts									
UNIT IV: SMALL SCALE CHEMICAL INDUSTRIES		•							
Electrothermal and electrochemical industries: electroplating									
 surface coating industries 	5	Lecture							
Oils, fats and waxes – soaps and detergents – cosmetics.	5	ICT							
Match industries and fire works									
manufacture of some industrially important chemicals like									
potassium chlorate, and red phosphorus – metal powders	5	Seminar							
UNIT V: SUGAR AND AGRO CHEMICALS									
Sugar: Cane sugar manufacture, recovery of sugar from	5	Lecture							
molasses, sugar estimation, sugar industries in India									
Important categories of insecticides, fungicides, herbicides	5	ICT							
Mode of action and synthesis of common pesticides like	5	Seminar / peer							
Gammexane, DDT, alathrin, Parathion, Malathion, Baygon,		teaching/ quiz							
DDVP, Warfarin.									

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	4	4	1	4	4	4	3	4	3.2
CO2	4	4	3	4	1	4	4	4	3	4	3.5
CO3	4	4	3	3	1	4	4	4	3	3	3.3
CO4	4	4	4	3	1	4	4	4	3	4	3.5
CO5	4	4	4	3	1	4	4	4	3	4	3.5
Mean Overall Score									3.4		

Result: The Score for this Course is 3.4 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K4	K2 / K3
II	K3 / K4(2.5m), K3(2.5m)	K1/ K4
III	K3(2.5m) ,K4(2.5m) / K1	K4 / K2
IV	K2 / K3	K3 / K3(5m), k4(5m)
V	K4 / K2	K3(5m), k4(5m) / K1

Programme :M.Sc Chemistry SEC -I

Semester: I Hours: 2/W, 30 Hrs/S

Sub. Code : P2SED1 Credits : 2

TITLE OF THE PAPER: ANALYSIS OF SOIL, FOOD AND COSMETICS PRACTICAL

Pedagogy	Hours	Lab session//Demonstration class/Viva voce					
	2	2					
PREAMBLE: The objective of the course is to make the student understand the analysis of soil, food and cosmetics.							
COURSE OUTCOME: At the end of the Semester, the Students will be able to Unit Hrs.							
CO1: dem	1	10					
CO2: analitems and i	2	15					
CO2: dete	3	5					

SKILL ENHANCEMENT COURSE I (PRACTICAL) - ANALYSIS OF SOIL, FOOD AND COSMETICS

UNIT 1- ANALYSIS OF SOIL

- 1. Determination of total Ca²⁺ and Mg²⁺ ions in soil as CaCO₃ complexometric titration method
- 2. Determination of soil organic carbon by Walkley-Black chromic acid wet oxidation method.

UNIT 2- ANALYSIS OF FOOD

- 3. Quantitative estimation of benzoic acid in food items.
- 4. Identification of adulterants in some common food items (coffee powder, turmeric powder, chilli powder, Asafoetida)
- 5. Qualitative determination and coagulation of protein in food items (egg, milk, bread)
- 6. Isolation of casein and lactose from milk.
- 7. Spectrophotometric identification and determination of Caffeine and benzoic acid in soft drinks (Demonstration only)

UNIT 3 - ANALYSIS OF COSMETICS

- 8. Determination of Ca²⁺ and Zn²⁺ in talcum powder by complexometric titration method
- 9. Determination of sulphates in deodorants by gravimetric method (Demonstration only)

References

- 1. Analytical chemistry skill enhancement course- Krishna Chattopadhyay & Manas Mandal, CBS Publishers and distributers Pvt Ltd, 2022
- 2. Methods For The Determination Of Total Organic Carbon (Toc) In Soils And Sediments Brian A. Schumacher 2002
- 3. The Food Chemistry Laboratory *A Manual for Experimental Foods, Dietetics, and Food Scientists* Connie M. Weaver, James R. Daniel CRC press, 2nd edition 2005.

Internal: 40 External: 60

Course	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean		
Outcomes										scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	4	4	1	5	4	5	5	4	4
CO2	4	3	4	4	1	5	4	5	5	4	3.9
CO3	4	4	4	4	1	5	4	5	4	4	3.9
Mean Overall Score							3.9				

Result: The Score for this Course is 3.9 (High Relationship)

Programme :M.Sc Chemistry CORE 5

Semester: II Hours: 6/W, 90 Hrs./S

Sub. Code : P22CD5 Credits : 4

TITLE OF THE PAPER: INORGANIC CHEMISTRY II

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem	ICT				
			solving session/Quiz/videos/Library session.					
	6	4	1	1				
PREAMBLE: The objective of the course is to make the student understand								
the basics of nuclear chemistry, modes of radioactive decay, types of nuclear reaction								
and artificial transportation, disposal of radioactive wastes.								
COURSE OUTCOME: At the end of the Semester, the Students will be able to					Hrs.			
					/S			
CO1: discuss electron transfer reactions, various types of ligand substitution								
reactions and mechanisms in different geometries and its applications								
CO2: identify the organometallic compounds and explain the different catalytic					18			
reactions.								
CO3: derive the spectroscopic term symbols, draw the orgel diagram for weak					18			
field Oh and Td complexes. Explain Tanabe-Sugano diagram for d ³ complexes,								
discuss charge transfer spectra.								
CO4: discuss nuclear spin and movements, modes of radioactive decay, nuclear					18			
stability, detection and determination of radioactivity, nuclear reactions.								
CO5: discuss artificial transportation, methods of producing projectiles,								
activation, analyses and radiometric titration, radio isotopes and disposal of								
radioactive	wastes.							

UNIT I

REACTION MECHANISM OF COORDINATION COMPLEXES (18 Hours)

Electron transfer reactions – Inner sphere (ISET) and outer sphere (OSET) electron transfer processes. Role of bridging ligand with ISET reaction – tunneling transfer – multiple bridging in the activated complex in the ISET process. Complimentary and non complimentary ET reactions. Cross reactions in Marcus Hush theory.

Types of Ligand substitution reactions- mechanism. Dissociative mechanism (D), Associative mechanism (A), interchange mechanism (I), Labile and inert complexes- Substitution reactions in octahedral complexes – General mechanism, general rate law for A, D and I – Distinction between D, I and A pathways. Replacement of coordinated water, Anation reaction – Mechanism of acid hydrolysis, base hydrolysis- DCB mechanism- direct and indirect evidences in favour of the mechanism. Ligand substitution reactions without cleavage of M-L bond. Substitution in square planar complexes – general mechanism, trans effect - theories of trans effect - Applications of trans effect – synthesis of isomers of Pt (II) complexes – applications of substitution reactions in the synthesis of Pt and Co complexes.

UNIT II CATALYSIS IN COMPLEXES

(18 Hours)

Catalysis- General principles of catalysis – basic reactions involved in the catalysis by organometallic compounds. Hydrogenation of olefins (Wilkinson's catalyst), hydroformylation of olefins using Cobalt or Rhodium catalyst (OXO Process), Oxidation of olefins to aldehydes and ketones (Wacker process): polymerization (Ziegler - Natta catalyst), Monsanto acetic acid synthesis from menthol, Cyclo oligomerisation of acetylene using nickel catalyst (Reppe's catalyst). Synthetic gasoline by using ZSM-5 catalyst (Fischer- Tropsch and Mobil process), polymer bound catalyst.

UNIT III

ELECTRONIC SPECTRA OF COMPLEXES

(18 Hours)

Spectroscopic term symbols for d^n ions – derivation of term symbols and ground state term symbols, Hund's rule, selection rules – breakdown of selection rules, spin-orbit coupling, band intensities, weak and strong field limits- correlation diagram, energy level diagrams. Orgel diagram for weak field Oh and Td complexes. Tanabe-sugano diagram for d^3 [Cr (NH₃)₆]³⁺ complex. Charge transfer spectra.

UNIT IV

NUCLEAR CHEMISTRY I

(18 Hours)

Fundamental particles- Nuclear spin and moments - n/p ratio —Binding energy and stability-Origin of nuclear forces - modes of radioactive decay-orbital electron capture-Nuclear isomerism - Internal conversion- Auger effect. Nuclear structure and stability- packing fraction- Mass Defect-Binding energy - salient features of the liquid drop and shell model-Detection and determination of activity by Geiger-Muller and Scintillation counters- Wilson-Cloud chamber. Nuclear reactions - Types - Nuclear cross section - Q value, threshold energy - compound nuclear theory - Nuclear fission, fusion and spallation reaction - Thermo nuclear reactions - stellar energy.

UNIT V

NUCLEAR CHEMISTRY II

(18 Hours)

Artificial transmutation - methods of producing projectiles - Types of Accelerators - linear & cyclic - cyclotron - synchrotron- Betatron -Van de Graaff Accelerator. Activation analysis and Radiometric titrations- Applications of radio isotopes –Nuclear pollution- Disposal of radioactive wastes - Dilute and Disperse method - Delay and Decay method- Concentrate and Contain method - reprocessing of spent Uranium fuel and its disposal- Recent method to dispose critically dangerous radio wastes- chemical methods of disposal- other methods- reprocessing, immobilization and by Vitrification.

- 1.J.E. Huheey, Ellen A. Kaiter, Richard L. Kaiter & Okhil K. Medhi, Inorganic Chemistry, Principles of Structure & Reactivity, 4th Ed., Pearson, 2011.
- 2. B.R. Puri, L.R. Sharma & K.C. Kalia, Principles of Inorganic Chemistry, Vishal Pub.33 ed., 2017.

- 3. R. Gopalan &V. Ramalingam, Concise Coordination Chemistry, 1st Ed., Vikas Pub. House Pvt. Ltd., 2001.
- 4. F.A. Cotton, G. Wilkinson, G.A. Murillo& M. Bochmann, Advanced Inorganic Chemistry, 1stEd., Wiley Student Edn, 2007.
- 5. H.J. Emeleus & A.G. Sharpe, Modern aspects of Inorganic Chemistry, 4th Ed., ISBN, 1974.
- 6. R.S. Drago, Physical Methods in Inorganic Chemistry, 1st Ed., Affiliated East-West Press Pvt. Ltd., 1971.
- 7. M.C. Day and J. Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt. Ltd. 2nd Ed., 1985.
- 8. J.D. Lee, Concise Inorganic Chemistry, Wiley India.
- 9. S.F.A. Kettle, Coordination chemistry, ELBS Ed.,
- 10. K.F. Purcell and J.C. Koltz, Inorganic Chemistry, Holt Saunders, 1977.
- 11. U. Malik, G.D. Tuli and R.D. Madan, Selected topics in Inorganic Chemistry, 1992.
- 12. R.D. Madan & Satya Prakash, Modern Inorganic Chemistry (Revised), S. Chand.
- 13. Satya Prakash, G.D. Tuli, S.K. Basu & R.D. Madan, Advanced Inorganic Chemistry, 1st Ed., S. Chand & Co, 2008.
- 14. F. Basolo and R.G. Pearson Mechanisms of Inorganic reactions Wiley Eastern.
- 15. U. Malik, G.D. Tuli and R.D. Madan, Selected topics in Inorganic Chemistry.
- 16. R. Gopalan, Elements of Nuclear Chemistry, 1st Ed., Vikas Pub. Pvt. Ltd., 1999.
- 17.C.V. Shekar, Nuclear Chemistry, 1st Ed., Dominant Pub. 2005.
- 18. H.J. Arnikar, Essentials of Nuclear Chemistry, 4th Ed., New Age International (P) Ltd., 2011.
- 19. S. Glasstone, Source Book of atomic energy.
- 20. B.K. Sharma, Nuclear chemistry, Goel Pub.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT 1: RE	ACTION MECHANISMS OF COORDINATION	COMPLEXES	
	Electron transfer reactions – Inner sphere (ISET) and outer sphere (OSET) electron transfer	9	Lecture
	processes. Role of bridging ligand with ISET		
	reaction – tunneling transfer – multiple bridging in the activated complex in the ISET process.		
	Ligand substitution reactions without cleavage of		
	M-L bond. Substitution in square planar complexes – general mechanism, trans effect -		
	theories of trans effect		
	Labile and inert complexes- Substitution reactions in octahedral complexes – General mechanism general rate law for A, D and I – Distinction between D, I and A pathways. Replacement of coordinated water, Anation reaction – Mechanism of acid hydrolysis, base hydrolysis- DCB mechanism- direct and indirect evidences in favour of the mechanism.	3	Lecture

Complimentary and non complimentary ET reactions. Cross reactions in Marcus Hush theory. Types of Ligand substitution reactions- mechanism. Dissociative mechanism (D), Associative mechanism (A), interchange mechanism (I),	3	ICT
Applications of trans effect – synthesis of isomers of Pt (II) complexes – applications of substitution reactions in the synthesis of Pt and Co complexes.	3	Seminar
UNIT II: CATALYSIS IN COMPLEXES		
Catalysis- General principles of catalysis – basic reactions involved in the catalysis by organometallic compounds. hydroformylation of olefins using Cobalt or Rhodium catalyst (OXO Process), Monsanto acetic acid synthesis from menthol, Cyclo oligomerisation of acetylene using nickel catalyst (Reppe's catalyst).	13	Lecture
Hydrogenation of olefins (Wilkinson's catalyst), Oxidation of olefins to aldehydes and ketones (Wacker process): polymerization (Ziegler - Natta catalyst)	3	Seminar
Synthetic gasoline by using ZSM-5 catalyst (Fischer- Tropsch and Mobil process), polymer bound catalyst.	2	Group discussion
UNIT III: ELECTRONIC SPECTRA OF COMPLEXES		·
Spectroscopic term symbols for d ⁿ ions – derivation of term symbols and ground state term symbols, Hund's rule, selection rules – breakdown of selection rules, spin-orbit coupling, band intensities, weak and strong field limits-correlation diagram, energy level diagrams	9	Lecture
Orgel diagram for weak field Oh and Td complexes. Tanabe-sugano diagram for d ³ [Cr (NH ₃) ₆] ³⁺ complex. Charge transfer spectra.	9	Lecture
UNIT IV: NUCLEAR CHEMISTRY I		
Nuclear spin and movements, origin of nuclear forces, modes of radioactive decay and nuclear stability	5	Lecture
Liquid drop and shell model of nucleus	5	ICT
Detection and determination of radioactivity	5	Lecture
Nuclear reactions LINET V. NHICLEAR CHEMISTRY II	3	Lecture
UNIT V: NUCLEAR CHEMISTRY II Methods of producing projectiles, types of	4	ICT
accelerators	7	

Activation, analyses and radiometric titration,	4	Lecture
application of radio isotopes.		
Disposal of radioactive wastes	10	Seminar

Course	Progra	mme O	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	3	4	1	4	4	4	3	4	3.4
CO2	4	4	4	4	1	4	4	4	3	4	3.6
CO3	4	3	3	4	1	4	4	4	4	4	3.5
CO4	4	3	3	4	1	4	4	4	2	4	3.3
CO5	4	4	4	4	1	4	4	4	3	4	3.6
											3.48

Result: The Score for this Course is 3.48 (Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m)
		Either or Pattern
I	K2 / K4	K3(5m), k4(5m) / K3
II	K3 / K4(2.5m), K3(2.5m)	K2/ K4
III	K4 / K1	K1/ K2
IV	K1 / K3	K4 / K3(5m), k4(5m)
V	K4(2.5m), K3(2.5m) / K2	K3/ K1

Programme: M.Sc Chemistry CORE 6

Semester: II Hours: 5 /W, 75 Hrs./S

Sub. Code : P22CD6 Credits : 4

TITLE OF THE PAPER: ORGANIC CHEMISTRY II

Peda	Hours	Lecture	Peer Teaching/seminar/role	ICT
gogy			play/discussion/tutorial/problem solving session/quiz/lab	
			session/videos/demonstration class/library session.	
	5	3	1	1

PREAMBLE: The objective of the course is to make the student recognize and analyze electrophilic, nucleophilic addition reactions, additions to carbonyl compounds, stereochemical requirement for α,β and cis elimination and their mechanisms, Bredt's rule, various free radical reactions with their mechanisms, various electrophilic and nucleophilic rearrangement with their mechanisms, difference between configuration and conformation, conformation of acyclic compounds- ethane, propane, n-butane, halo alcohols and diols, physical methods of conformational analysis, reactivity of acycliccompounds, conformational analysis of cyclohexane, mono and di substituted cyclohexanes, reactivity of cyclohexyl systems towards E_2 and cis-elimination, NGP, oxidation, intramolecular rearrangement, ester hydrolysis, substitution reactions, preparation and properties of compounds with two hetero atoms in ring and synthesis of heterocyclic compounds containing two hetero atoms in a six-membered ring.

COURSE OUTCOME: At the end of the SemesterII, the Students will be able to	Unit	Hrs
		/S
CO1: explain various reactions of addition to c-c multiple bond and c- hetero	1	15
multiple bond (carbonyls only).		
CO2: ELIMINATION AND FREE RADICAL REACTIONS; explain elimination	2	15
and free radical reactions with their detailed mechanism, stereochemistry and		
Bredt's rule.		
CO3: MOLECULAR REARRANGEMENTS	3	15
classify the rearrangements into electrophilic and nucleophilic with suitable		
examples and to identify the rearrangements involving C-C and C-N migrations		
CO4: CONFORMATIONAL ANALYSIS OF ACYCLIC & CYCLOHEXYL	4	15
SYSTEMS: Draw the conformations of ethane, propane, n-butane halo alcohols,		
glycols, butane-2,3-diols and explain the physical methods of conformational		
analysis, reactivity of acyclic compounds and conformational analysis and reactivity		
of cyclohexyl systems.		
CO5: HETEROCYCLIC RINGS	5	15
discuss the preparation, properties of pyrazole, oxazole, thiazole, synthesis of		
benzofuran, thianaphthene, pyridazine, barbituric acid, pyrimidine, thymine and		
cytosine		

UNIT-I

ADDITION TO C-C MULTIPLE BOND AND C-HETERO MULTIPLE BOND (CARBONYLS ONLY) (15 Hours)

Electrophilic addition: Formation of π complexes - Stereochemical Consequences - addition to cyclic Alkenes - Effect of substituent on the rate of addition-Addition to hydrogen halide. Alkyne-Hydroboration, Epoxidation and hydroxylation, Ozonolysis-Addition to conjugated diene- Diel's Alder reaction

Nueleophilic addition: Addition to acrylonitrile - unsaturated carbonyl compounds (Michael-addition) **Addition to carbonyl compounds:** Mechanism of Aldol, Benzoin, Claisen, Dieckmann condensation-Perkin, Knoevenagal, Mannich, Cannizaro, Darzen's and Reformatsky reaction -Wittig Reaction and its modification.

UNIT-II

ELIMINATION AND FREE RADICAL REACTION

(15 Hours)

 α,β eliminations- E_2, E_1, E_1CB Mechanism - Stereochemical preferences-orientation of the double bond - Effect of substrate, base, leaving group and reaction medium - elimination Vs substitution - Pyrolytic cis elimination and their stereochemistry- Bredt's rule.

α – Elimination –Carbenes – Singlet and triplet – generation – Reactions.

Free radical reaction: Halogenation, Addition, Oxidation, Reduction and Rearrangement reaction - Barton, Sandmeyer, Gomberg-Bechmann, Ullmann, Pschorr and Hunsdiecker reaction.

UNIT-III

MOLECULAR REARRANGEMENT

(15 Hours)

Nucleophilic rearrangement - Nature of Migration - Migratory Aptitude - Memory effects — Longer Nucleophilic Rearrangements - Electrophilic Rearrangement - Mechanism of Wagner Meervain, Pinacol-Pinacolone, Benzil-Benzilicacid, Schmidt, Hoffmann, Wolff, Curtius, Fries, Favorskii, Stevens, Lossen, Beckmann, Neber, Demjanov, Dienone-Phenol, Bayer-Villiger, Claisen and Cope rearrangement.

UNIT-IV

CONFORMATIONAL ANALYSIS

(15 Hours)

Configuration and conformation – conformation of acyclic compounds (Ethane, Propane, dimethyl propane, n-butane, 2,3-dimethyl butane, halo alcohols, glycols, 2,3-dibromo Butane, Butane–2,3-diol) - Physical methods for conformational Analysis – Conformation and Intra molecular Hydrogen Bonding - Reactivity.

Conformation of Monosubstituted and Disubstituted cyclohexanes. Conformation of cyclohexane - Monosubstituted cyclohexane -Disubstituted cyclohexane (1,1, 1,2, 1,3 & 1,4) - Reactivity - Examples of E_2 and Cis elimination, Neighbouring group participation, Oxidation, Intramolecular rearrangement, Ester-hydrolysis, S_N1 , S_N2 and S_Ni reactions -Conformation of Decalins.

UNIT - V

HETEROCYCLIC COMPOUNDS

(15 Hours)

Compounds with two Heteroatoms in ring -Preparation and properties of Pyrazole, Imidazole, Isoxazole, Oxazole, Thiazole, Isothiazole. Synthesis of Benzofuran, Thianaphthene, Isobenzofuran, Isothianaphthene.

Two Heteroatoms in a Six membered ring -Synthesis of Pyridazine, Barbituric acid, Pyrimidine, Thymine, Cytosine.

- 1 J. March, Advanced Organic Chemistry, 4thEdn, John Wiley, New York, 1992.
- 2. Peter Sykes, A Guidebook to Mechanisms in Organic Chemistry, 6thEdn., Longmans. Scientific and Technical, Essex, 1986.
- 3. F.S. Gould, Mechanism and Structure in Organic Chemistry, Holt, New York, 1959.
- 4 S.M. Mukerjee and S.P. Singh, Pericyclic Reactions, Macmillan, 1976.
- 5 E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw Hill, 1962.
- 6 V.M. Potapov, Stereochemistry, MIR Publishers, Moscow 1979.
- 7 D. Nasipuri, Stereochemistry of Organic compounds, 2ndEdn, New Age International, New Delhi
- 8 E.L. Eliel, N.C. Allinger, S.J. Angyal and G.A. Morrison, Conformational Analysis, Interscience, New York, 1965.
- 9 R.M. Acheson, Chemistry of Heterocyclic Compounds, Wiley Eastern, 1992.
- 10 R.K. Bansal, Heterocyclic Chemistry Synthesis, reactions and mechanism, Wiley Eastern, New Delhi, 1990.
- 11 V.K. Ahluwalia, Heterocyclic Chemistry, Revised Ed., Narosa Pub., 2016.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
	ADDITION TO C-C MULTIPLE BOND AND C- HETERO MUONYLS ONLY)	LTIPLE	BOND
(011111	Stereochemical Consequences - addition to cyclic Alkenes - Effect of substituent on the rate of addition - Addition to hydrogen halide.	3	ICT
	Concepts of Electrophilic addition and Nueleophilic addition	10	Lecture
	Ozonolysis - Addition to conjugated diene- Diel's Alder reaction	2	Seminar
UNIT II	I: ELIMINATION AND FREE RADICAL REACTION		
	α,β eliminations - E2, E1, E1CB Mechanism - Stereochemical preferences in elimination reactions, Bredt's rule.	3	ICT
	α,β eliminations - E2, E1, E1CB Mechanism - Stereochemical preferences-orientation of the double bond - Effect of substrate, base, leaving group and reaction medium - elimination Vs substitution - Pyrolytic cis elimination and their stereochemistry - Bredt's rule. α - Elimination - Carbenes - Singlet and triplet - generation - Reactions. Free radical reaction: Halogenation, Addition, Oxidation, Reduction and Rearrangement reaction - Barton, Sandmeyer, Gomberg-Bechmann, Ullmann, Pschorr and Hunsdiecker reaction	10	Lecture
	Carbenes – Singlet and triplet – generation – Free radical reactions	2	Seminar

Unit III: MOLECULAR REARRANGEMENT		
Classification into electrophilic, nucleophilic, C-C & C-N migrations	4	ICT
Various rearrangements with their detailed mechanism, suitable examples and synthetic utility.	11	Lecture
UNIT IV: CONFORMATIONAL ANALYSIS OF ACYCLIC AND CYCI	OHEXY	L SYSTEMS
Conformations of ethane, propane, n-butane halo alcohols, glycols, butane-2,3-diols, chair and boat conformations of cyclohexane, mono and di substituted cyclohexyl systems and decalins.	3	ICT
Conformational analysis of of ethane, propane, n-butane halo alcohols, glycols, butane-2,3-diols, reactivity of acyclic compounds such as elimination, addition and substitution reactions with their stereo-electronic requirements. Conformational analysis of cyclo hexyl systems and their reactivity in elimination, NGP, oxidation, intramolecular rearrangement, ester hydrolysis, substitution reactions, conformational analysis of decalins.	10	Lecture
Ball and stick model for conformations of acyclic and cyclohexyl systems	2	Demonstration with discussion
UNIT V: HETEROCYCLIC COMPOUNDS	"	
Biological importance of benzofuran, thianaphthene, isobenzofuran, isothianaphthene, pyradizine barbituric acid, pyrimidine, thymine	4	ICT
Preparative methods and explainations for the chemical properties of pyrazole, imidazole, isoxazole, thiazole, isothiazole, synthesis of benzofuran, thianaphthene, isobenzofuran, isothianaphthene, pyradizine barbituric acid, pyrimidine, thymine	11	Lecture

Course	Progra	mme O	utcomes	(POs)		Programme Specific Outcomes (PSOs)				os)	Mean
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	4	4	1	4	4.5	4.5	3	4.5	3.75
CO2	4	4.5	4	4	1	4	4.5	4.5	3	4.5	3.8
CO3	4	4	4	4.5	1	4	4.5	4.5	3	4.5	3.8
CO4	4	4	4	4.5	1	4	4.5	4.5	3.5	4.5	3.85
CO5	4.5	4	4	4.5	1	4	4.5	4.5	3.5	4.5	3.9
	Mean Overall Score										

Result: The Score for this Course is 3.82 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K3	K4 / K2
II	K4(2.5m), K3(2.5m)/ K2	K1/ K4
III	K2 / K4	K3/ K3(5m), K4(5m)
IV	K3/ K3(2.5m) K4(2.5m)	K2 / K3
V	K4/K1	K3(5m), K4(5m) / K1

Programme: M.Sc Chemistry CORE 7

Semester: II Hours: 6/W, 90 Hrs./S

Sub. Code : P22CD7 Credits : 4

TITLE OF THE PAPER: PHYSICAL CHEMISTRY II

Pedagog y	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving session/Quiz/Lab session/videos/Demonstration	ICT		
			class/Library session.			
	5	3	1	1		
PREAMI	ve of the course is to make the student to enlighte	en Qua	antum			
Chemistr	y, Gro	up Theo	ry, Thermodynamics, Phase rule, Chemical Ki	netics,	and	
Electroch	•	_	• , , ,	ĺ		
COURSE	OUTC	OME: At	the end of the Semester, the Students will be able to	Unit	Hrs	
			, , , , , , , , , , , , , , , , , , , ,		/S	
CO1 : Ap	ply the	Schroding	er wave equation to various systems	1	18	
CO2: dis	scuss the	hybridiza	tion of atomic orbitals and representation of vibrational	2	18	
modes in	non line	ear molect	ales and able to construct the character table for point			
groups C ₂			1			
CO3: ext	olain the	laws of	thermodynamics and apply the phase rule for various	3	18	
system						
CO4: exp	4	18				
CO5: des	cribe dou	ıble layer ı	model and Electrokinetic phenomena	5	18	

UNIT I

OUANTUM CHEMISTRY II

(18 Hours)

Particle in one dimensional and three-dimensional box –Rigid Rotor, Simple Harmonic Oscillator – Hydrogen atom – separation of variables – Radial and angular wave functions - quantum numbers.

UNIT II

GROUP THEORY II

(18 Hours)

Applications of group theory - Hybridizations of atomic orbitals in CH_4 , $[PtCl_4]^2$. Determination of representations of vibrational modes in non-linear molecules H_2O , NH_3 , BF_3 and CH_4 molecules. SALC procedure - Evaluation of energy and molecular orbitals of systems like ethylene and butadiene. Selection rules for vibrational IR and Raman spectra -electronic spectra of HCHO and ethylene.

UNIT III

THERMODYNAMICS AND PHASE RULE

(18 Hours)

Law of mass action - Van't Hoff Reaction isotherm - Temperature - dependence of equilibrium constant - The Van't Hoff equation - Pressure dependence of equilibrium constant. Applications of phase rule to Fe-C system. Three component system Roozeboom plots acetic acid - chloroform - water system - plait point - system involving two solids and a liquid NaCl - Crystallization of pure components, formation of hydrates, formation of double salts with examples, salting out phenomenon.

UNIT IV (18 Hours)

CHEMICAL KINETICS I

Collision theory of Bimolecular reactions: ARR theory. Theories of unimolecular gaseous reactions – Hinshelwood theory, RRK theory, RRKM theory.

Kinetics in solution - Comparison between gas phase and solution - Collision in solution - ARR theory applicable to reactions between ions in solution - salt effect, primary & secondary and isotope effects.

UNIT V

ELECTROCHEMISTRY III

(18 Hours)

Ion association - Bjerrum treatment of ion association - factors influencing ion association. Electrodics: electrode - electrolyte interface - formation of double layer- Helmholtz and stern model -Electrocapillarity - electrocapillary curves - Lipmann equation - Measurement of interfacial tension using Lipmann capillary electrometer - Lipmann potential. Electrokinetic phenomena -electroosmosis -Streaming potential – Electrophoresis - Zeta potential.

REFERENCES

- 1. G.R.Chatwal & S.K.Anand, Quantum Mechanics, 2nd Ed., Himalaya Pub. House, 1989.
- 2. R.K. Prasad, Quantum Chemistry, 4th, New Age International Publishers, Reprint 2015.
- 3. Puri, Sharma and Pathania, Principles of Physical Chemistry, Vishal publishers, 2014.
- 4. John O.M. Bockris & Amulya K.N.Reddy, Modern Electrochemistry Vol.1, 1st Ed., Plenum &Rosetta. Reprint 1977.
- 5. A.K. Chandra, Introductory Quantum Chemistry 3rd Ed., Tata McGraw Hill Pub. Reprint 1993.
- 6. K.V. Raman, Group Theory and its Applications to Chemistry, 1st Ed., Tata McGraw Hill Pub. Reprint 1994.
- 7. S. Swarnalakshmi, T.Saroja & R.M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, 1st Ed., Universities Press, Reprint 2012.
- 8. J. Rajaram&J.C.Kuriacose, Thermodynamics, 2nd Ed., Vishal Pub. 1993.
- 9. B. Viswanathan, R. Venkataraman, K. Rengarajan, D. Sundaram & P.S. Raghavan, Electrochemistry, 1st Ed., S. Viswanthan Pub. Pvt Ltd., 2007.
- 10. F. Albert Cotton, Chemical Applications of Group Theory, 3rd Ed., Wiley India Edition, Reprint 2010.
- 11. D.A. McQuarrie and J.D.Simon, Physical chemistry. A molecular Approach, Viva Books(p) Ltd.,
- 12. Ramakrishnan & Gopinathan, Group theory in chemistry, Vishal publication, 2005. 13. Keith J.Laidler, Chemical Kinetics, 2nd Ed., Tata McGraw Hill Pub. Co., Ltd., Reprint 1986.
- 14. Gurdeep Raj, Chemical Kinetics, 1st Ed., Goel Pub. House, 1985.
- 15. S.P.Singh, Chemical Kinetics, Goel Pub.
- 16. Subash and Satish, Chemical kinetics and Catalysis, Jeyaprakash & Co.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING						
UNIT 1 : QUANTUM CHEMISTRY II									
	Schrodinger wave equation to Particle in one dimensional and three-dimensional box, Tunneling Degeneracy removal of degeneracy.	4	ICT						

Radial and angular wave functions and quantum numbers.	10	Lecture
Solution for wave function to Rigid Rotor, Simple Harmonic Oscillator and Hydrogen atom.	4	Problem solving
UNIT 2 : GROUP THEORY II	1	
Character table for point groups C ₂ V and C ₃ V. Hybrid orbitals in nonlinear molecules, Hybridisation of atomic orbitals in CH ₄ and [PtCl ₄] ⁻² .	10	Lecture
SALC procedure - Evaluation of energy and molecular orbitals of systems like ethylene and butadiene.	4	ICT
Representations of vibrational modes in non-linear molecules H ₂ O, NH ₃ and BF ₃ molecules. Selection rules for vibrational IR and Raman spectra.	4	Seminar
UNIT 3 : THERMODYNAMICS AND PHASE RULE		
Law of mass action, Van't Hoff Reaction isotherm, Temperature dependence of equilibrium constant, The Van't Hoff equation, Pressure dependence of equilibrium constant		Lecture
Phase rule to Fe-C system, three component system Crystallization of pure components, formation of hydrates, formation of double salts with examples, salting out phenomenon.		
Roozeboom plots acetic acid - chloroform - water system, plait point system involving two solids and a liquid NaCl.	4	ICT
Crystallization of pure components, formation of hydrates, formation of double salts with examples, salting out phenomenon.	2	Seminar
UNIT 4 : CHEMICAL KINETICS I		
Collision theory of Bimolecular reactions ARR theory. Theories of unimolecular and Bimolecular gaseous reactions Kinetics in solution, Comparison between gas phase and solution ARR theory between ions in solution. primary & secondary salt effect and isotope effects.	14	Lecture
Collision theory of Bimolecular reactions ARR theory. Theories of unimolecular and Bimolecular gaseous reactions.	4	ICT

Bjerrum treatment of ion association, factors influencing ion association. Electrodics, electrolyte interface, formation of double layer Helmholtz and stern model Electrokinetic phenomena, electroosmosis, Streaming potential Electrophoresis Zeta potential. Electrocapillarity, electrocapillary curves, Lipmann equation, Measurement of interfacial tension using Lipmann capillary electrometer, Lipmann potential.	
Formation of double layer Helmholtz and stern model Electrokinetic phenomena, electro-osmosis.	4 ICT

Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)							Os)	Mean		
											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	5	4	4	1	3	4	4	4	5	3.8
CO2	4	5	4	3	1	4	5	4	3	4	3.6
CO3	4	4	3	4	1	4	5	4	3	4	3.5
CO4	4	5	4	3	1	4	5	4	3	4	3.6
CO5	5	4	3	3	1	4	5	4	4	4	3.7
	Mean Overall Score										

Result: The Score for this Course is 3.64 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 (5m)	K2 (10 m)
II	K2 (5m)	K1 (10 m)
III	K3 (5m)	K4 (10 m)
IV	K3 (5m)	K4 (10 m)
V	K3(2.5m)/K1(2.5m)	K3 (10 m)

Programme :M.Sc Chemistry CORE 8

Semester: II Hours: 6/W, 90 Hrs./S

Sub. Code : P22CD8P Credits :4

TITLE OF THE PAPER: ORGANIC CHEMISTRY PRACTICAL

Pedagogy	Hours	Lab session//Demonstration class/Viva voce									
	6	6									
PREAMBLE: The objective of the course is to make the student to analyse the given mixture of organic compounds, synthesize organic compounds (double Stage) and to separate the mixture into components by paper/ TLC techniques.											
COURSE	OUTCO	ME: At the end of the Semester, the Students will be able to	Unit	Hrs.							
CO1: anal	CO1: analyze the given mixture of organic compounds										
CO2: synthesize organic compounds (double Stage)											
&Separate	&Separate the mixture of organic compounds into individual componentsby										
paper/ TLO	C techniqu	es.									

I .ANALYSIS OF MIXTURE OF ORGANIC COMPOUNDS

Qualitative Organic analysis – Separation and characterization of the compounds in two component mixtures.

II. SYNTHESIS OF ORGANIC COMPOUNDS (involving double stage, any three)

- 1. p-Nitroaniline from acetanilide
- 2. Preparation of aspirin from methyl salicylate.
- 3. p-bromoaniline from acetanilide
- 4. m-nitrobenzoic acid from methyl benzoate
- III: Separation of mixture of organic compounds by paper/TLC chromatographic technique (Demonstration)

- 1. Arthur I Vogel, A textbook of Practical Organic Chemistry including Qualitative Organic Analysis, 3rd Ed., English language book society and Longman Group Ltd, 1975.
- 2. B.B. Dey and M.V. Sitaraman, Laboratory manual of organic chemistry.
- 3. N.S.Gnanaprakasam, organic chemistry Lab Manual, 1st Ed., S.Viswanathan (Printers and Publishers), 2013.
- 4. G.Svehla, Vogel's Quantitative Inorganic Analysis, 7th Ed., Pearson Education, 2003.

UNITS	TOPIC	LECTURE	MODE OF								
		HOURS	TEACHING								
UNIT I: AN	UNIT I : ANALYSIS OF MIXTURE OF ORGANIC COMPOUNDS										
	Analyse the given mixture of organic compounds –	70	Lab Session								
	Separation and functional group detection										
	Analyse the given mixture of organic compounds –	10	Demonstration								
	Separation and functional group detection										
	Analyse the given mixture of organic compounds –	10	Viva								
	Separation and functional group detection										
UNIT II: SY	NTHESIS OF ORGANIC COMPOUNDS (Double sta	ge) & SEPA	RATION OF								
MIXTURE	OF ORGANIC COMPOUNDS										
	synthesis of organic compounds (double stage)	50	Lab Session								
	synthesis of organic compounds (double stage)	5	Demonstration								
	separation of mixture of organic compounds										
		5	Viva								

Course	se Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)				Mean
Outcomes											
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	4.5	4	1	5	5	4	4	4	3.95
CO2	4	4	4	4	1	5	5	4	5	4	4.0
					Me	an Overa	all Score				3.98

Result: The Score for this Course is 3.98 (High Relationship)

Programme: M.Sc Chemistry ELECTIVE: 2

Semester: II Hours: 5 /W, 75 Hrs./S

Sub. Code : P22DSD2 Credits :4

TITLE OF THE PAPER: MOLECULAR SPECTROSCOPY & ANALYTICAL CHEMISTRY II

Pedago	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem solving	ICT						
gy			session/Quiz/videos/Library session.							
	5	3	1	1						
PREAM	PREAMBLE: The objective of the course is to make the student to comprehend the									
principle	principle, instrumentation and applications of various spectra such as $\hat{ ext{UV}}$, IR, Raman, Mass									
and Chr	omatogr	aphic tecl	nniques.							
	Unit	Hrs./								
At the en		S								
CO1: demonstrate the fundamentals of Nuclear Magnetic Resonance Spectroscopy										
CO2 : de:	monstrate	e the funda	amentals of ¹³ C NMR, 2D NMR and ESR Spectroscopy.	2	15					
CO3 : ex	3	15								
	L	fundamen	tals of Thermoanalytical & Spectroanalytical	4	15					
technique	es.									
-			instrumentation and applications of Gas liquid Electrophoresis.	5	15					

UNIT I NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (15 hours)

Theory of Magnetic Resonance spectroscopy - population of energy levels - equation of motion of spin in magnetic fields - relaxation times – instrumentation - chemical shift- spin-spin coupling – ¹H NMR of simple AX and AMX type molecules- chemical shift, spin-spin coupling, coupling constants, factors influencing proton chemical shift - vicinal proton- proton coupling constant- spin decoupling - improving the NMR spectrum - shift reagents. Effect of changing magnetic field. Nuclear Overhauser effect - Applications to organic structures, a brief qualitative discussion of Fourier transform spectroscopy. Simple problems involving UV, IR and NMR to be solved.

UNIT II ¹³C NMR, 2D NMR AND ESR SPECTROSCOPY (15 hours)

¹³C resonance spectroscopy - Comparison of ¹³C NMR and ¹H NMR - 13C NMR–difficulties in recording 13C NMR: Homo nuclear and heteronuclear coupling. Off Resonance decoupled spectrum identification of various types of carbon (functional groups) using 13C NMR. Origin of 13C satellite peaks. Chemical shift - Factors affecting chemical shift - Chemical shifts of aliphatic, olefinic, alkynic, aromatic, carbonyl carbons. Attached Proton Test (APT) & Distortionless enhancement by Polarization Transfer (DEPT) spectrum (DEPT-45, DEPT-90 and DEPT-135 - brief idea).

2D NMR spectroscopy (only elementary idea) about COSY. HOMO COSY (HOMCORR: 1H-1H connectivity, 13C-13C connectivity) HETCOR (Heteronuclear Correlation)

ESR spectroscopy - differences between ESR and NMR - Hyperfine splitting - relation between hyperfine splitting and unpaired electron density- McConnel equation. Applications of ESR spectroscopy - ESR instrumentation -ENDOR- ELDOR.

UNIT III

MOSSBAUER & PHOTOELECTRON SPECTROSCOPY

(15 hours)

Principles of Mossbauer spectroscopy, Doppler shift, recoil energy, experimental techniques Isomer shift, quadrupole splitting, magnetic hyperfine interaction- chemical applications - isomer shift and quadrupole splitting in iron complexes.

Photoelectron spectroscopy (PES): Principles of UV-PES and XPS, Auger electrons in XPS, applications of UV- PES and XPS.

UNIT IV

THERMOANALYTICAL & SPECTROANALYTICAL TECHNIQUES

(15 hours)

Thermoanalytical techniques: Principle, Instrumentation (Block diagram only) and applications of TGA Principles and applications of DTA and DSC - Factors affecting TGA and DTA curves.

Spectro analytical techniques: Atomic Absorption Spectrometry, Flame Photometry –Atomic Emission Spectrometry.

UNIT V

POLARIMETRY (15 hours)

Optical rotatory dispersion, circular dichroism, Cotton effect, Dispersion curves - Recognition and location of a carbonyl group in an asymmetric environment. The octant rule and the haloketone rule.

- 1. Jag Mohan, Organic Analytical Chemistry, Theory and Practise, 1st Ed., Narosa Publishing House, Reprint 2012.
- 2. P.S. Kalsi, Spectroscopy of organic Compounds, 1st Ed., Wiley Eastern Limited, 1993.
- 3. Y.R. Sharma, Elementary Organic Spectroscopy, 1st Ed., S.Chand and Company Ltd, 2011.
- 4. William Kemp, Organic Spectroscopy, 2nd Ed., English Language Book Society, Macmillan, 1987.
- 5. C.N. Banwell, Fundamentals of Molecular spectroscopy, 3rdEd., Tata McGraw-Hill Publishing company limited, 1992.
- 6. B.K. Sharma, Instrumental methods of chemical Analysis, 29th Ed. Goel Publishing house, 2013.
- 7. A.K.Srivastava and P.C.Jain, Chemical Analysis: An Instrumental Approach, 4th Ed., 2009.
- 8. John R.Dyer, Applications of Absorption Spectroscopy of organic compounds, 1st Ed. Prentice Hall of India Private Ltd, Reprint 1987.
- 9. Skoog and West, Fundamentals of Analytical chemistry, 9th Ed., Saunders College Pub. 2004.
- 10. Robert M.Silverstein, G. Clayton Bassier& Terence C.Morrill, Spectrometric Identification of organic compounds, 1st Ed. Prentice Hall of India Pvt Ltd, Reprint 1987.
- 11. R. Gopalan, Elements of Analytical chemistry, Sultan Chand & Sons, 2002.
- 12. G.R. Chatwal, Analytical Spectroscopy, 1st Ed. Himalaya Publishing House, 1996.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	NUCLEAR MAGNETIC RESONANCE SPECTR	OSCOPY	
	NMR Instrumentation	2	ICT
	Theory of Magnetic Resonance spectroscopy - population of energy levels - equation of motion of spin in magnetic fields - relaxation times — instrumentation - chemical shift- spin-spin coupling — ¹ H NMR of simple AX and AMX type molecules- chemical shift, spin-spin coupling, coupling constants, factors influencing proton chemical shift - vicinal proton- proton coupling constant- spin decoupling - improving the NMR spectrum - shift reagents. Effect of changing magnetic field. Nuclear Overhauser effect - Applications to organic structures, a brief qualitative discussion of Fourier transform spectroscopy.	11	LECTURE
	Simple problems involving UV, IR and NMR to be solved.	2	Problem solving
UNIT 11	¹³ C NMR, 2D NMR AND ESR SPECTROSCOPY	7	
	NMR and ¹ H NMR - Chemical shift - Factors affecting chemical shift - Chemical shifts of aliphatic, olefinic, alkynic, aromatic, carbonyl carbons. ESR spectroscopy - differences between ESR and NMR - Hyperfine splitting - relation between hyperfine splitting and unpaired electron density- McConnel equationENDOR- ELDOR.	9	Lecture
	Applications of ESR spectroscopy -	3	Seminar
	2D NMR spectroscopy (only elementary idea) about COSY, ESR instrumentation	3	ICT
UNIT II	I MOSSBAUER & PHOTOELECTRON SPECTRO	OSCOPY	
	Principles of Mossbauer spectroscopy, Doppler shift, recoil energy, experimental techniques Isomer shift, quadrupole splitting, magnetic hyperfine interaction- chemical applications - isomer shift and quadrupole splitting in iron complexes. Photoelectron spectroscopy (PES): Principles of UV-PES and XPS, Auger electrons in XPS.	9	Lecture

applications of UV- PES and XPS	3	Peer teaching/seminar
Principles of Mossbauer spectroscopy, Doppler	3	ICT
shift, recoil energy, experimental techniques		
UNIT IV THERMOANALYTICAL & SPECTROANALY	TICAL TE	CHNIQUES
Thermoanalytical techniques: Instrumentation	5	ICT
Spectroanalytical techniques: Atomic Absorption		
Spectrometry, Flame Photometry –Atomic		
Emission Spectrometry.		
Thermoanalytical techniques: Principle, and	10	Lecture
applications of TGA Principles and applications of		
DTA and DSC - Factors affecting TGA and DTA		
curves.		
UNIT V POLARIMETRY		
Optical rotatory dispersion, circular dichroism,		Lecture
Cotton effect, Dispersion curves - Recognition and	9	
location of a carbonyl group in an asymmetric		
environment. The octant rule and the haloketone		
rule.		
Recognition and location of a carbonyl group in an	3	Group discussion
asymmetric environment.		Seminar
Optical rotatory dispersion, circular dichroism,	3	ICT
Cotton effect		

Course	Progra	ımme Oı	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean		
Outcomes											scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs	
CO1	5	4	4	4	1	5	4	4	3	3	3.7	
CO2	5	3	3	5	1	5	4	4	3	3	3.6	
CO3	5	4	4	4	1	5	4	4	3	3	3.7	
CO4	5	3	3	5	1	5	4	4	3	3	3.6	
CO5	5	3	3	5	1	5	4	4	3	3	3.6	
	Mean Overall Score											

Result: The Score for this Course is 3.64 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K4	K2 / K3(5m), K4(5m)
II	K4 / K3	K1/ K2
III	K2 / K4	K3/ K1
IV	K4(2.5m), K3(2.5m)/K2	K4 / K3
V	K3/K1	K3(5m), K4(5m) / K4

Programme :M.Sc Chemistry ELECTIVE: 2

Semester : II Hours : 5 /W, 75 Hrs./S

Sub. Code : P22DSD2 Credits :4

TITLE OF THE PAPER: POLYMER CEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem	ICT	
			solving session/Quiz/videos/Library session.		
	5	3	1	1	
PREAMBI	LE: The	objective o	f the course is to make the student understand the g	general	
structure a	nd types	s of polyme	ers, their mechanism, preparation properties and use	es of va	arious
polymers,	determin	e the mole	cular weight of the polymers, the chemistry behind	variou	S
methods of		_	C		•
COURSE	OUTCO	ME: At the	e end of the Semester, the Students will be able to	Unit	Hrs.
					/S
CO1: ident	ify the re	peat units o	of particular polymers and specify the isomeric	1	15
structures w	hich can	exist for th	nose repeat units and account for reaction mechanisms		
during radio	cal, ionic	and conder	nsation polymerization.		
CO2: descr	ibe the g	eneral meth	od of preparation and uses of various industrially	2	15
important p	olymers.				
CO3: indic	ate how t	he properti	es of polymeric materials can be exploited and	3	15
estimate the	e number	- and weigh	nt-average molecular masses of polymer samples		
given the de	egree of p	polymerisat	ion and mass fraction of chains present.		
CO4 : place emphasis on how the various synthetic techniques that are used to					15
control stru					
polymers.					
CO5: descr	ibe vario	us processi	ng methods of polymers.	5	15

UNIT I (15 Hours) CLASSIFICATION OF POLYMERS AND CHEMISTRY OF POLYMERISATION

Classification of Polymers, linear polymers, non-linear or branched polymers, cross – linked polymers, homopolymers, co-polymers, block polymers and graft polymers.

Chemistry of polymerization: Types of polymerizations – mechanism – chain, Ionic, co-ordination, ring opening, metathetical, group transfer, polyaddition and polycondensation polymerizations.

UNIT II INDIVIDUAL POLYMERS (15 Hours)

Individual Polymers: Monomers required general methods of preparation, repeat units and uses of the following polymers and resins, polystyrene, polyacrylonitrile, polymethyl, methacrylate, Polytetra–fluoroethylene, polybutadienes and polychloroprene, polyesters, polycarbonates, polyimides, polyamides (Kevlar), polyurethanes, polyethylene, glycols, phenol – formaldehyde, urea–formaldehyde, melamine–formaldehyde and epoxy resins.

UNIT III PROPERTIES OF POLYMERS (15 Hours)

Intrinsic properties – processing properties – basic idea of isomerism of polymers – configuration of polymer chain – geometrical structure – syndiotatic, isotatic and attaic polymers.

Glass transition temperature: Definition – factors affecting glass transition temperature – relationships between glass transition temperature and (a) molecular weight, (b) melting point and (c) plasticizer – importance of glass transition temperature – heat distortion temperature.

Molecular weight and size of polymers: Number average, weight average, sedimentation and viscosity - average molecular weights – molecular weights and degree of polymerization – poly dispersity – molecular weight distribution in polymers – size of polymer molecules – kinetics of polymerization.

UNIT IV (15 Hours) POLYMERISATION TECHNIQUES, DEGRADATION AND USES OF POLYMERS

PolymerisationTechniques: Bulk, solution, suspension, emulsion, melt condensation and interfacial polycondensation polymerizations, Degradation: Types of degradation – thermal, mechanical, ultrasonic and photodegradation – photo stabilizers – oxidative degradation – antioxidants – hydrolytic degradation. Uses of polymers in electronics and biomedicine

UNIT V POLYMER PROCESSING (15 Hours)

Polymer processing: Plastics (thermo and thermosetting), elastomers, fibres, compounding, plasticizers, colorants, flame retardants. Compression and injection mouldings – film extrusion and calendaring – die casting and rotational casting – thermoforming – reinforcing.

- 1. V.R.Gowarikar, N.V. Viswanathan and Jayadev Sreedher, "Polymer Science", Wiley Eastern Ltd., New Delhi, 1986.
- 2. B.K.Sharma, "Polymer Chemistry", Goel Pub., House, Meerut 1989.
- 3. F.W.Billmeyer, "Text Book of Polymer Science", 3rdedn., John Wiley and sons, New York, 1984.
- 4. P.Bahadur, N.V.Sastry, Principles of Polymer Science, II nd Edn., Narosa Pub. House Pvt. Ltd., New Delhi, 2005.
- 5. G.S.Misra, Introductory Polymer Chemistry, New Age International Pub., New Delhi, 2005.

UNITS	TOPIC	LECTURE	MODE OF TEACHING						
		HOURS							
UNIT I: CI	UNIT I: CLASSIFICATION OF POLYMERS AND CHEMISTRY OF								
POLYME	RISATION								
	Classification of Polymers, linear polymers, non-linear or branched, cross linked polymers, homopolymers, co-polymers, block polymers and graft polymers.	5	Discussion / seminar/ peer teaching						
	Types of polymerizations – mechanism –		teaching						
	chain, Ionic, co-ordination	5	Lecture						
	ring opening, metathetical, group transfer, polyaddition and polycondensation polymerizations.	5	ICT						

UNIT II: INDIVIDUAL POLYMERS		
Preparation and uses of polystyrene,	4	Lecture
polyacrylonitrile, polymethyl, methacrylate		
Preparation and uses of Polytetra-		
fluoroethylene, polybutadienes and		
polychloroprene, polyesters, polycarbonates,	6	Library session followed by
polyimides, polyamides		discussion/ seminar/
		tutorial
Preparation and uses of polyurethanes,	_	
polyethylene, glycols, phenol –	5	ICT
formaldehyde, urea-formaldehyde,		
melamine–formaldehyde and epoxy resins		
UNIT III: PROPERTIES OF POLYMERS		
Intrinsic properties – processing properties,		
isomerism of polymers, configuration of		
polymer chain, geometrical structure,		
syndiotatic, isotatic and atatic polymers	4	Lecture
	7	Lecture
Glass transition temperature: Definition –		
factors affecting glass transition temperature,		
importance of glass transition temperature,	4	Seminar / assignment
heat distortion temperature		
relationships between glass transition		
temperature and (a) molecular weight, (b)	2	Discussion / library session
melting point and (c) plasticizer		
Molecular weight of polymers: Number		
average, weight average, sedimentation and		
viscosity - average molecular weights,		
molecular weights and degree of	3	Problem solving session/
polymerization, poly dispersity, molecular		quiz
weight distribution in polymers		
size of polymer molecules, kinetics of	2	ICT
polymerization.		
UNIT IV: POLYMERISATION TECHNIQUES DEC	GRADAT	ION AND USES OF
POLYMERS		
Polymerisation Techniques: Bulk, solution,		
suspension, emulsion, melt condensation and		
interfacial polycondensation polymerizations	6	Lecture
Degradation: Types of degradation –		
thermal, mechanical, ultrasonic and	5	Seminar / peer teaching
photodegradation – photo stabilizers		
oxidative degradation – antioxidants –		
hydrolytic degradation. Uses of polymers in	4	ICT
electronics and biomedicine.		

UNIT V: POLYMER PROCESSING						
Plastics (thermo and thermosetting), elastomers, fibres, compounding,						
plasticizers, colorants, flame retardants.	7	Lecture				
Compression and injection moulding, film						
extrusion and calendaring	4	Videos				
die casting and rotational casting,	4	ICT				
thermoforming, reinforcing.						

Course	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean		
Outcomes										scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3.5	3	3.5	1	4	3	3	4	4	3.3
CO2	4	3	3	4	1	4	4	3	3	4	3.3
CO3	4	3	4	4	1	4	4	3.5	3.5	4	3.5
CO4	4	3	3.5	4	1	4	4	3	3	4	3.35
CO5	4	3	3.5	4	1	4	3	5	4	3.5	3.45
											3.38

Result: The Score for this Course is 3.38 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K4	K2 / K3
II	K3 / K4(2.5m), K3(2.5m)	K1/ K4
III	K3(2.5m) ,K4(2.5m) / K1	K4 / K2
IV	K2 / K3	K3 / K3(5m), k4(5m)
V	K4 / K2	K3(5m), k4(5m) / K1

Programme :M.Sc Chemistry SKILL ENHANCEMENT COURSE II

Semester: II Hours: 2 /W, 30 Hrs./S

Sub. Code : P22SED2P Credits : 2

TITLE OF THE PAPER: COMPUTATIONAL CHEMISTRY PRACTICAL

Pedagogy	Hours	Lab session//Demonstration class/Viva voce					
	2	2					
stepwise a Molinspir	PREAMBLE: The objective of the course is to make the student gain basic idea and stepwise approach to Chemdraw, ACD/Chemsketch, Argus Lab, AVOGADRO, Molinspiration, preADMET, SwissADME, SwissDock, 1 – Click online server,						
	SANJEEVINI, Autodock, and Crystal Explorer.						
COURSE	COURSE OUTCOME: At the end of the Semester, the Students will be able to Unit Hrs						
UNIT 1 CO1: use computational software.							

EXERCISES – The students are directed to do the following exercises using suitable computational software.

- **A.** Draw the structures of organic molecules, conformers and reaction schemes using **Chemdraw** or **ACD/Chemsketch**.
- **B.** Argus Lab or ACD/Chemsketch or Avogadro Molecular Editor can be used for the following exercises. Minimum of six experiments is required to be carried out in this section.
- 1. Draw the structures and optimize the geometry of simple organic molecules.
- 2. Calculate the energy gap between HOMO and LUMO in simple molecules and visualize the molecular orbitals.
- 3. Calculate the dipole moment of polar organic molecules.
- 4. Calculate the electrostatic charges of atoms in organic molecules using population analysis.
- 5. Calculate the Resonance energy of aromatic compounds.
- 6. Predict the stability of *ortho*, *meta*, *para* products of an electrophilic substitution reaction in the aromatic ring using computational chemistry calculations.
- 7. Calculate the dimerization energy of carboxylic acids.
- 8. Perform the conformational analysis of an alkane of your choice using potential energy scan.
- 9. Find the transition state of simple organic reactions and plot the reaction profile.

10. Find the Gibbs free energy of simple gaseous phase reactions and calculate equilibrium constant.

11. Generate and analyze the UV, IR and NMR spectra of simple organic molecules.

12. Calculate the pKa of simple organic molecules and compare it with experimental values.

C. Prediction of molecular properties, bioactivity and molecular docking of drug molecules.

1. Predict the molecular properties and bioactivity of the simple drug molecules like aspirin,

acetaminophen, or the drugs of your choices, using the online server molinspiration.

2. Predict the drug likeliness, ADME and Toxicity of the drug classes like antibiotics, analgesics, antihistamines, CNS depressants, or the drug classes of your choice, using online server

preADMETor SwissADMEor SwissDock.

3. Perform molecular docking (Ligand – Protein interaction) of your choice of drug molecules

using 1-click docking online server tool at mcule.com (Website: https://mcule.com/. First register at the site andperform molecular docking) or Autodock tools or Autodock Vina or

ArgusLab or **SANJEEVINI** Molecular Docking platforms.

NOT FOR EVALUATION

D. Learn to generate Hirshfeld surfaces, study the interaction energies and draw the electrostatic

potential map using Crystal Explorer Software (Demonstration only)

LINKS TO DOWNLOAD SOFTWARE

1-click docking online server: https://mcule.com/

ACD/Chemsketch : https://www.acdlabs.com/resources/freeware/chemsketch/index.php

ArgusLab: http://www.arguslab.com/arguslab.com/ArgusLab.html

Autodock Tools Link: http://mgltools.scripps.edu/downloads

Autodock Vina Link: http://vina.scripps.edu/

Avogadro Molecular Editor: https://avogadro.cc/

62

Crystal Explorer: https://crystalexplorer.scb.uwa.edu.au/

Discovery Studio Visualizer: https://www.3dsbiovia.com/products/co...

Molinspiration: https://www.molinspiration.com/

PreADMET :https://preadmet.bmdrc.kr/

SwissADME: http://www.swissadme.ch/index.php

REFERENCE BOOKS

1. Waren J. Hehre, Alan J. Shusterman and Janet E. Nelson, *The molecular modelling workbook for organic chemistry*, Wavefunction Inc., **1998**.

- 2. 3. James B. Foresman and Eleen Frisch, *Exploring Chemistry with Electronic Structure Methods*, Gaussian Inc., Second Edition, **1996**.
- 3. 4. James B. Foresman and Eleen Frisch, *Exploring Chemistry with Electronic Structure Methods*, Gaussian Inc., Third Edition, **2015**.

Internal: 40 marks External: 60 marks

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I : CC	OMPUTATIONAL CHEMISTRY PRACTICAL		
	Draw the structures of organic molecules, conformers	10	Practical
	and reaction schemes using Chemdraw or		session
	ACD/Chemsketch		
	Argus Lab or ACD/Chemsketch or Avogadro Molecular Editor can be used for the following exercises. Minimum of six experiments is required to be carried out in this section.	10	Practical session
	Prediction of molecular properties, bioactivity and molecular docking of drug molecules.	10	Practical session

Course	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean		
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	3.5	3	1	3.5	4	3	4	3	3.4
	Mean Overall Score							3.4			

Result: The Score for this Course is 3.4 (High Relationship)

Programme :M.Sc Chemistry CORE 9

Semester: III Hours: 6/W, 90 Hrs./S

Sub. Code : P22CD9 Credits :5

TITLE OF THE PAPER: INORGANIC CHEMISTRY-III

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem	ICT	
			solving session/Quiz/videos/Library session.		
	6	4	1	1	
PREAMBI	LE: The	bjective o	f the course is to make the student understand the	import	tance
	,		ers, structure and applications of metal clusters ar	•	,
the chemist	try behin	d lanthani	des and actinides and functions of bioinorganic co	mpoun	ds
COURSE (OUTCO	ME: At the	end of the Semester, the Students will be able to	Unit	Hrs./S
CO1: identi	ify the str	uctural feat	tures, properties, correlation and applications of	1	18
inorganic po	olymers, j	polyacids o	f Vanadium, Chromium, Molybdenum and		
Tungsten.					
			of low molecularity metal clusters, examine the	2	18
synthesis, st	tructures,	bonding ar	nd chemistry of specific boron hydrides.		
CO3: demo	onstrate a	n understar	nding of chemistry of 'f' block elements their	3	18
properties a	nd separa	tion of lant	chanides and actinides.		
CO4: devel	op an app	reciation f	or the structure and function of metal ions in the	4	18
biological s	ystems ar	nd explain l	now metal ions function as catalytic and structural		
centers in b		•			
			sformation of nitrogen through biological and	5	18
		_	nto cutting edge developments that utilizes metal		
ions for med	dical purp	oses.			

UNIT I

POLYACIDS AND INORGANIC POLYMERS

(18 Hours)

- 1.1. Poly acids: Isopoly acids and heteropolyacids of Vanadium, Chromium, Molybdenum and Tungsten-Keggin, Well-Dawson structure.
- 1.2. Inorganic Polymers: Structure and classification of silicates applications of Paulings rule of electrovalence isomorphous replacements in silicates molecular sieves silanes, higher silanes, multiple bonded systems, silicon nitrides, siloxanes polysulphur nitrogen compounds S_4N_4 , $(SN)_x$ poly organophosphazenes polycarbonates.

UNIT II

HYDRIDES AND METAL CLUSTERS

(18 Hours)

Boron hydrides: Preparation, properties and structure of polyhedral boranes— B_4H_{10} , B_5H_9 , $B_{10}H_{12}$ and $B_{12}H_{12}$. borazines, boron nitrides, hydroborate ions — Preparation, properties and structure, STYX numbers, Wade's rules. Carboranes—Types such as nido-closo, arachno-preparation properties and Structure. Metallocarboranes—a general study

Metal clusters: Chemistry and molecularity of dinuclear and trinuclear metal clusters, Structure of Re_2Cl_8 , metal- metal multiple bonds (quartet and quintet bonds with examples)

UNIT III

LANTHANIDES AND ACTINIDES

(18 Hours)

Lanthanides - Electronic configuration - oxidation states - separation of lanthanides - chemical properties of +3 states - lanthanide contraction- colour and spectra - magnetic property- complexes, Lanthanide chelates.

Actinides - Electronic configuration- oxidation states - separation- magnetic property - Extraction of Thorium.

UNIT I V

BIO-INORGANIC CHEMISTRY I

(18 Hours)

Transport proteins, Porphyrin ring system -Oxygen carriers- Haemoglobin- Myoglobin-structure and functions- Oxygenation- Biological redox systems- Cytochromes- classification, Cytochrome a,b,c, Cytochrome P450- structure and functions - Iron-Sulphur proteins- Rubredoxin and ferredoxin, Chlorophylls and photosynthesis. Copper containing proteins- Classification – blue copper proteins – plastocyanin - Ascorbic acid oxidase -Structure and functions- Ceruloplasmin and serum Albumin: Transport and storage of copper. Similarities between Iron and Copper in biological processes.

UNIT V

BIO-INORGANIC CHEMISTRY II

(18 Hours)

- 5.1. Nitrogen fixation Introduction Thermodynamic and kinetic aspects of N_2 fixation , types of nitrogen fixing microorganisms- Role and composition of nitrogenase in nitrogen fixation- structural representation of metal clusters in nitrogenase- redox property- dinitrogen complexes- Nitrogen fixation via nitride formation and reduction of dinitrogen to ammonia.
- 5.2. Vitamin B₁₂ –Chemistry of cobalamin, biochemical functions.
- 5.3. Antimicrobial activity of metal chelates Anti-arthritic gold drugs and chrysotherapy-Anti-inflammatory effects of zinc and copper compounds
- 5.4. Anti-cancer agents, role of metal ion, Radio isotopes- Diagnosis and treatment.

- 1. J.E.Huheey, Ellen A.Kaiter, Richard L. Kaiter & Okhil K. Medhi, Inorganic Chemistry Principles of Structure & Reactivity, 4th Ed., Pearson, 2011.
- 2. F.A.Cotton, G.Wilkinson, G.A.Murillo & M. Bochmann, Advanced Inorganic Chemistry, 1stEd., Wiley Student Edn, 2007.
- 3. H.J.Emeleus & A.G.Sharpe, Modern aspects of Inorganic Chemistry, 4th Ed., ISBN, 1974.
- 4. K.F.Purcell and J.C.Koltz, Inorganic Chemistry, Holt Saunders, 1977.
- 5. B.R.Puri, L.R.Sharma & K.C.Kalia, Principles of Inorganic Chemistry, Vishal Pub.33 ed., 2017.
- 6. U.Malik, G.D.Tuli and R.D.Madan, Selected topics in Inorganic Chemistry, 1992.
- 7. R.D.Madan& Satya Prakash, Modern Inorganic Chemistry (Revised), S.Chand
- 8. Gurtu, Subash and Satish, Chemistry of Rarer elements, Vol I & Vol II, Pragati Prakashan.
- 9. G.N.Mukheriee and Arabindadas, Elements of Bio-Inorganic Chemistry.
- 10. Asim K.Das, Bioinorganic Chemistry, Books and Allied P Ltd.,

UNITS	TOPIC	LECTUR E HOURS	MODE OF TEACHING
UNIT 1	: POLYACIDS AND INORGANIC POLYMERS		
	Isopoly and heteropoly acids of Vanadium, Chromium, Molybdenum and Tungsten.	9	Lecture
	Silicates, Structure, properties correlation and applications. silanes, higher silanes, multiple bonded systems, silicon nitrides, siloxanes	3	ICT
	molecular sieves, polysulphur nitrogen compounds	3	library session/ quiz
	Polyorgano phosphazenes- polycarbonates	3	Seminar
UNIT I	I: HYDRIDES AND METAL CLUSTERS		1
	Boron hydrides: Polyhedral boranes	7	Lecture
	hydroborate ions, carbonates and metallocarboranes	4	Seminar/ Peer teaching
	Metal clusters: Chemistry of low molecularity metal clusters		
	(upto) trinuclear metal clusters;	4	ICT
	metal-metal multiple bonds.	3	Discussion
UNIT I	II: LANTHANIDES AND ACTINIDES		T -
	Lanthanides- Electronic configuration, oxidation states, separation of lanthanides	6	Lecture
	chemical properties of +3 states, lanthanide contraction, colour and spectra	3	ICT
	magnetic property- complexes, Lanthanide chelates	3	Seminar/ assignment
	Actinides - Electronic configuration- oxidation states - Extraction of Thorium	4	Lecture
	Separation and magnetic property of actinides	2	Group discussion
UNIT I	V : BIO-INORGANIC CHEMISTRY I		
	Transport proteins, Porphyrin ring system Oxygen carriers: Haemoglobin-Myoglobin-structure and functions- Oxygenation- Biological redox systems		Lecture
	Cytochromes-classification, Cytochrome a,b,c, Cytochrome P450- structure and functions Chlorophylls and photosynthesis.	5	Lecture
	Iron-sulphur proteins- Rubredoxin and ferredoxin,	3	Seminar/ assignment
	Copper containing proteins- Classification – blue copper proteins –plastocyanin - Ascorbic acid oxidase -Structure and functions		ICT
	Ceruloplasmin and serum Albumin Transport and storage of copper. Similarities between Iron and Copper in biological processes	2	Group discussion

UNIT V: BIO-INORGANIC CHEMISTRY II		
Nitrogen fixation – Introduction - Thermodynamic and kinetic aspects of N ₂ fixation, types of nitrogen fixing microorganisms-Role and composition of nitrogenase in nitrogen fixation-	6	Lecture
Structural representation of metal clusters in nitrogenase- redox property dinitrogen complexes- Nitrogen fixation via nitride formation and reduction of dinitrogen to ammonia.	5	Lecture
Vitamin B ₁₂ –Chemistry of cobalamin, biochemical functions	2	ICT
Antimicrobial activity of metal chelates – Antiarthritic Gold drugs and chrysotherapy. Anti-inflammatory effects of zinc and copper compounds	3	Seminar/ Peer teaching
Anti-cancer agents, role of metal ion, Radio isotopes- Diagnosis and treatment.	2	library session/ assignment

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes										scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	3	3	1	4	4	3	2	3	3.0
CO2	4	3	2	3	1	4	4	3	2	3	2.9
CO3	4	3	3	4	1	4	2	3	3	4	3.1
CO4	4	4	4	3	1	4	4	4	3	4	3.5
CO5	4	4	4	4	1	4	4	4	3	4	3.6
Mean Overall Score							3.22				

Result: The Score for this Course is 3.22 (High relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K2 / K2	K2 / K2
II	K4 / K4	K4 / K4
III	K1/ K1	K1 / K1
IV	K3/ K3	K3 / K3
V	K3 & K4 / K3 & K4	K3 & K4 / K3 & K4

Programme :M.Sc Chemistry CORE 10

Semester : III Hours : 6/W, 90 Hrs./S

Sub. Code : P22CD10 Credits : 4

TITLE OF THE PAPER: ORGANIC CHEMISTRY-III

Pedagogy	Hours		Peer Teaching/Seminar/roleplay/ Discussion/Problem solving session/Quiz/Lab session/Videos/ Demonstration Class/Library session.	ICT	
	6	4	1	1	

PREAMBLE:

The objective of the course is to make the students acquire a sound and in-depth knowledge of the basic fundamental areas of Oxidation and Reduction, have thorough understanding of the important reagents used in Organic Synthesis, awareness of important organic name reactions and their mechanisms and develop a creative and critical thinking mind by learning retrosynthesis.

COURSE OUTCOME: At the end of Semester III, the students will be able to	Unit	Hrs./S
CO1 : discuss the methods of oxidation in different environmental conditions	1	18
CO2: explain reduction reactions using different	2	18
reducing agents.		
CO3: select types of reagents used in various organic synthesis	3	18
CO4: identify organic name reactions and their mechanisms	4	18
CO5: plan new organic synthesis and carry out effectively.	5	18

UNIT I

OXIDATION (18 Hours)

Formation of C=C, C-C bonds by dehydrogenation (Thermal elimination, using Quinones, SeO₂, Ferricyanide); C-C bond in phenol coupling, Acetylenic coupling; Oxidation of alcohols(Jones reagent, Sarett's reagent, Pfitzer – Moffatt reagent), Allyl alcohols (MnO₂,SeO₂, Ag₂CO₃,); Oxidation of Amines; Oxidation of olefinic double bond(Prevost reagent, Chromyl chloride); Bayer villiger oxidation, Dakin reaction; cleavage of Acyloin; ozonolysis; oxidation of Alkyl group (Etards reagent); Oxidation of aldehyde (Chromic acid)

UNIT II

REDUCTION (18 Hours)

Catalytic reduction, Reduction by Hydrazins, Photochemical reduction, Homogeneous Hydrogenation, Reduction by Metal hydrides, Meerwein–Pondorff-Verley reduction – Hydrogen Transfer (Cannizaro reaction) - by dissolving metal.

UNIT III (18 Hours)

REAGENTS IN ORGANIC SYNTHESIS

Use of the following reagents in Organic synthesis – Metal hydrides, Raney Ni, Gilmann reagent, Lithium diisopropylamide, Trimethyl silyl iodide, tri n-butyl tin hydride, OsO₄, DDQ, SeO₂, Woodward Prevost hydroxylation, Peterson's synthesis, 1,3-dithiane, Willkinson's catalyst.

UNIT IV

NAME REACTIONS (18 Hours)

Arndt Eistert, Hoffmann – Loftler reaction Sharpless asymmetric epoxidation – Baylin Hillman, Biginelli, Mitsunobu, Friedlaendar, Hiyama coupling, Passerini, Petasis, Stille coupling, Suzuki coupling, Japp – Klingmann reaction, Heck, Buchwald Hartwig Cross coupling.

UNIT V

RETROSYNTHESIS (18 Hours)

Disconnection and FGI – Synthon and synthetic equivalent – Retron, Supraretron, Partial retron, Chiron, Umpolung– Protection and deprotection – order of events – one group C-X disconnection – Two one group C-X disconnection – 1,2, 1,3, 1,4, 1,5, and 1,6 diffunctional compounds.

- 1. F.S. Gould, Mechanism and Structure in Organic Chemistry, Holt, New York, 1959.
- 2. Principles of Organic Synthesis R.O.C. Norman
- 3. R.E. Ireland, Organic Synthesis, Prentice Hall, 1969.
- 4. H.O. House, Modern Synthetic reactions, W.A. Benjamin Inc. California, 2ndEd., 1972.
- 5. S. Warren, Designing Organic Synthesis A programmed introduction to synthon approach, Wiley, New York, 1978.
- 6.S.M. Muherjee & S.P. Singh, Reaction Mechanism in Organic Chemistry, Mc Milan Ltd.,

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I:	OXIDATION		
	Formation of C=C, C-C bonds by dehydrogenation (Thermal elimination using Quinones, SeO ₂ &Ferricyanide)	3	Lecture, library session
	C-C bond in phenol coupling, Acetylenic coupling.	2	Lecture and assignment
	Oxidation of alcohols (Jones reagent, Sarett's reagent, Pfitzer – Moffatt reagent), Allyl alcohols (MnO ₂ , SeO ₂ , Ag ₂ CO ₃), Oxidation of Amines.	6	Lecture and ICT
	Oxidation of Olefinic double bond (Prevost reagent, Chromyl chloride)	2	Lecture and seminar
	Bayer villiger oxidation, Dakin reaction	1	Lecture and assignment
	cleavage of Acyloin, ozonolysis	2	Lecture
	oxidation of Alkyl group (Etards reagent)	1	Lecture and Problem solving

Oxidation of aldehyde (Chromic acid)	1	Lecture and
		discussion
UNIT II: REDUCTION		
Catalytic reduction	3	ICT
Various reducing agents	12	Lecture
Hydrogen transfer and by dissolving metals	3	Seminar
UNIT III: REAGENTS IN ORGANIC SYNTHESIS		
1. Metal hydrides 2. Raney Ni 3. Gilmann reagent 4. Lithium diisopropylamide 5. Trimethyl silyl iodide 6. tri n-butyl tinhydride 7. OsO ₄ 8. DDQ 9. SeO ₂ 10. Woodward Prevost hydroxylation 11. Peterson's synthesis 12. 1,3-dithiane 13. Willkinson's catalyst.	18	Lecture, ICT, Discussion, Seminar, Assignment, Problem Solving.
UNIT IV: NAME REACTIONS		
Sharpless asymmetric epoxidation	3	ICT
Various named reactions	6	Lecture
 Passerini2. Petasis 3. Stille coupling 4. Suzuki coupling 5. Japp - Klingmann reaction 6. Heck Buchwald Hartwig Cross coupling 	9	Lecture, ICT, Seminar, Assignment, Problem
UNIT V: RETROSYNTHESIS		
Disconnection and FGI-synthon and synthetic equivalent -retron supra retiring, partial retron, Charon, umpolung.	2	ICT
One group and two one group C-X disconnection	12	Lecture
Protection de protection	4	Seminar

Course	Progra	ımme Oı	ıtcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	3	3	3	3	3.5	3.5	4	3	1.5	4	3.2
CO2	3	3	3	3	3.5	3	3	3	1	4	3
CO3	3	3	3	3	3.5	3	3	3.5	1	4	3.1
CO4	3	3	3	3	3.5	4	4	3	1	4	3.2
CO5	3	3	3	3	3.5	4	4	3.5	1	4	3.2
Mean Overall Score								3.14			

Result: The Score for this Course is 3.14

UNIT	Part A (5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 (5m)	K3 (5m), K4 (5m)
II	K2 (5m)	K2 (5m), K1 (5m)
III	K4 (5m)	K4 (5m), K3 (5m)
IV	K3 (5m)	K4(5m), K1 (5m)
V	K4 (5m)	K2(5m), K4(5m)

Programme :M.Sc Chemistry CORE 11

Semester : III Hours : 5 /W, 75 Hrs./S

Sub. Code : P22CD11 Credits :5

TITLE OF THE PAPER: PHYSICAL CHEMISTRY-III

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving session/Quiz/Lab session/videos/Demonstration class/Library session.		ICT		
	5	3	1		1		
PREAMBL	PREAMBLE: The objective of the Physical course is to make the student understand, learn and						
	have an in-depth idea about the advanced concepts of Quantum Chemistry, Chemical Kinetics, Statistical Thermodynamics, Polymer Science and Surface phenomena.						
COURSE OUTCOME: At the end of the Semester, the Students will be able to Unit Hrs./S							
CO1: discuss the advance concepts of Quantum Chemistry.				15			

CO2: explain the Kinetics of fast reactions CO3: express the objective of Statistical Thermodynamics. CO4: explain the properties of Polymers. CO5: discuss Surface phenomena applying adsorption method. 1 15 CO6: discuss Surface phenomena applying adsorption method. 1 15 2 15 3 15 CO7: discuss Surface phenomena applying adsorption method. 5 15

UNIT I

QUANTUM CHEMISTRY III

(15 Hours)

Approximation methods – Variation method and perturbation theory – Application to the helium atom, Slater determinable wave functions, Pauli's exclusion principle – Born- Oppenheimer approximation – LCAO – MO and VB treatments of hydrogen molecules. Huckel π - electron theory and its application to ethylene and butadiene and benzene

UNIT II

CHEMICAL KINETICS II

(15 Hours)

Kinetics of fast reactions – Flow methods: Stopped flow method- continuous and quenched flow methods – Pulse method – flash photolysis – Pulse radiolysis – Microscopic kinetics – molecular beam method – Marcus theory of electron transfer processes.

UNIT III

STATISTICAL THERMODYNAMICS

(15 Hours)

Objective of Statistical thermodynamics- Distinguishable and indistinguishable particles- ensemble and interactive systems – Microstates and macrostates - Maxwell - Boltzmann Bose-Einstein and Fermi-Dirac Statistics and their respective distribution functions.

Partition function, Evaluation of translational, Vibrational and rotational partition functions for mono, diatomic molecules - Calculation of thermodynamic functions - U, H, S and G - equilibrium constant and heat capacities from partition functions.

UNIT IV POLYMER SCIENCE

(15 Hours)

Properties of polymers - Glass transition temperature - factors influencing the glass transition temperature - crystallinity in polymers - degree of crystallinity - effect of crystallinity in the properties of polymers. Molecular weight and size of polymers, Number average and weight average molecular weight, degree of polymerization. Determination of molecular weight of polymers, Osmometry - viscometry, Gel permeation chromatography, Electro polymerization & photopolymerization. Conducting polymers.

UNIT V SURFACE PHENOMENA

(15 Hours)

Surface phenomena: Physisorption and Chemisorption - Adsorption of gases by solids - Factors influencing adsorption - Desorption activation energy - Langmuir theory of adsorption - BET theory of multilayer adsorption - Determination of Surface area - Determination of area of cross section of a molecule - Derivation of BET equation -Types of adsorption isotherms - Adsorption from solution - Gibbs adsorption isotherm - Insoluble surface films on liquids. Surfactants - Classification - Biosurfactants - Hydrophile - Lipophile Balance - Micelles formation - Shape and structure of micelle - Micellar aggregation number - Critical micelle concentration.

- 1. G.R.Chatwal&S.K.Anand, Quantum Mechanics, 2nd Ed., Himalaya Pub. House, 1989.
- 2. R.K. Prasad, Quantum Chemistry, 4th, New Age International Publishers, Reprint 2015.
- 3. Puri, Sharma and Pathania, Principles of Physical Chemistry, Vishal publishers, 2014
- 4. A.K.Chandra, Introductory Quantum Chemistry, 3rd Ed., Tata McGraw Hill Pub. 1993.
- 5. J.Rajaram&J.C.Kuriacose, Thermodynamics, 2nd Ed., Vishal Pub. 1993.
- 6. Gurdeep Raj, Chemical Kinetics, 1st Ed., Goel Pub. House, 1985.
- 7. S.P.Singh, Chemical Kinetics, Goel Pub.
- 8. Subash and Satish, Chemical kinetics and Catalysis, Jeyaprakash& Co.
- 9. Ahluwalia, Polymer Chemistry, Anes Books, 2010.
- 10. V.R. Gowrikar et al., Polymer Science, 1st Ed., Wiley Eastern Ltd.,
- 11. Gurdeep Raj, Surface Chemistry, Goel Pub.
- 12. Keith J.Laidler, Chemical Kinetics, 2nd Ed., Tata McGraw Hill Pub. Reprint 1986.
- 13. D.A. McQuarrie and J.D.Simon, Physical chemistry A molecular Approach, Viva Books (p) Ltd.,
- 14. D.Attwood and A.T.Florence, surfactant systems Their chemistry, Pharmacy and Biology, Chapmann and Hall, New-York (1983).

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I:	QUANTUM CHEMISTRY III		
	Chemistry of Approximation methods	2	Lecture, Discussion
	Variation method and perturbation theory- Application to the helium atom	3	Lecture, ICT, Assignment
	Slater detrimental wave functions	2	Lecture, Seminar
	Pauli's exclusion principle,	1	Lecture, ICT,
	Born- Oppenheimer approximation,	1	Tutorial and
	LCAO, MO and VB treatments of H ₂ molecule	3	Problem Solving

Huckel π - electron theory and its application to ethylene and butadiene	3	Lecture, Videos
UNIT II: CHEMICAL KINETICS II; Kinetics of fast reaction	IS	
Flow methods: Stopped flow method, continuous and quenched flow methods, Pulse method	6	Lecture, ICT, Discussion and Problem Solving
Flash photolysis, Pulse radiolysis	3	Lecture, Seminar
Microscopic kinetics, molecular beam method, Marcus theory of electron transfer processes	6	Lecture, ICT, Assignment
UNIT III: STATISTICAL THERMODYNAMICS	•	
Objective of Statistical thermodynamics, Distinguishable and indistinguishable particles, ensemble and interactive systems, Microstates and macrostates, Maxwell - Boltzmann		Lecture, ICT, Tutorial
Bose-Einstein and Fermi-Dirac Statistics and their respective distribution functions	3	Lecture, Assignment
Partition function, Evaluation of translational, Vibrational and rotational partition functions for mono, diatomic molecules		Lecture, ICT, Seminar
Calculation of thermodynamic functions, U, H, S and G, equilibrium constant and heat capacities from partition functions		Lecture, Seminar, Videos
UNIT IV: POLYMER SCIENCE		1
Glass transition temperature, factors influencing the glass transition temperature	3	Lecture, Tutorial
Crystallinity in polymers - degree of crystallinity, effect of crystallinity in the properties of polymers	3	Lecture, Discussion, ICT
Molecular weight and size of polymers, Number average and weight average molecular weight, degree of polymerization		Lecture, Video, Seminar
Determination of molecular weight of polymers, Osmometry, Viscometry, Gel permeation chromatography		Lecture,
Electro polymerization, Photopolymerization	2	Seminar
Conducting polymers	1	Lecture
UNIT V: SURFACE PHENOMENA	1	
Physisorption and Chemisorption, Adsorption of gases by solids, Factors influencing adsorption, Desorption, activation energy		Lecture, Discussion

Langmuir theory of adsorption, BET theory of multilayer adsorption, Determination of Surface area	3	Lecture, Seminar
Determination of area of cross section of a molecule, Derivation of BET equation	3	Lecture, Assignment
Types of adsorption isotherms Adsorption from solution - Gibbs adsorption isotherm	3	Lecture, Library Class, Quiz
Insoluble surface films on liquids. Surfactants	2	Lecture, Seminar
Classification - Biosurfactants, Hydrophile, Lipophile Balance, Micelles formation, Shape and structure of micelle, Micellar aggregation number, Critical micelle concentration.	1	Lecture, Video, Discussion

Course	Progra	mme O	utcomes	(POs)		Programme Specific Outcomes (PSOs)			Mean		
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	3	3	1	4	4	4	4	4	3.5
CO2	4	4	3	3	1	4	4	5	4	4	3.6
CO3	4	4	4	3	1	5	4	3	4	4	3.35
CO4	4	4	4	3	1	4.5	4	3	4	4	3.25
CO5	4	4	5	3	1	4	4	4	4	4	3.2
	Mean Overall Score								3.38		

Result: The Score for this Course is 3.38 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K4	K2 / K3
II	K3 / K4(2.5m), K3(2.5m)	K1/ K4
III	K3(2.5m) ,K4(2.5m) / K1	K4 / K2
IV	K2 / K3	K3 / K3(5m), k4(5m)
V	K4 / K2	K3(5m), k4(5m) / K1

Programme :M.Sc Chemistry CORE 12

Semester : III & IV Hours : 6 /W, 90 Hrs./S

Sub. Code : P22CD12P Credits : 4

TITLE OF THE PAPER: PHYSICAL CHEMISTRY PRACTICAL

Pedagogy	Hours	Lab session//Demonstration class/Viva voce					
	6	6					
PREAMBLE: The objective of the course is to make the student to do the physical chemistry experiments independently – Electrical and Non-Electrical experiments.							
COURSE O	COURSE OUTCOME: At the end of the Semester, the Students will be able to Unit Hrs.						
CO1: do the non-electrical experiments skillfully.							
CO2: do the	e electrica	l experiments confidently.	2	45			

UNIT I: NON-ELECTRICAL EXPERIMENTS

CHEMICAL KINETICS

- 1. Determination of the rate constant of the reaction of acid catalysed iodination of acetone and determination of the order of the reaction with respect to acetone and iodine.
- 2. Study of kinetics of reaction between persulphate and potassium iodide.

PHASE RULE

3. Construction of phase diagram for a simple binary system forming simple eutectic mixture and to find the unknown composition of a given mixture.

DISTRIBUTION LAW

4. Determination of molecular weight and degree of association of benzoic acid in benzene by partition method.

THERMOCHEMISTRY

5. Determination of Heat of solution of KNO₃ by solubility method.

ADSORPTION ISOTHERM

6. Determination of adsorption of acetic acid from aqueous solution by charcoal and verify the validity of Freundlich adsorption isotherm. (Demonstration)

UNIT II: ELECTRICAL EXPERIMENTS

CONDUCTIVITY MEASUREMENTS

7. Determination of molar conductance of strong electrolyte at different concentrations and testing the validity of Onsager's theory as limiting law at high dilution.

- 8. Determination of molar conductance of a weak acid at different concentrations. Verification of Ostwald's dilution law and determination of dissociation constant of weak acid.
- 9. Conductometric titrations of mixture of HCl and Acetic acid against sodium hydroxide.
- 10. Precipitation titrations: (mixtures of halides against silver nitrate (or) BaCl₂ Vs (NH₄)₂SO₄.
- 11. To determine the solubility product K_{sp} of a sparingly soluble salt PbI₂ using conductometry method.

POTENTIOMETRIC TITRATIONS

12. Potentiometric acid base titrations:

Titration of strong acid Vs Strong base, Titration of weak acid Vs strong base Determination of pH of a given solution usingQuinhydrone (Demonstration).

- 13. Potentiometric redox titrations: Determination of strength of given ferrous sulphate using standard ferrous ammonium sulphate and link potassium dichromate.
- 14. Determination of the strength and the dissociation constant of a weak acid.

pH METRY

15. Determination of the strength of the unknown solution of HCl by titrating it with sodium carbonate using pH meter.

- 1. V. Venkatesan, R. Veerasamy and A.R. Kulandaivelu, Basic Principles of Practical Chemistry, S. Chand and Sons, 2004.
- 2. Physical Chemistry Laboratory manual compiled by. B. Viswanathan, V.R. Vijayaraghavan,
- T. Sundaravelu, Kamala Govindarajan, S. Vivekanandan and V. Kannappan, Centre of Science Education School of Chemistry, University of Madras.
- 3. Practical Chemistry by O.P.Pandey, D.N.Bajpal and S.Giri, Reprint 2005.
- 4. J.B. Yadav; "Advanced Practical Physical Chemistry" 6thEdn., Goel Pub. Meerut, 1986.

UNITS	TOPIC	LECTURE HOURS	MODE OF
		поско	TEACHING
UNIT 1: N	NON-ELECTRICAL EXPERIMENTS		
	Chemical kinetics, Phase rule, Distribution law,	40	Lab Session
	Thermochemistry and adsorption isotherm		
	Chemical kinetics, Phase rule, Distribution law,	5	Demonstration
	Thermochemistry and adsorption isotherm		&Viva
	Chemical kinetics, Phase rule, Distribution law,		
	Thermochemistry and adsorption isotherm		
UNIT II:	ELECTRICAL EXPERIMENTS	•	
	Conductivity Experiments, Potentiometric titrations & pH	40	Lab Session
	Metry		

Conductivity Experiments, Potentiometric titrations &	5	Demonstration
pHMetry		&Viva
Conductivity Experiments, Potentiometric titrations & pH		
Metry		

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	4	3	1	4	4	4	4	3	3.4
CO2	4	4	4	4	1	4	4	4	4	3	3.6
	Mean Overall Score								3.5		

Result: The Score for this Course is 3.5 (High Relationship)

Programme :M.Sc Chemistry ELECTIVE 3

Semester : III Hours : 5 /W, 75 Hrs./S

Sub. Code : P22DSD3 Credits : 4

TITLE OF THE PAPER: NANOCHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem				
			solving session/Quiz/videos/Library session.				
		2		4			
	5	3	1	1			
	PREAMBLE: The objective of the course is to make the student understand, learn and have an in-depth idea about the advanced concepts of nanoscience and few nanomaterials.						
			COURSE OUTCOME	Unit	Hrs./S		
At the end	of the Se	emester, the	e Students will be able to				
CO1 : discuss the fundamentals of nanoscience and able to update the fundamentals					15		
to new nan	to new nanomaterials.						
CO2 : extend the learnt methods for the synthesis of nanomaterials to new systems.					15		

UNIT – I

INTRODUCTION TO NANOMATERIALS

CO3: demonstrate the properties of nanomaterials.

CO4: explain characterization of nanomaterials by various techniques.

CO5: practice implication of nanotechnology to help the society and environment.

(15 Hours)

15

15

15

4

 $Definition-Natural\ nanomaterials-\ Classification\ of\ nanomaterials\ (Based\ on\ dimension\ and\ materials)-Surface\ area\ to\ volume\ ratio.$

Carbon based nanomaterials – Fullerenes – type, Symmetry, Structure, Synthesis (Laser ablation, Electric arc discharge method) – applications.

Carbon nanotubes – types – difference between single walled CNTs and multi walled CNTs - Properties (Mechanical strength, electrical conductivity, Thermal stability)- Synthesis (Laser ablation, CVD) – applications.

UNIT - II

SYNTHESIS OF NANOMATERIALS

(15 Hours)

Top down and Bottom up approach- Top down approach (arc discharge, ball milling and inert gas condensation) – bottom up approach (Laser ablation, chemical vapour deposition, sol gel method, hydrothermal synthesis)

UNIT - III

PROPERTIES OF NANOMATERIALS

(15 Hours)

Introduction, Mechanical properties of nanomaterials; Elastic properties, Hardness and Strength, Ductility and toughness, Superplastic behavior.

Optical Properties; Surface Plasmon resonance and quantum size effects, Applications of optical properties of nanoparticles.

Electrical properties - Energy band structure of Nano and bulk materials.

Magnetic properties – Introduction – Effect of Temperature on magnetic susceptibility – Classification of magnetic properties of nanomaterials (Structure sensitive and structure insensitive) – Superparamagnetism.

UNIT – IV CHARACTERIZATION OF NANOMATERIALS (15 Hours)

Spectroscopic Techniques – Interpreting UV-Visible data of gold nanoparticles.

X-ray Crystallography – Basic idea of Powder X-ray diffraction method - Determination of crystalline size using Scherrer's formula - Determination of crystalline size distribution using X-ray line shape analysis.

X–ray diffraction patterns of commercially important CuO and ZnO.

Electron microscopic techniques – EDX: Basic principle and its importance – SEM; Basic principle and its importance TEM; Basic principle and its importance.

UNIT -V

APPLICATIONS OF NANOMATERIALS

(15 Hours)

(General applications only not specific)

Applications of nano materials in various fields - Medicine, Food, Agriculture, catalysis, water purification and environment.

- 1. S. Shanmugam, Nanotechnology, 1st Ed., MJP Publishers, 2011.
- 2. T. Pradeep, Nano The Essentials, 1st Ed., McGraw Hill Companies, 2007.
- 3. Charles P. Poole, Introduction to Nanotechnology, 1st Ed., Wiley Eastern Pvt. Ltd., 2014.
- 4. K.P. Mathur, Nanotechnology & Applications, Rajah Publications, New Delhi.
- 5. G. Mohankumar, Nanotechnology, nanomateraials and nanodevices, 1st Ed., Narosa Pub. House 2016.
- 6. K.K. Choudhary, Nanoscience and nanotechnology, 1st Ed., Narosa Pub. House 2016.
- 7. B.S. Murthy et. al., Text Bookof Nanoscience and Nanotechnology, 1st Ed., Universities, Press 2012.
- 8. G.B. Sergeev, Nanochemistry, 1st Ed., Elsevier, 2012.
- 9. Patrick Salomon, A Handbook to Nanochemistry, 1st Ed., Dominant Publishers, New Delhi, 2010.
- 10. M.A. Shah and Tokeer Ahmad, Principles of Nanoscience and Nanotechnology, 2nd ed., 2013.
- 11. Sulabha K. Kulkarni, Nanotechnology: Principles and Practices,3rd Ed., ISBN 978-3-319-09171-6, 2015,Springer.
- 12. Indian Journal of Fiber and Textile Research, Vol. 33 (2008) 304 -317.
- 13. M.A. Shah, Tokeer Ahamed, Principles of Nanoscience and Nanotechnology, Narosa Publishing House, 2013.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	INTRODUCTION TO NANOMATERIALS		
	Definition – Natural nanomaterials- Classification of nanomaterials (Based on dimension and materials) Surface area to volume ratio	3	lecture
	Carbon based nanomaterials – Fullerenes – type Symmetry, Structure, Synthesis (Laser ablation, Electric arc discharge method) - applications.	6	Lecture and ICT
	Carbon nanotubes – types – difference between single walled CNTs and multi walled CNTs - Properties (Mechanical strength, electrical conductivity, Thermal stability)- Synthesis (Laser ablation, CVD) – applications.	6	Lecture, ICT and Seminar
UNIT II	SYNTHESIS OF NANOMATERIALS		
	Top down and bottom-up approaches.	2	lecture
	Top-down approach (arc discharge, ball milling and inert gas condensation)	6	Lecture, ICT and Seminar
	bottom up approach (Laser ablation, chemical vapour deposition, sol gel method, hydrothermal synthesis)	7	Lecture, ICT and Seminar
UNIT III	: PROPERTIES OF NANOMATERIALS	ı	
	Optical Properties	5	Lecture and ICT
	Mechanical properties	6	Lecture
	electrical and magnetic properties	4	Lecture, ICT and Seminar
UNIT IV	: CHARACTERIZATION OF NANOMATERIALS		
	UV – Vis Spectroscopy	4	ICT
	XRD	5	Lecture
	EDX, SEM and TEM	6	Lecture, ICT and Seminar
UNIT V:	APPLICATIONS OF NANOMATERIALS		
	Medicine, Food, Agriculture	7	Lecture, ICT and Seminar
	catalysis, water purification and environment	8	Lecture, ICT and Seminar

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes										scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
GO1	4	2	4	2	1	4	1	4		1	2.2
CO1	4	3	4	3	1	4	4	4	2	4	3.3
CO2	4	4	4	4	1	4	4	4	2	4	3.5
CO3	4	3	4	3	1	4	4	4	2	4	3.3
CO4	4	3	3	4	1	4	4	3	3	4	3.2
CO5	4	3	4	3	1	4	4	4	2	4	3.3
	Mean Overall Score										
											1

Result: The Score for this Course is 3.32 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K2	K1 / K2/ K4
II	K2 / K4	K2/ K3/ K4
III	K3 / K2	K3 / K2
IV	K2 / K3/ K4	K3 / K2
V	К3	K3 / K2

Programme :M.Sc Chemistry ELECTIVE 3

Semester : III Hours : 5 /W, 75 Hrs./S

Sub. Code : P22DSD3 Credits :4

TITLE OF THE PAPER: ENVIRONMENTAL CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem solving session/Quiz/videos/Library session.	ICT								
	5	3	1	1								
	PREAMBLE: The objective of the course is to make the student understand, learn and have an in-depth idea about the advanced concepts of environmental science.											
COURSE				Unit	Hrs./S							
At the end	of the Se	mester, the	Students will be able to									
CO1: Gain	the kno	wledge abo	out the toxic chemicals in the environment.	1	15							
CO2: discu	2	15										
CO3: Dem	onstrate	the air mor	nitoring techniques.	3	15							
CO4: defin	4	15										
CO5: expla	5	15										

UNIT I

CHEMICAL TOXICOLOGY

(15 Hours)

Toxic chemicals in the environment- biochemical effects of trace elements - Ar, Pb, Cd, Cr, Hg, Mn, Sb, Be, Co, Cu, Zn, Se, F- Carcinogens.

UNIT II

POLLUTION (15 Hours)

Air pollution - Green House effect - Ozone layer depletion-photochemical smog-Effect of pollution on human beings and animals- (CO, SO₂, (NO)x, HF)-causes-automobiles and industries-methods and equipments used for controlling particulate emission.

Water pollution-types of pollutants-organic and inorganic- Acid rain- Eutrophication-Effect of pollutants on human beings and animals- alkalinity and acidity- chloride, fluoride, cyanide, sulphate, nitrate, nitrite, sulphide.

Soil pollution-Effect of pollution on human beings and animals-pesticides, insecticides, fungicides, herbicides, algicides, rodenticides. Radioactive pollution-pollutants.

UNIT III

MONITORING TECHNIQUES AND METHODOLOGY

(15 Hours)

Air monitoring-atmospheric sampling and analysis-techniques-gravity filtration, precipitation-absorption, adsorption and great sampling. Estimation of atmospheric pollution-Dust fall jar

Determination of suspended particles with a high-volume sampler- determination of sulphation rate-estimation of hydrogen sulphide and sulphur dioxide-analysis of hydrocarbons (brief idea)

Water monitoring- water quality parameters and standard-oxygen demand- BOD, COD –method Winkler- membrane electrode method.

UNIT IV WASTE MANAGEMENT AND RECYCLING

(15 Hours)

Waste management and recycling- classification of wastewater treatment- preliminary-primary-sedimentation-coagulation-secondary-aerobic-trickling filters-activated sludge- anerobic.

Solid waste disposal- solid waste management by biotechnology- municipal solid waste- sanitary land fill, composting, vermicomposting, incineration, e-waste management.

Radioactive waste- disposal methods- reprocessing of spent fuel- ocean dumping.

Polymer recycling- use of virgin plastics.

UNIT V

INSTRUMENTAL TECHNIQUES IN ENVIRONMENTAL CHEMICAL ANALYSIS (15 Hours)

Spectroscopic techniques: Basic principle and applications of Neutron activation analysis- anodic stripping voltammetry- atomic absorption spectroscopy- inductively coupled plasma emission spectroscopy- X-ray fluorescence- nondispersive infrared spectroscopy.

Electrochemical techniques: Basic principles and applications of conductometry, polarimetry, voltammetry, polarography and coulometry.

- 1. K.BhagavathiSundari, Applied chemistry, 1st edn, MJP Publishers, 2006
- 2. B.K.Sharma, Industrial chemistry, 16thedn, Goel publishing house,2011
- 3. S.S.Dara, Text book of Environmental chemistry and pollution control, 7^{th} edn, S.Chand and company -2004
- 4. A.K.De, Environmental chemistry, 1stedn, New age International Pvt Ltd, 2004
- 5. Koushik and Koushik, Perspectives in Environmental Science, 4thedn, New age International Pvt Ltd.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I: C	CHEMICAL TOXICOLOGY		
	Toxic chemicals in the environment	4	Discussion
	- biochemical effects of trace elements - Ar,	5	Lecture
	Pb,Cd, Cr,Hg		
	biochemical effects of trace elements - Mn, Sb,		
	Be, Co, Cu, Zn, Se, F	4	Seminar / peer teaching
	Carcinogens.	2	ICT

UNIT II: POLLUTION		
Air pollution - Green House effect - Ozone layer		
depletion-photochemical smog, causes-	4	Discussion/ peer
automobiles and industries		teaching
Effect of pollution air, water and soil pollution on		
human beings and animals	2	ICT
methods and equipments used for controlling particulate emission.	2	Lecture
Water pollution-types of pollutants-organic and		
inorganic- Acid rain- Eutrophication, alkalinity and acidity- chloride, fluoride, cyanide, sulphate, nitrate, nitrite, sulphide.	4	Seminar / quiz
Soil pollution, pesticides, insecticides, fungicides, herbicides, algicides, rodenticides. Radioactive	3	Activity based learning quiz/assignment)
pollution-pollutants.		
UNIT III: MONITORING TECHNIQUES AND METHODO	DLOGY	
Air monitoring-atmospheric sampling and analysis-techniques-gravity filtration, precipitation-absorption, adsorption and great sampling	4	Seminar /assignment
Estimation of atmospheric pollution-Dust fall jar		
Determination of suspended particles with a high-		
volume sampler	3	ICT
determination of sulphation rate-estimation of hydrogen sulphide and sulphur dioxide-analysis of	3	Lecture
hydrocarbons Water manifering water quality personators and	2	I ihaamu aaasi aa
Water monitoring- water quality parameters and standard –method Winkler- membrane electrode method.	3	Library session followed by discussion
oxygen demand- BOD, COD	2	Demonstration
UNIT IV: WASTE MANAGEMENT AND RECYCLING		
Waste management and recycling- classification		
of wastewater treatment, sedimentation-		
coagulation, aerobic-trickling filters, activated	5	Lecture
sludge- anerobic.		
Solid waste disposal- solid waste management by		
biotechnology- municipal solid waste- sanitary		
land fill, composting, vermicomposting,	5	Seminar /Peer teaching
incineration		
e-waste management, Radioactive waste- disposal		
methods- reprocessing of spent fuel- ocean	5	ICT
dumping. Polymer recycling- use of virgin plastics		

UNIT ANALY	V: INSTRUMENTAL TECHNIQUES IN E SIS	ENVIRONM	ENTAL CHEMICAL
	Spectroscopic techniques: Basic principle and applications of Neutron activation analysis- anodic stripping voltametry inductively coupled plasma emission spectroscopy.	5	Lecture
	atomic absorption spectroscopy, X-ray fluorescence- nondispersive infrared spectrometry-Fourier transform infrared spectroscopy.	5	Seminar / assignment
	Electrochemical techniques: Basic principles and applications of conductometry, polarimetry, voltametry, polarography and coulometry	5	ICT

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean		
Outcomes											scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs	
			_								2.6	
CO1	4	4	4	4	1	4	4	4	3	4	3.6	
CO2	4	4	3	4	1	4	4	4	3	4	3.5	
CO3	4	4	3	3	1	4	4	4	3	3	3.3	
CO4	4	4	4	3	1	4	4	4	3	4	3.5	
CO5	4	4	4	3	1	4	4	4	3	4	3.5	
	Mean Overall Score											

Result: The Score for this Course is 3.48 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 (5m)	K3 (5m), K4 (5m)
II	K2 (5m)	K2 (5m), K1 (5m)
III	K4 (5m)	K4 (5m), K3 (5m)
IV	K3 (5m)	K4(5m), K1 (5m)
V	K4 (5m)	K2(5m), K4(5m)

Programme :M.Sc/M.A NON MAJOR ELECTIVE Semester : III Hours : 2 /W, 30 Hrs./S

Sub. Code : P22NMEC1 Credits : 2

TITLE OF THE PAPER: COSMETOLOGY

Pedagogy	Hours Lecture		Peer Teaching/Seminar/Discussion/Problem solving session/Quiz/Lab session/videos/Demonstration	ICT	
			class/Library session.		
	2	1			1
PREAMBI	LE: The o	bjective o	of the course is to give the knowledge about skin types	s, skin	aging,
skin irritat	ion, cosm	etic prod	ucts and cosmetology careers, ethics and regulations		
			COURSE OUTCOME	Unit	Hrs./S
At the end of	of the Sem	nester, the	Students will be able to		
CO1: descr	ibe the typ	es of cosi	metics, skin types, skin care products and role of	1	6
calcium in t	he regulat	tion of ski	n barrier homeostasis skin pH and skin flora.		
CO2: expla	in skin ag	ing, new t	rends in anti-aging cosmetic ingredients and treatments	2	6
and skin tol	erance pri	nciples of	skin irritation.		
CO3: discu	ıss the ski	n base ma	terials, baby care products, antiperspirants,		6
deodorantsa	and perfun	nes.		3	
CO4: discu	ss the hair	Condition	ners, nail cosmetics, lips cosmetics and eye cosmetics.	4	6
CO5: discu	ss Cosme	tology occ	cupations, training and licensing requirements, General	5	6
concepts of	Ethics in	human tes	sting, Safety and Trends in cosmetic regulations in the		
U.S.A. and	European	Union.			

UNIT I

INTRODUCTION (6 Hours)

- 1.1 Cosmetics-Types liquid or emulsions, anhydrous creams or sticks Ingredients Natural and mineral.
- 1.2. Skin types Sensitive skin Hydrating substances –skin care products Role of calcium in the regulation of skin barrier homeostasis- skin pH and skin flora.

UNIT II

SKIN AGING AND SKIN IRRITATION

(6 Hours)

- 2.1. Skin aging New trends in anti-aging cosmetic ingredients and treatments antioxidants, UV filters, sun protection and sunscreens, after sun products- skin organ culture models (brief idea only) cosmetics for the elderly.
- 2.2. skin tolerance principles of skin irritation sodium lauryl sulphate induced irritation in the human face– anti-irritants allergy and hypoallergenic products.

UNIT III

COSMETIC PRODUCTS FOR SKIN AND BODY

(6 Hours)

(Definition and main ingredients only)

Skin- base materials - whitening agents - Moisturizers - Facial masks - sunscreens - Exfoliants - facial masks.

Baby care products.

Antiperspirants, Deodorants and perfumes. Cooling ingredients and their mechanism of action.

UNIT IV

COSMETIC PRODUCTS FOR HAIR, NAILS, LIPS AND EYES

(6 Hours)

(Definition and main ingredients only)

Hair Conditioners, Shampoos, Hair dyes and Hair gels.

Nail cosmetics - The normal nail - Handle of nail care.

Lips cosmetics – Lip stick, Lip gloss, Lip balm.

Eye cosmetics – Eye liner and kajal, Eye shadow and Muskara.

UNIT V

COSMETOLOGY CAREERS, ETHICS AND REGULATIONS

(6 Hours)

- 5.1. Cosmetology occupations: Training and licensing requirements Hair Stylist, Theatrical and Performance Makeup Artist, Esthetician and Manicurist and Pedicurist.
- 5.2. General concepts of Ethics in human testing Safety Trends in cosmetic regulations in the U.S.A. and European Union.

- 1. AU COPS, Hand book of Cosmetic Science and Technology, 3rd edition edited by Andre O.Barel, Marc Paye and Howard I. Maibach.
- 2. www.making**cosmetics.**com/Formulas_ep_5.html
- 3. study.com/**cosmetologist.**html
- 4. https://en.wikipedia.org/wiki/Cosmetics

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING							
UNIT 1:	INTRODUCTION									
	Cosmetics-Types, liquid or emulsions, anhydrous creams or sticks, Ingredients, Natural and mineral, Skin types, Sensitive skin, Hydrating substances and skin care products.	4	Lecture							
	Role of calcium in the regulation of skin barrier homeostasis- skin pH and skin flora.	2	ICT							
UNITII:	UNITII: SKIN AGING AND SKIN IRRITATION									
	sun protection and sunscreens, allergy.	2	ICT							

Skin aging, new trends in an	0 0	4	Lastrana
ingredients and treatments, antioxiafter sun products- skin organ		4	Lecture
cosmetics for the elderly.	culture infodels,		
skin tolerance, principles of skin	irritation, allergy		
and hypoallergenic products.	initiation, uniting		
UNIT III: COSMETIC PRODUCTS FOR	SKIN AND BODY		
Commercially available cosmetic pa	roducts.	2	Material collection by students.
Skin- base materials, Baby care pro	ducts,		
Antiperspirants, Deodorantsand p		4	Lecture
ingredients and their mechanism of	action.		
UNIT 1V COSMETIC PRODUCTS FOR	HAIR, NAILS, LI	PS AND EY	YES
Preparation of shampoo and conditi	oner.	2	ICT and
			demonstration.
Hair Conditioners, Shampoos, Ha	ir dyes and Hair	4	Lecture
gels, Nailcosmetics, Lipsand eye co	smetics.		
UNIT V: COSMETOLOGY CAREERS, E'	THICS AND REGI	ULATIONS	S
Training and licensing requirement	S	2	ICT.
Cosmetology occupations: Hair	Stylist, Theatrical		
and Performance Makeup Artist	Esthetician and	4	Lecture
Manicurist and Pedicurist.			
General concepts of ethics in hum			
Trends in cosmetic regulations in	the U.S.A. and		
European Union.			

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean		
Outcomes											scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs	
CO1	4	3.5	3	1	3	4	3	3	4	4	3.3	
CO2	4	3	3	1	3	4	4	3	3	4	3.3	
CO3	4	3	4	1	2	4	4	3.5	3.5	4	3.5	
CO4	4	3	3.5	1	2.5	4	4	3	3	4	3.35	
CO5	4	3	3.5	1	4	4	3	5	4	3.5	3.5	
	Mean Overall Score											

Result: The Score for this Course is 3.39 (High Relationship)

UNIT	Part A (5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K4	K2 / K3
II	K3 /K4(2.5m) K3 (2.5m)	K1 / K4
III	K3(2.5m), K4 (2.5m) / K1	K4 / K2
IV	K2 / K3	K3 /K3(5m), K4 (5m)
V	K4 / K2	K3 (5m), K4 (5m)

Programme :M.Sc Chemistry CORE 13

Semester: IV Hours: 6/W, 90 Hrs./S

Sub. Code: P22CD13 Credits: 4

TITLE OF THE PAPER: ORGANIC CHEMISTRY IV

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/ Discussion/Problem solving session/Quiz/Lab session/Videos/ Demonstration Class/Library session.	ICT
	6	4	1	1

PREAMBLE:

The objective of the course is to make the student attain a good and deep knowledge about Photochemistry, Pericyclic reactions, Steroids and Hormones, Carbohydrates and Flavonoids, Terpenoids and Alkaloids.

COURSE OUTCOME: At the end of Semester IV, the students will be able	Unit	Hrs./S
to have a thorough and sound knowledge of the following given below:		
CO1: to apply Photo chemistry to new systems.	1	18
CO2: gain-in-depth knowledge in Pericyclic reactions.	2	18
CO3: able to plan the new synthesis of Steroids and Hormones.	3	18
CO4: Chemistry of Carbohydrates and Flavonoids.	4	18
CO5: Chemistryof Terpenoids and Alkaloids.	5	18

UNIT – I (18 Hours) PHOTOCHEMISTRY

Photochemical Energy – Electronic Excitation – Excited States, Modes of Dissipation of Energy – (Energy transfer, Jablonski Diagram) – Quantum Efficiency – Photochemistry of Carbonyl compounds (Photo reduction, Norrish type I & II reaction, Photooxidation reactions, Reactions of cyclic ketones, The Paterno – Buchi reactions – photochemistry of α , β -unsaturated Compounds – photochemistry of Olefins – (Cis–Trans Isomerization) – Photo dimerization, Di – Π methane rearrangement)- Photo substitution reactions (Barton reaction, The Hofmann Loffler Freytag reaction) - Photorearrangement of cyclohexadienones (Zimmerman mechanism only, Photochemistry of natural product, α -santonin).

UNIT - II

PERICYCLIC REACTIONS

(18 Hours)

Conservation of Molecular orbital Symmetry – Symmetry properties of Molecular orbitals [(1,3-butadiene, 1,3,5-hexatriene molecule)], Electrocyclic reactions- Correlation diagram and FMO method [cyclobutene – 1,3-butadiene, cyclohexadiene and 1,3,5-hexatriene system] – Cyclo addition reactions – Correlation diagram and FMO method (2S + 2S, 4S+ 2S system) - Sigmatropic Rearrangement – Suprafacial and antra facial processes- Analysis of [1,5] sigmatropic shift - Cope and Claisen rearrangement – Thermal isomerization ([1,3] and [3,3] sigmatropic shift) - Applications of PMO method to Pericyclic reactions (Electrocyclic reactions, Cyclo addition and Sigmatropic reactions).

UNIT III STEROIDS AND HORMONES

(18 Hours)

Stereochemistry of Steroids - Structural elucidation of cholesterol – syntheses of ergo calciferol (Structural elucidation is not included), Biosynthesis of Lanosterol

Hormones: Synthesis of Androsterone, Testosterone, Oestrone, and Progesterone.

UNIT - IV

CARBOHYDRATES AND FLAVANOIDS

(18 Hours)

Disaccharides: Determination of the size of the ring in sugars – structural elucidation of Sucrose and Maltose – inversion of Sucrose – General studies of Lactose and Cellobiose.

Polysaccharides: General methods of elucidating the structure of Polysaccharides – Brief study of Cellulose & Starch.

General methods for the elucidation of structure of flavones – General study of Isoflavones and Anthocyanin – Synthesis of Quercetin.

UNIT - V

TERPENOIDS AND ALKALOIDS

(18 Hours)

Isoprene rule – Isolation – classification of terpenoids with examples – General methods of Structural determination of terpenoids – Structure and Synthesis of Zingiberine – Santonin, Abietic acid, Camphor – Biosynthesis of Terpenoids.

Alkaloids Occurrence – Isolation – Classification – General methods of structural elucidation of Alkaloids – structure and synthesis of Cinchonine – Reserpine – Cocaine – Quinine

- 1 C.H. Depuy and D.L. Chapman, Molecular Reactions and Photochemistry, Prentice Hall, 1975
- T.L. Gilchrist and R.C. Storr, Organic Reactions and Orbital Symmetry, 2ndEdn., Cambridge, 1972.
- 3 S.M. Muherjee and S.P. Singh, Pericyclic Reactions, Macmillan, 1976.
- 4 E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw Hill, 1962.
- 5 V.M. Potapov, Stereochemistry, MIR Publishers, Moscow 1979.
- D. Nasipuri, Stereochemistry of Organic compounds, 2ndEdn, New Age International, New Delhi, 1972.
- E.L. Eliel, N.C. Allinger, S.J. Angyal and G.A. Morrision, Conformational Analysis, Interscience, New York, 1965.
- 8 O.P. Agarwal, Organic Chemistry Natural products Vol. I & II, HPH
- 9 S.M. Muherjee and S.P. Singh, Reaction Mechanism in Organic Chemistry, Mc Milan India Ltd., 1975.
- 10 R.T. Morrison and B. N. Boyd, "Organic Chemistry", 6thEdn., Prentice Hall of India, New Delhi, 1975.
- 11 I.L. Finar, Organic Chemistry, Vol. I and II, 5th edition ELBS. 1975.
- R.B. Woodward and R. Hoffmann, The conversion of Orbital Symmetry, Verlog Academic Press 1971.
- R. Chatwal, Organic Chemistry of Natural Products Vol I & II, Himalaya Publishing House.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	PHOTOCHEMISTRY	•	•
	Photo chemical energy, continuous electronic excitation, modes of dissipation of energy	4	ICT
	photochemistry of carbonyl compounds and olefins, Jablonski diagram	10	Lecture
	Energy transfer, photo rearrangements	4	Seminar
UNIT II	PERICYCLIC REACTIONS		
	Conservation of molecular orbital symmetry, symmetry properties of MO	4	ICT
	Electrocylic and cyclo addition reactions	11	Lecture
	Applications of PMO method to pericyclic reactions	3	Seminar
UNIT III	STEROIDS AND HORMONES		•
	Stereo chemistry of steroid	4	ICT
	Structural elucidation of cholesterol and synthesis of steroids	8	Lecture
	Synthesis of 1. Androsterone 2. Testosterone 3. Oestrone 4. Estradiol and 5. Progesterone	6	Lecture, ICT, Seminar, Discussion
UNIT IV	: CARBOHYDRATES AND FLAVONOIDS		
	Determination of the size of the ring in sugar, Structural elucidation of Sucrose and Maltose, inversion of	4	Lecture and Library Class
	Sucrose, General studies of Lactose and Cellobiose.	5	Lecture and Discussion
	General methods of elucidating the structure of polysaccharides, Brief study of Cellulose & Starch	4	Lecture, video and assignment seminar
	General methods for the elucidation of structure of Flavones	2	ICT, Tutorial and Discussion
	General study of Isoflavones and Anthocyanin	2	Lecture and
	Synthesis of Quercetin	1	Assignment Seminar
UNIT V:	TERPENOIDS AND ALKALOIDS	l	1 Semmar
	Isoprene rule, Isolation, classification of terpenoids with examples	2	Lecture and Library Class
	General methods of Structural determination of terpenes	4	Lecture and Discussion
	Structure and Synthesis of Zingiberine, Santonin, Abietic acid, Camphor,	2	Lecture, ICT and
	Biosynthesis of Terpenoids.	2	Seminar

Occurrence, Isolation, classification, General methods of structural elucidation of alkaloids	4	Lecture and Video
Structure and Synthesis of Cinchonine, Reserpine, Cocaine, Quinine	4	Lecture, ICT and Seminar

Course	Progra	ımme O	utcomes	(POs)		Programme Specific Outcomes (PSOs)				os)	Mean
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	3	3	3	3	3.5	3	3	3	1	4	3.0
CO2	3	3	3	3	3.5	3	3	3	1	4	3.0
CO3	3	3	3	3	3.5	3.5	4	3.5	1	4	3.2
CO4	3	3	3	3	3.5	3.5	4	3.5	1	4	3.2
CO5	3	3	3	3	3.5	4	4	3.5	1	4	3.2
Mean Overall Score									3.1		

Result: The Score for this Course is 3.1 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 (5m)	K3 (5m), K4 (5m)
II	K2 (5m)	K2 (5m), K1 (5m)
III	K4 (5m)	K4 (5m), K3 (5m)
IV	K3 (5m)	K4(5m), K1 (5m)
V	K4 (5m)	K2(5m), K4(5m)

Programme :M.Sc Chemistry CORE 14

Semester : IV Hours : 5 P/W, 75 Hrs./S

Sub. Code : P22CD14 Credits :4

CO5: acquire knowledge of physical & chemical characterization of catalyst and

TITLE OF THE PAPER: SELECTED TOPICS IN CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem	ICT				
1 cdagogy	110013	Lecture		IC1	101			
			solving session/Quiz/videos/Library session.					
	5	3	1	1				
PREAMBL	E: The o	bjective of	the course is to make the student understand basics	s of con	nplex			
ionic struct	ures and	their char	acterization using XRD, know various physicochem	ical tec	hniques			
used in ana	lysis, imp	ortance of	f catalyst and applications of newer materials.					
		(COURSE OUTCOME	Unit	Hrs./S			
At the end o	f the Sem	ester, the S	Students will be able to					
CO1: identi	rbonyls, nitrosyls and identify various reactions of	1	15					
organometal	llic comp	ounds						
CO2: appre	ciate the i	mportance	of newmaterials like dielectrics, composites,	2	15			
aerospace, li	ight emitt	ing diodes	and magnetic materials with interesting properties					
leading to no	ewer appl	ications						
CO3: recog	3	15						
techniques in electroanalytical chemistry								
CO4: illustr	4	15						
	and their instrumentation, explain the separation and quantification of ions using							
electro grav								

UNIT-I, ORGANOMETALLIC CHEMISTRY

appreciate the vibrant role of catalyst in chemical reactions

(15 Hours)

5

15

Types of organometallic compounds on the basis of the nature of M-C bond. EAN rule: 18e- and 16e-rules – determinator of oxidation state, configuration, coordination number of the metal centre – Types and application 18e- / 16erules. Carbonyls – isolated concept - Structure of carbonlys (simple and polynuclear) Nitrosyls – bridging and terminal nitrosyls, bent and linear nitrosyls. Dinitrogen compounds donors – Alkyl and Aryl – preparation and properties; chain carbon donors – olefins, acetylene and allyl complexes – synthesis, structure and bonding; cyclic carbon donors – (metallocene) – synthesis, structure and bonding.

Important types of reactions of organometallic compounds – substitution – electrophilic and nucleophilic attack on ligands; carbonylation and decarbonylation; oxidative addition and reductive elimination, insertion and deinsertion(elimination). Template synthesis of macrocyclic ligands.

UNIT II

MATERIAL TECHNOLOGY

(15 Hours)

Dielectric materials – Piezo electricity- effect of temperature- brief idea about optical property-Aerospace materials properties and applications (brief idea). Composite materials any one Preparation and uses – Chelates as light emitting diodes, polymer light emitting diodes, phosphorescent light emitting diodes, organic polymer solar cells (only preliminary idea) Magnetic properties of materials – classification paramagnetic, ferromagnetic, antiferromagnetic - Magnetic susceptibility – determination of magnetic susceptibility by Guoy balance.

UNIT III

ELECTROANALYTICAL CHEMISTRY

(15 Hours)

Polarography – theory, instrumentation, DME, Diffusion, kinetic and catalytic currents, Current – Voltage curves for reversible and irreversible systems, qualitative and quantitative applications to inorganic systems.

Amperometric titrations – Theory, instrumentation, types of titration curves, Biamperometry applications.

Cyclic voltammetry – Theory, instrumentations, Applications to inorganic systems.

UNIT IV (15 Hours) ELCTROGRAVIMETRY, PHOTOCHEMISTRY AND ELECTROCHEMICAL STUDIES

Theory of electro-gravimetric analysis – Electrolytic separation and determination of copper and nickel. Spectrophotometry – spectrophotometric titration, determination of Fe(III) with EDTA and determination of Fe(III) in the presence of aluminium.

Turbidimetry – Principle, instrumentation, determination of sulphates and phosphates.

Fluorimetry – Principle, instrumentation, determination of quinine in toxic water.

UNITV

CATALYSIS (15 Hours)

Acid Base catalysis- Kinetics of Acid Base catalysis- Enzymes Catalysis – Michaelis Menton equation - Characteristics of enzyme catalysis – Factors affecting rates of enzyme reactions - influence of P^H – influence of temperature, effect of activator, effect of inhibitor.

Heterogenous Catalysis: Surface reactions – Langmuir- Hinselwood mechanism - Kinetics of surface reactions- Unimolecular surface reactions and bimolecular surface reactions- Auto catalysis and oscillatory reactions.

- 1. D.K.Chakrabarty&B.Viswanathan, Heterogenous Catalysis, New Age 2008.
- 2. Puri, Sharma & Pathania, Principles of physical Chemistry, Vishal publishers, ed., 2008.
- 3. J.C.Kuriacose, Catalysis, Mac Millan India Ltd.
- 4. J.D. Lee, Concise Inorganic Chemistry, Wiley India.

- 5. S.F.A. Kettle, Coordination chemistry, ELBS Ed.,
- 6. R. Gopalan & V.Ramalingam, Concise Coordination Chemistry, 1st Ed., Vikas Pub. House Pvt. Ltd., 2001.
- 7. R.D.Madan & Satya Prakash, Modern Inorganic Chemistry(Revised), S.Chand.
- 8. Satya Prakash, G.D. Tuli, S.K.Basu & R.D.Madan, Advanced Inorganic Chemistry, 1st Ed., S.Chand & Co, 2008.
- 9. F.Basolo and R.G. Pearson Mechanisms of Inorganic reactions Wiley Eastern.
- 10. U.Malik, G.D.Tuli and R.D. Madan, Selected topics in Inorganic Chemistry.
- 11. B. K. Sharma, Instrumental methods of Chemical Analysis
- 12. Qualitative inorganic analysis, Arthur Vogel, 7th edition

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I: OR	GANOMETALLIC CHEMISTRY		
	Types of organometallic compounds on the basis of the nature of M-C bond. EAN rule: 18e- and 16e- rules – determinator of oxidation state, configuration, coordination number of the metal centre – Types and application 18e- / 16e rules.	4	Lecture
	Carbonyls – isolated concept Structure of carbonlys (simple and polynuclear) Nitrosyls – bridging and terminal nitrosyls, bent and linear nitrosyls. Dinitrogen compounds donors – Alkyl and Aryl – preparation and properties;	3	Lecture / library session
	Chain carbon donors – olefins, acetylene and allyl complexes – synthesis, structure and bonding; cyclic carbon donors – (metallocene) – synthesis, structure and bonding.	2	Discussion
	Important types of reactions of organometallic compounds – substitution – electrophilic and nucleophilic attack on ligands	3	Seminar/peer teaching
	Oxidative addition and reductive elimination, insertion and deinsertion (elimination). Template synthesis of macrocyclic ligands.	3	ICT
UNIT II: MA	ATERIAL TECHNOLOGY		
	Dielectric materials – Piezo electricity- effect of temperature- brief idea about optical property Aerospace materials properties and applications, Composite materials- Preparation and uses	4 3	Lecture Discussion/ peer teaching
	Chelates as light emitting diodes, polymer light emitting diodes, phosphorescent light emitting diodes, organic polymer solar cells	5	Seminar/ Quiz
	Magnetic properties of materials – classification		

e
e
ssion
ar/Peer
ng
<u>-6</u>
MICAL
e
e
<u>-</u>
ar/Peer
1g
ssion
551011
re
re
ssion
ar/Peer

Course	Progra	mme O	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	2	3	1	4	3	3	2	3	2.8
CO2	4	2	3	4	1	4	4	4	2	3	3.1
CO3	4	4	4	3	1	4	4	3	3	4	3.4
CO4	4	3	4	3	1	4	4	3	3	4	3.3
CO5	4	3	3	4	1	4	3	3	3	4	3.2
Mean Overall Score								3.16			

Result: The Score for this Course is 3.16 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K4 / K4	K4 / K4
II	K3 & K4 / K3 & K4	K3 & K4 / K3 & K4
III	K2 / K2	K2 / K2
IV	K3 / K3	K3 / K3
V	K1/ K1	K1 / K1

Programme: M.Sc Chemistry CORE 15

Semester : III & IV Hours : 6/W, 90 Hrs./S

Sub. Code : P22CD15P Credits : 4

TITLE OF THE PAPER: INORGANIC & ORGANIC QUANTITATIVE ANALYSIS PRACTICAL

Pedagogy	Hours	Lab session//Demonstration class/Viva voce								
	6	6								
PREAMBI	PREAMBLE: The objective of the course is to make the student to do the estimation									
independer	itly.									
COURSE (OUTCO	ME: At the end of the Semester, the Students will be able to	Unit	Hrs						
CO1: do th	e volum	etric and gravimetric estimation skillfully.	1	40						
CO2: do the	CO2: do the complexometric titrations confidently.									
CO3 do the organic estimation skillfully. 3 40										
CO4do the colorimetric estimation skillfully.										

I VOLUMETRIC AND GRAVIMETRIC ESTIMATION

- 1. Estimation of Copper & Nickel
- 2. Estimation of Iron & Nickel or Estimation of Copper & Zinc

II COMPLEXOMETRIC TITRATION

- 1. Estimation of Zinc / Magnesium.
- 2. Estimation of hardness of water.

III ORGANIC ESTIMATION

- 1. Estimation of Ethylmethylketone
- 2. Estimation of Glucose
- 3. Saponification of an oil
- 4. Estimation of Glycine

IV. COLORIMETRY

- 1. Estimation of Iron/Copper/Nickel.
- 2. Determination of unknown concentration of KMnO₄/K₂Cr₂O₇.

- 1. G.Svehla, Vogel's Quantitative Inorganic Analysis, 7th Ed. Pearson Education, 2003
- 2. B.B. Dey and M.V. Sitaraman, Laboratory manual of organic chemistry –.
- 3. Gnanapragasam and Ramamurthy, Organic Chemistry Lab ManuaL, Viswanathan Publishers Pvt Ltd, 2006.
- 4. V.Venkatesan, R. Veerasamy, A.R.Kulandaivelu, Basic Principles of Practical Chemistry, S.Chand and Sons, 2004.
- 5. Practical Chemistry by O.P.Pandey, D.N.Bajpal and S.Giri, Reprint 2005.
- 6. Sundaram, P.Krishnan and P.S.Ragavan, Practical Chemistry, Viswanathan Printers and Publishers., 1993.
- 7. Subash-Satish, Advanced Inorganic Analysis.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I:	VOLUMETRIC AND GRAVIMETRIC ESTIMA	TION	
	Estimation of Copper & Nickel, Estimation of Iron	20	Lab Session
	& Nickel or Estimation of Copper & Zinc	5	Demonstration&Viva
UNIT II	: COMPLEXOMETRIC TITRATION		
	Estimation of Zinc / Magnesium, Estimation of hardness of water.	12	Lab Session
		4	Demonstration&Viva
UNIT II	ORGANIC ESTIMATION		
	Estimation of Ethylmethyl ketone, Estimation of	30	Lab Session
	Glucose, Saponification of an oil, Estimation of	5	Demonstration&Viva
	Glycine.		
UNIT IV	COLORIMETRY		
	Estimation of Iron/Copper/Nickel, Determination	12	Lab Session
	of unknown concentration of KMnO ₄ /K ₂ Cr ₂ O ₇ .	4	Demonstration& Viva

Course	Progra	ımme Oı	ıtcomes	nes (POs) Programme Specific Outcomes (PSOs)				Mean			
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	5	4	1	4	5	5	4	4	4.0
CO2	5	4	4	5	1	5	4	4	4	4	4.0
CO3	4	4	4	4	2	5	4	4	4	4	3.9
CO4	5	4	4	4	1	5	4	4	4	4	3.9
Mean Overall Score											3.95

Result: The Score for this Course is 3.95 (High Relationship)

Programme :M.Sc Chemistry CORE 16

Semester: IV Hours: 8/W, 120 Hrs./S

Sub. Code : P22CDPW Credits : 5

INDIVIDUAL PROJECT

To plan and design, retrieve relevant literature, organize and conduct, process the data, record the observations and interpret. The work shall be conducted in the department under the guidance of the project supervisor or in other institutions or with interdisciplinary collaboration from external departments or institutions.

Programme :M.Sc Chemistry ELECTIVE 4

Semester : IV Hours : 5 /W, 75 Hrs./S

Sub. Code : P22DSD4 Credits :4

TITLE OF THE PAPER: GREEN CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem solving session/Quiz/videos/Library session.	ICT		
	5	3	1	1		
		bjective of	the course is to make the student understand the co	oncepts	of	
green chem				1		
COURSE C	UTCON	IE: At the 6	end of the Semester, the Students will be able to	Unit	Hrs. /S	
CO1: gain le solvents.	knowledg	ge about the	principles of green chemistry and about the green	1	15	
CO2: discus	s the orga	anic reaction	ns in solid-state	2	15	
CO3: demonstrate alternative energy sources for the organic synthesis					15	
CO4: choo	CO4: choose appropriate reagents and catalysts for organic synthesis 4 15					
CO5: realize	CO5: realize the significance of green synthesis 5 15					

UNIT – I INTRODUCTION TO GREEN SYNTHESIS (15 Hours)

Introduction – Principles of green chemistry – explanation of 12 principles of green chemistry

Organic synthesis in water – Advantages – Pericyclic reactions (Diels – Alder reaction, Hetero Diels –
Alder reaction) – Claisen rearrangement – wittighorner reaction – Michael reaction – aldol condensation

– knoevenagel reaction – pinacol coupling – benzoin condensation – claisen Schmidt condensation –
benzoin condensation – oxidation (epoxidation, dihydroxylation, aldehydes, ketones) – reduction (C –C
double bond, C-C triple bond, carbonyl compounds) Electrochemical synthesis (adiponitrile, sebacic
acid)

Organic synthesis using ionic liquids – Introduction – properties of ionic liquids – types of ionic liquids – preparation of ionic liquids – Baylis Hillman reaction in ionic liquids - Horner Wadsworth – Emmons Reaction in ionic liquids – Biotransformation in ionic liquids (Synthesis of epoixed, Geranyl acetate, trans esterification of glucose and L –ascorbic acid) (mechanism is not included for all the reactions)

UNIT – II ORGANIC SYNTHESIS IN SOLID STATE (15 Hours)

Solid state reaction at room temperature: Aldol condensation, Grignard reaction, Reformatsky reaction - Synthesis of Quinoxalin derivatives, β - keto sulphones from ketones, α -tosyloxy β - keto sulphones

Solid state reaction using solid support : Protection and de protection (formation of acetals and dioxolanes, N- alkylation reactions) – Oxidation (alcohols, sulphides, aromatisation) – Reduction

(carbonyl compounds, crossed cannizaro reactions) – rearrangement (pinacol -pinacolone, Beckmann, Benzil-benzillic acid rearrangement) – Condensation reactions (Knoevenaga lcondensation, Wittig olefination reactions) - Synthesis of heterocycles (Aziridines, Benzimidazoles, pyrozoles, pyrroles, Azoles, Quinolines, β – lactams, Flavones)

(Mechanismis not included for allthe reactions)

UNIT – III USE OF ALTERNATE ENERGY SOURCES

(15 Hours)

A. **Microwave assisted organic synthesis** – Introduction.

Microwave assisted reactions in water: Hofmann elimination – hydrolysis of benzamides, N – Phenyl benzamides, methyl benzoate – oxidation of toluene – coupling of amines – N – heterocyclisation Microwave assisted reactions in organic solvents: Fries rearrangement – Diels Alder reaction – Claisen rearrangement – Baylis Hillman reaction – Synthesis of β lactams – catalytic hydrogenation – Ferrier rearrangement–pericyclic reactions – preparation of ferrocenyloxime – carbohydrates – radical reactions.

B. **Ultrasound assisted organic synthesis**— Introduction — Instrumentation — physical aspects — types of sonochemical reactions — homogeneous sonochemical reactions (curtius rearrangement, organo metallic reactions. Annulation, Grignard reactions, addition reactions) heterogeneous liquid liquid reactions (saponification, substitution, addition) — heterogeneous solid liquid reactions (oxidation, reduction)

(Mechanism is not included for all the reactions)

UNIT - IV ORGANIC SYNTHESIS USING GREEN REAGENTS AND GREEN CATALYST (15 Hrs.)

Green reagents: Singlet oxygen – ozone – hydrogen peroxide –dioxiranes – polymer supported reagents (PNBS, polymeric wittig reagent, EEDQ)

Green catalyst:

Phase transfer catalyst: Introduction – mechanism – types of Phase transfer catalyst – advantages of Phase transfer catalyst – Applications (Benzoin condensation, Darzen's reaction, Michael reaction, Williamson ether synthesis – the wittig reaction, Wittig Horner reaction, sulphurylides, oxidation (KMnO₄, hypochlorite, potassium ferricyanite)- reduction)

Crown ethers: Introduction – nomenclature – special features – synthetic application (Esterification, saponification, oxidation, substitution, elimination, displacement, superoxide anion, photocyanation, heterocyclisation, cation deactivation)

Biocatalyst: Introduction - advantage - classes of enzymes - specificity of enzymes - Biochemical or microbial oxidation (carbohydrates, steroids) - biochemical reduction - enzymes catalyzed hydrolytic processes - Application of enzymes.

(Mechanism is not included for all the reactions)

UNIT – V GREEN SYNTHESIS

(15 Hours)

Green synthesis of Adipic acid, adiponitrile, Ibuprofen, Methyl metacrylate, sebatic acid, poly aspartate, 2 – aroylbenzofurans, cyclohexane oxime, Lauryl lactum, 6APA, 11 α –hydroxyl progesterone, 3-phenyl catechol, prednisolone.

(mechanism is not included for all the reactions)

- 1.V.K. Ahluwalia, Green chemistry.
- 2. V.K. Ahluwalia, Green chemistry of environmentally benign reactions.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I:	INTRODUCTION TO GREEN SYNTHESIS		
	Pericyclic reactions, Free radical brominations,	2	ICT
	Principles of green chemistry Organic synthesis in water and in super critical carbon di oxide	10	LECTURE
	Organic synthesis using ionic liquids	3	SEMINAR
UNIT II	ORGANIC SYNTHESIS IN SOLID STATE	<u> </u>	
	Solid state reactions at room temperature	2	ICT
	Organic reactions using solid support.	10	LECTURE
	Miscellaneous reactions	3	SEMINAR
UNIT – I	III USES OF ALTERNATE ENERGY SOURCES		-
	Micro-wave assisted organic synthesis.	2	ICT
	Ultrasound assisted organic synthesis.	10	LECTURE
	Photo induced organic synthesis.	3	SEMINAR
UNIT – I	IV ORGANIC SYNTHESIS USING GREEN REAGEN	NTS AND G	REEN CATALYST
	Crown ethers and PTC	2	ICT
	Green reagents	10	LECTURE
	Biocatalysts	3	SEMINAR
UNIT -	V GREEN SYNTHESIS	ı	•
	Green synthesis of Ibu profen	2	ICT
	Green synthesis	10	LECTURE
	Lauryl lactum, 6-APA, Prednisolone	3	SEMINAR

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	3	4	1	3	4	4	4	4	3.5
CO2	4	3	4	4	1	4	3	4	3	4	3.4
CO3	3	4	4	4	1	3	4	4	4	4	3.5
CO4	4	3	4	3	1	4	4	4	3	4	3.4
CO5	4	4	4	3	1	3	4	4	3	4	3.4
	Mean Overall Score										

Result: The Score for this Course is 3.44 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1, K3	K1/K2
II	K1 ,K2 / K4	K1 / K3
III	K1 ,K2 / K4	K1 ,K2 / K4
IV	K2 / K3	K3/ K4
V	K2 ,K3 / K4	K2 ,K3 / K4

Programme :M.Sc Chemistry ELECTIVE 4

Semester : IV Hours : 5 /W, 75 Hrs./S

Sub. Code : P22DSD4 Credits :4

TITLE OF THE PAPER: MEDICINAL AND PHARMACEUTICAL CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem solving session/Quiz/videos/Library session.	ICT				
	5	3	1	1				
PREAMBL	mental	s of						
medicinal a	nd phar	maceutical	chemistry					
COURSE O	OUTCON	ME: At the	end of the Semester, the Students will be able to	Unit	Hrs /S			
CO1: Gain knowledge about the fundamentals of medicinal chemistry, pharmacokinetics, concepts of prodrug and soft drug and drug design. To understand the development of QSAR.								
			features and SAR of penicillin G, cephalosporin, comycin and chloramphenicol.	2	15			
CO3: To cl	•	-	eutic agents and design the synthesis of antineoplastic	3	15			
CO4: To endrugs.	CO4: To employ the synthesis and therapeutic action and SAR of antihypertensive							
CO5: Analy			ally important compounds using UV-vis, NMR, mass GC techniques.	5	15			

UNIT I - FUNDAMENTALS OF MEDICINAL CHEMISTRY

(15 Hours)

Introduction to the history of medicinal chemistry –Pharmacokinetics: Introduction to drug absorption, distribution, drug metabolism and elimination. Concept of prodrug and soft drug. Drug Design – Lead compounds, structure – activity relationship (SAR)and the development of Quantitative Structure Activity Relationship (QSAR).

UNIT II - ANTIBIOTICS AND ANTIBACTERIALS

(15 Hours)

Structural features and SAR of the following antibiotics – penicillin G, cephalosphorin and their semisynthetic analogs (β – lactam), streptomycin (amino glycoside), terramycin (tetracycline), erythromycin (macrolide) and chloramphenicol.

UNIT III - CHEMOTHERAPEUTIC AGENTS

(15 Hours)

Antineoplasticagents: Classification, synthesis, assay, e.g., cyclophosphamide, ifosfamide, clorambucil, busulfan, decarbazine, methotrexate, azathioprine, 6-mercaptopurine, 5-fluorouracil and cisplatin.

Antitubercular drugs: Classification, synthesis, assay, e.g., chloroquine, primaquine, amadodiaquine, mefloquine, progunailand pyrimethamine.

UNIT IV - SYNTHESIS AND THERAPEUTIC ACTION AND SAR OF ANTIHYPERTENSIVE DRUGS (15 Hours)

Nifedipine, Captopril, hydralazine, sodium nitroprusside, clonidine, methyldopa and guanothidine.

UNIT V - PHARMACEUTICAL ANALYSIS

(15 Hours)

Principles, instrumentation and applications to the following: Absorption spectroscopy (UV, visible & IR). Principles and applications of NMR, Mass spectroscopy, Chromatographic methods – TLC, HPLC and GC.

- 1. Introduction to Medicinal Chemistry, A Gringuage, Wiley-VCH.
- Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, Ed Robert F. Dorge.
- 3. An Introduction to Drug Design, S.S. Pandey and J.R. Dimmock, New Age International.
- 4. Burger's Medicinal Chemistry and Drug Discovery, Sixth Edition, Ed.M.E.vWolff, John Wiley.
- 5. The Organic Chemistry of Drug Design and Drug Action, R.B. Silverman, Academic Press.
- 6. Finar, I. L. & Finar, A. L. Organic Chemistry Vol. 2, Addison-Wesley (1998)
- 7. Finar, I. L. Organic Chemistry Vol. 1, Longman (1998)
- 8. Gringauz, A. Introduction to Medicinal Chemistry: How Drugs Act and Why? John Wiley & Sons (1997).
- 9. Patrick, G. L. Introduction to Medicinal Chemistry Oxford University Press (2001).
- 10. Medicinal Chemistry, Sriram.D
- 11. Medicinal Chemistry, Kar. Ashuthosh
- 12. Introductory Medicinal Chemistry, J.B.Taylor and P.D.Kennewell, Ellisworth pub. 1985.
- 13. Medicinal Chemistry, Laxmi. C
- 14. Pharmaceutical Chemistry, B. Jeyasree Gosh
- 15. Text book of Pharmaceutical Organic Chemistry, Mohammed Ali.
- 16. Synthetic Drug, Gurdeep Chatwal.

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
UNIT I: I	FUNDAMENTALS OF MEDICIN	AL CHEMISTRY	
	Pharmacokinetics: Introduction	2	ICT
	to drug absorption, distribution,		
	drug metabolism and		
	elimination.		
	Introduction to the history of	10	Lecture
	medicinal chemistry. Concept of		
	prodrug and soft drug. Drug		

Design of Lead compounds,		
structure – activity relationship		
(SAR)		
Development of Quantitative	3	Seminar
Structure Activity Relationship		
(QSAR).		
UNIT II: ANTIBIOTICS AND ANTIBACTI	ERIALS	
Structural features and SAR of	2	ICT
penicillin G		
Structural features and SAR of	10	Lecture
cephalosphorin and their		
semisynthetic analogs (β –		
lactam), terramycin (tetracycline)		
and chloramphenicol.		
Structural features and SAR of	3	Seminar
streptomycin (amino glycoside)	5	
and erythromycin (macrolide).		
UNIT III CHEMOTHERAPEUTIC AGENT	re	
Synthesis and applications of	2	ICT
chloroquine and cisplatin.	2	IC I
Synthesis of antineoplastic	10	Lecture
	10	Lecture
cyclophosphamide, ifosfamide,		
clorambucil, busulfan,		
decarbazine, methotrexate,		
azathioprine, 6-mercaptopurine,		
5-fluorouracil and antitubercular		
drugs viz. primaquine,		
amadodiaquine, mefloquine and		
progunail pyrimethamine.		
Classification of antineoplastic	3	Seminar
agents and antitubercular drugs		
UNIT IV SYNTHESIS AND THERAPEUTI	C ACTION AND	SAR OF
ANTIHYPERTENSIVE DRUGS		
Synthesis and therapeutic action	2	ICT
of sodium nitro prusside.		
Synthesis and therapeutic action	10	Lecture
of Nifedipine, Captopril,		
hydralazine, clonidine, and		
guanothidine		
Synthesis and therapeutic action	3	Seminar
of methyldopa		
UNIT V PHARMACEUTICAL ANALYSIS		
Instrumentation of TLC, HPLC	2	ICT
and GC		
Instrumentation and applications	10	Lecture
		<u> </u>

to the following: Absorption spectroscopy (UV, visible & IR). Principles and applications of NMR, Mass spectroscopy,		
Principles and applications of TLC, HPLC and GC.	3	Seminar

Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)								Mean scores		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	3	3	1	4	4	4	4	4	3.4
CO2	4	4	3	3	1	4	4	4	4	4	3.5
CO3	4	4	3	3	1	4	4	4	4	4	3.5
CO4	4	4	4	4	1	4	4	3	4	4	3.6
CO5	4	3	4	3	1	4	4	4	4	4	3.5
	Mean Overall Score										3.5

Result: The Score for this Course is 3.5 (High Relationship)

UNIT	Part A(5X5=25m)	Part B (5 X 10 = 50m) Either or Pattern
I	K1 / K2	K1 / K2/ K4
II	K2 / K4	K2/ K3/ K4
III	K3 / K2	K3 / K2
IV	K2 / K3/ K4	K3 / K2
V	К3	K3 / K2