SRI MEENAKSHI GOVT.ARTS COLLEGE FOR WOMEN (A), MADURAI - 625 002

Reaccredited with "A" by NAAC

M.Sc., PHYSICS SYLLABUS FOR THE ACADEMIC YEAR

2022 - 2023

DEAPRTMENT OF PHYSICS

CHOICE BASED CREDIT SYSTEM SYLLABUS

FOR STUDENTS ADMITTED FROM JUNE 2022

SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS)

MADURAI - 625 002

Programme : M.Sc Physics

SEMESTER –I

Course	CourseCodeTitle of the CourseTrueTrueTrue		Hrs/	Credit	Exam	Marks			
Туре			Week		Hrs	Int	Ext	Total	
CCI	P22CP1	Mathematical Physics-I	6	5	3	25	75	100	
CC II	P22CP2	Classical Mechanics	5	4	3	25	75	100	
CC III	P22CP3	Advanced Electronics	6	5	3	25	75	100	
CCIV	P22CP4P	Physics Practical – I	6	3	5	40	60	100	
	P22DSP1A	Microprocessor and Micro controller							
DSEC- I	P22DSP1B	Microprocessor and Embedded microcontroller	5	4	3	25	75	100	
SEC –I	P22SEP1	olar Energy and its Applications 2 2 3 25 7						100	
		Total	30	23				600	
		SEMESTER –II							
CCV	P22CP5	Mathematical Physics-II	6	4	3	25	75	100	
CCVI	P22CP6	Quantum Mechanics-I	6	5	3	25	75	100	
CCVII	P22CP7	Electromagnetic Theory	5	4	3	25	75	100	
CCVIII	P22CP8P	Physics Practical–II	6	3	5	40	60	100	
	P22DSP2A	Programming in C++							
DSEC-II	P22DSP2B	Computational Physics	5	4	3	25	75	100	
SEC- II	P22SEP2	Nanoscience and Nano technology	2	2	3	25	75	100	
		Total	30	22				600	

SEMESTER – III										
Course	Code	Code Title of the Course		Credit	Exam	Ma	Marks			
Туре			Week		Hrs	Int	Ext	Total		
CC– IX	P22CP9	Condensed Matter Physics –I	6	5	3	25	75	100		
CC–X	P22CP10	Quantum Mechanics-II	6	5	3	25	75	100		
CC – XI	P22CP11	Molecular Spectroscopy	5	5	3	25	75	100		
CC–XII	P22CP12P	Physics Practical – III	6	3	5	40	60	100		
DSEC-III	P22DSP3A/ P22DSP3B	Crystal Growth and Thin Films / Plasma Physics	5	4	3	25	75	100		
NMEC –I	P22NMP1	Satteries and their Applications 2 2 3 25					75	100		
		Total	30	24				600		
		SEMESTER -IV								
CC–XIII	P22CP13	Condensed Matter Physics –II	6	4	3	25	75	100		
CC–XIV	P22CP14	Nuclear and Particle Physics	6	4	3	25	75	100		
CC-XV	P22CP15P	Physics Practical – IV	5	4	5	25	75	100		
CC– XVI	P22CPPW	Project	8	5	-	40	60	100		
DSEC – IV	P22DSP4A / P22DSP4B	Laser and non linear optics / Introduction to Bose – Einstein Condensation (BEC), Superfluidity and Superconductivity	5	4	3	25	75	100		
		Total	30	21				500		

COURSE STRUCTURE ABSTRACT FOR M.Sc., PHYSICS

PART	COURSES	TOTAL NO	HOURS	CREDIT	MARK
		OF COURSES			
III	Core Course	15	86	63	1500
III	Core Project	1	8	5	100
III	Discipline Specific Elective Course	4	20	16	400
III	Non-Major Elective Course	1	2	2	100
III	Skill Enhancement Course	2	4	4	200
	Total	23	120	90	2300

PART	SEMESTER	COURSE	TITLE OF THE COURSE		CREDITS
		ТҮРЕ		WEEK	
III I DSEC		DSEC-I	ELECTIVE - 1 - MICROPROCESSOR AND MICRO CONTROLLER		4
			ELECTIVE – 1 - MICROPROCESSOR AND EMBEDDED MICRO CONTROLLER		
			ELECTIVE - 2 - PROGRAMMING IN C++		
III	II	DSEC-II	ELECTIVE - 2 - COMPUTATIONAL PHYSICS		4
III	III	DSEC-III	ELECTIVE- 3 -CRYSTAL GROWTH AND THIN FILMS	5	4
			ELECTIVE - 3 - PLASMA PHYSICS		
IV	IV	DSEC-IV	ELECTIVE - 4 - LASER AND NON LINEAR OPTICS	5	4
			ELECTIVE - 4 - INTRODUCTION TO BOSE – EINSTEIN CONDENSATION (BEC) , SUPERFLUIDITY AND SUPERCONDUCTIVITY		

SKILL ENHANCEMENT COURSE (SEC)

PART	SEMESTER	COURSE TYPE	TITLE OF THE COURSE	HRS/ WEEK	CREDITS
III	Ι	SEC-I	SOLAR ENERGY AND ITS APPLICATIONS	2	2
III	п	SEC-II	NANOSCIENCE AND NANO TECHNOLOGY	2	2

NON-MAJOR ELECTIVE COURSES

OFFERED BY DEPARTMENT OF PHYSICS

PART	SEMESTER	COURSE TYPE	TITLE OF THE COURSE	HRS/ WEEK	CREDITS
IV	III	NMEC-1	BATTERIES AND THEIR APPLICATIONS	2	2

QUESTION PAPER PATTERN

I YEAR PG

Section – A	Section-B
Internal choice questions $(5 * 5 = 25)$	Internal choice questions (5 * 10 = 50)
I to V units equ	al distribution

Programme : M.Sc. Semester : I Sub. Code : P22CP1

Core - I Hours : 6 Hrs P/W 90 Hrs P/S Credits : 5

TITLE OF THE PAPER : Mathematical Physics I

Pedagogy	bgy Hours Lecture		Peer Teaching	GD/Videos/Tutorial	ICT	
	6	3	1	2	-	

PREAMBLE: The purpose of the course is to introduce students to methods of mathematical physics and to develop required mathematical skills to solve problems in quantum mechanics, electrodynamics and other fields of theoretical physics.

Course Outcome	Unit	Hrs P/S
At the end of the semester, the students will be able to		
CO1 : describe the vector analysis and vector spaces	Ι	18
CO2: solve the problems using Matrices	II	18
CO3 : apply the Special functions – I	III	18
CO4 : interpret the Special functions – I	IV	18
CO5 : solve the problems using Group theory	V	18

SYLLABUS

UNIT I: VECTOR ANALYSIS AND VECTOR SPACES

Concept of gradient, divergence and curl - Gauss's divergence theorem, Green's theorem and Stoke's theorem (statement and proof) - orthogonal curvilinear coordinates - expression for gradient, divergence, curl and laplacian in cylindrical and spherical co-ordinates (theory) - linearly dependent and independent sets of vectors.

UNIT II: MATRICES

Types of matrices and their properties - rank of a matrix - eigenvalue equations and their solutions - theorems on matrices - diagonalisation - diagonalisation of different matrices - cayley-hamilton's theorem - problems.

UNIT-III: SPECIAL FUNCTIONS – I

Gamma and beta function- legendre's differential equation: legendre polynomials - generating functions - recurrence relation - rodrigue's formula - orthogonality; bessel's differential equation: bessel polynomials - generating functions - recurrence relation -rodrigue's formula – orthogonality.

UNIT-IV: SPECIAL FUNCTIONS – II

Hermite differential equation – generating functions – hermite polynomials - recurrence relations – rodrigue's formula - orthogonality: laguerre differential equations – generating functions - laguerre polynomials - recurrence relation - rodrigue's formula – orthogonality.

UNIT-V: GROUP THEORY

Definition - subgroups - cyclic groups and abelian groups - homomorphism and isomorphism of groups - classes - symmetry operations and symmetry elements - representations of groups - reducible and irreducible representations - character tables for simple molecular types (c2v and c3v point group molecules)

TEXT BOOKS:

1.Mathematical Physics - S.L. Kakani, C. Hemrajani 2nd Edition CBS Publishers &Distributors Pvt. LTD., 2010.

UNIT - I Ch.1 (sec. 1.1 - 1.6, 1.8 - 1.16)

Unit - II Ch.2 (sec. 2.1 - 2.4, 2.8 - 2.12)

Unit – III Ch.4 & 7 (sec. 4.3,4.5,7.5,7.7)

Unit - IV Ch.7 (sec. 7.10,7.11)

2. Mathematical Physics with classical mechanics - Satyaprakash, 6th edition Sultan Chand &Sons, 2013

Unit - V Ch. 13 (sec. 13.1, 13.4, 13.5, 13.7, 13.12, 13.13, 13.18, 13.19, 13.21, 13.22, 13.25, 13.26)

BOOKS FOR REFERENCE:

1. B. D. Gupta, Mathematical Physics 4th edition Vikas Publishing House Pvt. Ltd. 2013

2. E. Balagurusamy, Numerical methods Tata McGraw - Hill Publishing company Ltd., 1999

3.Arkfen&Weber, Essential Mathematical Methods for Physicists, Academic Press, 2005.

UNITS	ΤΟΡΙΟ	LECTURE	MODE OF TEACHING
	Concept of gradient, divergence and curl - gauss's divergence theorem, green's theorem and stoke's theorem (statement and proof)	6	Lecture, Peer Teaching & Tutorial
UNIT I	orthogonal curvilinear coordinates - expression for gradient, divergence, curl and laplacian in cylindrical and spherical co-ordinates	6	Lecture, Peer Teaching & Tutorial
	linearly dependent and independent sets of vectors	6	Discussion and by lecturing through ICT (power point presentation
UNIT II	Types of matrices and their properties, rank of a matrix, eigenvalue equations and their solutions, t	6	Lecture , Peer Teaching & Tutorial
	theorems on matrices; diagonalisation and diagonalisation of different matrices;	6	Lecture & Tutorial
	Cayley-hamilton's theorem; problems.	6	Lecture & Tutorial
	Gamma and beta function- legendre's differential equation: legendre polynomials - generating functions -	6	Lecture, Group discussion and Seminar
UNIT III	rodrigue's formula - orthogonality; bessel's differential equation: bessel polynomials	6	Lecture & Tutorial
	generating functions - recurrence		

	relation -rodrigue's formula – orthogonality.	6	Lecture, Group discussion and Seminar
	Hermite differential equation – generating functions – hermite polynomials - recurrence relations –	6	Lecture & Tutorial
UNIT IV	rodrigue's formula - orthogonality: laguerre differential equations – generating functions - laguerre polynomials	6	Lecture & Tutorial
	- recurrence relation - rodrigue's formula – orthogonality.	6	Lecture & Tutorial
UNIT V	Definition - subgroups - cyclic groups and abelian groups - homomorphism and isomorphism of groups - classes - symmetry operations and symmetry elements	6	Lecture, Group discussion and Seminar
	representations of groups - reducible and irreducible representations	6	Lecture & Tutorial
	character tables for simple molecular types (c2v and c3v point group molecules)	6	Lecture & Tutorial

Course	Progr	Programme Outcomes (POs)					Programme Specific Outcomes				
Outcomes	_	(PSOs)								Scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of
											Cos
CO1	4	5	3	4	4	3	3	3	4	5	3.8
CO2	4	4	3	3	3	4	5	4	3	4	3.7
CO3	3	3	4	5	4	5	4	5	5	3	4.1
CO4	4	3	3	4	3	5	3	4	4	3	3.6
CO5	3	4	3	3	4	3	3	3	4	3	3.3
				Mean	Overa	ll score					3.7

Result: The Score for this Course is **3.7** (High Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of COs = $\frac{\text{Total of Value}}{\text{Total No. of POs& PSOs}}$				Iean Overall Sco	re of COs = $\frac{\text{Tot}}{\text{Tot}}$	al of Mean Score otal No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1: Remembering/ recalling.	30%	30%
K2: Understanding/ comprehension.	30%	30%
K3: Application and analysis.	40%	40%

Course Designer : Dr. Mrs. G. SAROJA

Department of physics

Programme : M.Sc., PHYSICS Semester : I Sub. Code : P22CP2

Part III: MAJOR Core Hours : 5 P/W, 75 Hrs P/S Credits : 4

TITLE OF THE PAPER: CLASSICAL MECHANICS

Pedagogy	Hours	Lecture	Peer	GD/VIDOES/TUTORIAL	ICT
			Discussion/Teaching		
	5	2	1	1	1

PREAMBLE: Understanding and acquire the prerequisite concepts to the inadequacy in classical mechanics so that we can transit from classical to quantum mechanics which gives an insight into the interesting correlation.

Understanding and applying the connection between the theory and experiment.

COURSE OUTCOME	Unit	Hrs
At the end of the Semester, the Students will be able to		P/S
CO1 : Describe prerequisite concepts to the inadequacy in classical mechanics so that	Ι	15 hrs
we can transit from classical to quantum mechanics this gives an insight into the		
interesting correlation and Lagrangian Formulation.		
CO2: Study Hamilton's Principle and Lagrange's equation and the kinematics of the	II	15 hrs
rigid body through Euler equation.		
CO3: Explain The Hamilton-Jacobi equations and normal coordinates.	III	15 hrs
CO4: Obtain the Orthogonal transformation and Angular Momentum and Kinetic	IV	15 hrs
Energy of Motion about a Point.		
CO5: Get knowledge in central force field and relativity.	V	15 hrs

SYLLABUS

UNIT-I: LAGRANGIAN FORMULATION:

Introduction – Basic Concepts - System of particles- Degrees of freedom - Constraints (only Types with Examples) - Generalized Coordinates - Principle of Virtual Work- D'Alembert's Principle (only Derivation) - Procedure for Formation of Lagrange's Equations - Applications of Lagrange Equations of Motion – Simple Pendulum - Generalized Momentum and Cyclic Co-ordinates - Conservation Theorems.

UNIT –II: HAMILTON'S EQUATION AND CANONICAL TRANSFORMATION:

Introduction - Hamilton's Principle and Lagrange's equations - Hamilton's function H and Conservation of Energy : Jacobi's Integral - The Calculus of variation and Euler- Lagrange's Equation – Deduction of Lagrange's equation from Variational Principle - Principle of least action- Canonical Transformation -Legendre transformation - Poisson brackets and its Properties – Lagrange Brackets.

UNIT-III: HAMILTON-JACOBI THEORY AND SMALL OSCILLATIONS:

Introduction – The Hamilton-Jacobi equations –Solution of Harmonic oscillator problem by Hamilton – Jacobi Method - Kepler problem by Hamilton – Jacobi Method - Normal Coordinates-Normal Modes - Eigen Value Equation -Vibrations of Linear Tri atomic Molecule.

UNIT-IV: THE KINEMATICS OF RIGID BODY MOTION :

Introduction - Independent coordinates of rigid body-orthogonal transformation- The Euler angles – Euler's Theorem on the Motion Of a Rigid Body - Angular Momentum and Kinetic Energy of Motion about a Point – Torque - Free Motion of a Rigid Body.

UNIT-V: CENTRAL FORCE PROBLEM AND THEORY OF RELATIVITY:

Introduction - Centre of mass - Reduction to the equivalent one body problem- Equation of Motion under Central Force and First integrals – Inverse-Square law of Force - Scattering in a Central force field – Scattering Cross- Section – Scattering Angle, Impact Parameter –Examples of Mass-Energy Conversion - Lorentz transformation for Force - Relativistic Lagrangian and Hamiltonian of a Charged Particle in an Electro Magnetic Field – Velocity Dependent Potentials. BOOKS FOR STUDY:

1. Classical Mechanics - J.C. Upadhyaya -Himalaya Publishing House Pvt.Ltd, Bangalore, Second edition,2017.

UNIT-I: Chapter : 2 & 3 - (Sec: 2.1 – 2.3.3, 2.4-2.6, 2.8 & 3.2, 3.3).

UNIT –II: Chapter 2, 3, 5, 6 & 7 – (Sec: 2.11, 3.4, 5.2, 5.6, 5.11, 6.1, 6.2 & 7.2, 7.3).

UNIT-III: Chapter 8 & 9 – (Sec:8.1 – 8.3, 8.5, 9.3.2, 9.4.2 & 9.6)

UNIT-V: Chapter 1, 4 and 13 – (Sec: 1.7.2, 4.1, 4.3, 4.5, 4.10, 13.4, 13.9 & 13.12).

2. Classical Mechanics - H. Goldstein, C. Poole and J. Safko, Pearson Education Asia, New Delhi, Third Edition, **2002**.

UNIT-IV: Chapter 4 and 5 - (Sec: 4.1, 4.2, 4.4, 4.6 and 5.1 & 5.6)

REFERENCE BOOKS:

- 1. Classical Mechanics G. Aruldhas, PHI Learning Private Limited, New Delhi, 2015.
- 2. Classical Mechanics -S. L. Gutpa, V. Kumar and H.V. Sharma, Pragati Prakashan, Meerut ,2016.
- **3.** ClassicalMechanics of Particles and Rigid Bodies -K.C. Gupta, New Age International Publishers, New Delhi, Third edition, **2018**.
- 4. Classical Mechanics -N.C. Rana and P.J. Joag, Tata McGraw Hill, New Delhi, 2015.
- **5.** Classical Mechanics- B.D.Gupta and Satya Prakash, Keder Nath Publishers, Meerut, Revised Edition, **2015**.
- 6. Introduction to Classical Mechanics R.G.Takwale and P.S.Puranik, Tata Mc Graw Hill, New Delhi, 1989.

Web REFERENCE:

1. https://www.britannica.com/science/classical-mechanics

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I	Introduction – Basic Concepts - System of particles- Degrees of freedom - Constraints (only Types with Examples)	4 hrs	Motivation by asking questions – peer group discussion and by lecturing through ICT (power point presentation)
UNIT I	Generalized Coordinates - Principle of Virtual Work- D' Alembert's (only Derivation)	3 hrs	Lecturing – deriving the expression by group discussion
	Procedure for	4 hrs	Peer group teaching and

	Formation of Lagrange's Equations - Applications of Lagrange Equations of Motion Simple Pendulum - Generalized Momentum and Cyclic Co-ordinates - Conservation Theorems.	4 hrs	lecturing Lecturing with discussion and deriving the expression along with example problems
UNIT II	Introduction - Hamilton's Principle and Lagrange's equations - Hamilton`s function H and Conservation of Energy	4 hrs	Lecturing – deriving the expression by group discussion.
	Jacobi's Integral - The Calculus of variation and Euler- Lagrange's Equation	4 hrs	Lecturing – deriving the expression by group discussion.
	DeductionofLagrange'sequationfromVariationalPrinciple - Principle ofleast action- CanonicalTransformation	3 hrs	Lecturing – deriving the expression by group discussion.
	Legendre transformation - Poisson brackets and its Properties – Lagrange Brackets.	4 hrs	Lecturing – deriving the expression by group discussion.
	Introduction – The Hamilton-Jacobi equations	4 hrs	Motivation by asking questions – peer group discussion and by lecturing through ICT (power point presentation)
	Solution of Harmonic oscillator problem by Hamilton	4 hrs	Lecturing – deriving the expression by group discussion and emphasizing the importance of H
UNIT III	Jacobi Method - Kepler problem by Hamilton – Jacobi Method Normal Coordinates-	3 hrs	Peer group teaching and discussion.

	Normal Modes	2 hrs	and deriving the expression
			along with example
			problems.
	Eigen Value Equation -	2hrs	Lecturing – deriving the
	Vibrations of Linear		expression by group
	TriatomicMolecule.		discussion.
	Introduction -	5hrs	Motivation by asking
	Independent		questions – peer group
	coordinates of rigid		discussion and by lecturing
	body-orthogonal		through ICT (power point
	transformation		presentation)
	The Euler angles –	5 hrs	Lecturing – deriving the
	Euler's Theorem on		expression by group
UNIT IV	the Motion Of a Rigid		discussion and emphasizing
	Body		the Motion Of a Rigid Body
			by
			Euler's Theorem
	Angular Momentum		Peer group discussion and
	and Kinetic Energy of	5 hrs	lecturing
	Motion about a		6
	Point – Torque - Free		
	Motion of a Rigid		
	Body.	2 hm	Motivation by asking
UNIT	of mass Deduction to	5 11 5	austions peer group
	the aquivalent one hody		discussion and by leaturing
	me equivalent one body		through ICT (now on point
	problem		unough IC1 (power point
	Equation of Mation	2h.az	presentation)
	Equation of Motion	SHIPS	Lecturing – deriving the
	and First integrals		diamaging
		21	
	Inverse-Square law of	2 hrs	Peer group discussion and
	Central force		deriving the expression
	Field		
	Scattering Cross-	2 hrs	Lecturing with discussion
	Section – Scattering		and deriving the expression
	Angle, Impact		along with example
	Parameter		problems
	Examples of Mass-	3 hrs	Lecturing – deriving the
	Energy		expression by peer teaching
	Conversion -		per country.
	Lorentz transformation		
	for Force		

Relativistic Lagrangian and Hamiltonian of a Charged Particle in an ElectroMagnetic Field – Velocity Dependent	2 hrs	Lecturing – deriving the expression by group discussion
Potentials.		

Course Outcomes (COs)	Programme Outcomes (POS)					Pro	rogramme Specific Outcomes (PSOs)				Mean scores of Cos
(005)	PO 1	PO 2	PO 2	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	
<u>CO1</u>	2	2	3	2	2	2	4	4	2	2	2.2
COI	3	4	3	3	3	3	4	4	3	3	3.3
CO2	3	3	4	4	3	3	3	3	3	4	3.3
CO3	3	4	3	3	3	4	3	4	3	3	3.3
CO4	3	3	3	4	3	4	3	4	3	3	3.3
CO5	4	3	4	4	4	3	4	4	4	3	3.7
				Mean	Overall S	Score					3.38

Result: The Score for this Course is **3.38** (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = <u>Total of Value</u> Total No. of POS& PSOs			Mean Overall S	Score of $COs = 2$	Total of Mean Score Total No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1:REMEMBERING/RECALLING.	20%	20%
K2: UNDERSTANDING /	20%	20%
COMPREHENSION.		
K3: APPLICATION AND	30%	30%
ANALYSIS.		
K4: SYNTHESIS AND	30%	30%
EVALUATION.		

Course Designer : Dr. Mrs. SANTHI.

Department of PHYSICS

Programme : M.Sc Semester : I Sub. Code : P22CP3

Part III: Core - III Hours : 6 P/W 90Hrs P/S Credits: 5

TITLE OF THE PAPER: ADVANCED ELECTRONICS

	Hours Lecture Peer Teaching GD/ Videos/Ture						
Pedagogy	6	3		1			
PREAMBLE: 7	Го impar	t knowledge	about various ser	niconductor diodes,Tra	nsistors	, registers,	
counters, and Operational Amplifiers and their applications and analog to digital conversion							
techniques.							
COURSE OUTCOME At the end of the Semester, the Students will be able toUnitHrs						Hrs P/S	
CO 1: Differentiate various semiconducting diodes by comparing their principles and working and its applications.						18	
CO 2: understand thecharacteristics and applications of operational amplifier						18	
CO 3: describe the design concepts of counters and shift registers						18	
CO 4: explain the various techniques to develop A/D and D/A converters						18	
CO 5: understand applications	and exp	lain the functi	on of data proce	ssing circuits and their	V	18	

SYLLABUS ADVANCED ELECTRONICS

UNIT I : SEMICONDUCTOR DEVICES

Zener diode- Gunn diode- Tunnel diode-Varactor diode-schottky diode- Characteristics and Applications. Transistor Characteristics in CE configuration – Transistor biasing and stabilization- The D.C. Operating Point and Load line-SimplerwayofdrawingaD.C.Loadline–Q-PointandMaximumundistortedoutput–FactorsaffectingstabilityofQ-point–Stability factor- Stability factor of common base and common emitter circuits.

UNIT-II : OPERATIONAL AMPLIFIER APPLICATIONS

Operational Amplifier - Op- Amp Parameters - Ideal Operational Amplifiers - Virtual Ground and Summing Point - Inverting Amplifier - Non - Inverting Amplifier - The Integrator - The Differentiator - Log amplifier- Antilog amplifier -Voltage to Current Converter with Floating Load - Current to Voltage Converter - Op-Amp Based Oscillator Circuits - Op-Amp Based - A Square - wave Relaxation Oscillator - A Triangular - wave Relaxation Oscillator - Active Filters(First order only) - Low – Pass Filter - High – Pass Filter - Band Pass Filter

UNIT III : REGISTERS AND COUNTERS

Types of registers-Serial in-Serial Out-Serial in –Parallel Out-Parallel in-Serial Out- Parallel in-Parallel Out - Asynchronous Counters- Decoding Gates-Synchronous Counter(using 3 bit only)-Changing the Counter Modulus (using Mod 3 only) -Decade counter (using Mod 5 only).

UNIT IV : D/A CONVERSION AND A/D CONVERSION

Variable resistor networks-Binary Ladder– D/A converters-D/Accuracy and resolution.- A/D converter- simultaneous conversion –counter method–continuous A/D conversion-A/D Techniques Dual slope A/D conversion-A/D accuracy and resolution.

UNIT V : DATA PROCESSING CIRCUITS

Multiplexers- Demultiplexers- 1-of -16 Decoder- BCD to Decimal Decoder- Seven segment Decoders-Encoders - Exclusive OR Gates- Parity Generators and Checkers- Magnitude comparator.

TEXT BOOKS:

1. Applied Electronics by R,SEDHA, S.Chand Publications Reprint 2015

UNIT I- Ch. 13,15 & 22 (sec-13.1 - 13.3,13.6- 13.9,13.11,13.12.13.14- 13.16,15.6-15.8,22.2-22.8) UNITII-Ch.35&36

(Sec35.1,35.6,35.9,35.10,35.12,35.13,,36.1136.15,36.17,36.18,36.24,34.26,36.28,36.29,36.32,36.34, 36.36-36.39)

2. Donald P Leach, Albert Paul Malvino Goutam Saha, Digital Principles and Applications, Seventh edition, Mc Graw Hill companies, 2011

UNIT III- Ch. 9 (sec-9.1-9.5)

Ch.10 (sec-10.1-10.5)

UNIT IV- Ch. 12(sec.12.1-12.10)

UNIT V- Ch-4(Sec 4.1 - 4.9)

REFERENCES BOOKS:

- 1. Jacob Millman, Christos C. Halkias, Satayabrata Jit, **Electronic devices and circuits** Third Edition, Tata Mc. Graw Hill Education, 2010.
- 2. Herbert Taub Donald Schilling, **Digital Integrated electronics**, Mc Graw Hill International editions, 1987.
- 3. William Stanley, **Operational Amplifier with linear integrated circuits**, CBS Publishers, 1988.
- 4. Robert L.Boylestad Louis Nashelsky, **Electronic devices and circuit Theory**, Tenth Edition, Pearson education ,2009.
- 5. R.P.Jain, Modern Digital Electronics-Tata Mc Graw Hill,2010.
- 6. A.P.Godse. D.A. Godse, **Digital Electronics**, Third revised edition, Technical Publications, 2008.
- 7. S.Salivanan, N.SureshKumar, A.Vallavaraj, **Electronic devices and circuits**, Second Edition, Tata Mc Graw Hill companies, 2008.

Web Resources

- 1. https://www.elprocus.com/types-of-diodes-and-applications/
- 2. https://www.monolithicpower.com/en/operational-amplifiers
- 3. <u>https://www.electronics-notes.com/articles/analogue_circuits/operational-amplifier-op</u> <u>amp/circuits.php</u>
- 4. https://www.geeksforgeeks.org/shift-registers-in-digital-logic/
- 5. https://www.geeksforgeeks.org/counters-in-digital-logic/
- 6. <u>https://www.utmel.com/blog/categories/integrated%20circuit/a-d-converter-basic-principle-and-types</u>
- 7. https://www.elprocus.com/what-is-multiplexer-and-demultiplexer-types-and-differences/

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
	Zener diode- Gunn diode- Tunnel diode-Varactor diode-schottky diode- Characteristics and Applications.	6	Lecture , , ICT ,Group discussion
UNIT I	Transistor Characteristics in CE configuration -Transistorbiasing and stabilization- The D.C. Operating Point and Load line-Simpler way of drawing a D.C.Loadline–	6	Lecture,ICTand seminar
	Q- PointandMaximumundistortedoutput– FactorsaffectingstabilityofQ-point– Stability factor- Stability factor of commom base and common emitter circuits.	6	Lecture , , ICT and Assignment
	Operational Amplifier - Op- Amp Parameters - Ideal Operational Amplifiers - Virtual Ground and Summing Point - Inverting Amplifier - Non - Inverting Amplifier	6	Lecture , , ICT, Group discussion and Seminar
UNIT II	Summing Amplifier – Subtractor - The Integrator - The Differentiator - Voltage to Current Converter with Floating Load - Current to Voltage Converter	6	Lecture , , ICT and Group discussion
	Op-Amp Based Oscillator Circuits - Op-Amp Based - A Square - wave Relaxation Oscillator - A Triangular - wave Relaxation Oscillator - Active Filters(First order only) - Low – Pass Filter - High – Pass Filter - Band – Pass Filter	6	Lecture ,Group discussion, ICT and Assignment
	Types of registers-Serial in-Serial Out- Serial in Parallel- Out-Parallel in-Serial Out- Parallel in- Parallel Out	9	Lecture & ICT
UNIT III	Asynchronous Counters- Decoding Gates-Synchronous Counter (using 3 bit only)- Changing the Counter Modulus (using Mod 3 only) -Decade counter (using Mod 5 only).	9	Lecture & ICT
	Variableresistor networks-Binary Ladder	5	Lecture, ICT and Group discussion
UNITIV	D/A converters-D/A accuracy and resolution A/D converter-	6	Lecture, ICT and seminar

	simultaneous conversion – counter method–		
	Continuous A/D conversion-A/D Techniques Dual slope A/D conversion-A/D accuracy and resolution.	7	Lecture ,seminar and Assignment
	Multiplexers- Demultiplexers- 1- of -16 Decoder-	6	Lecture, ICT and seminar
UNIT V	BCD to Decimal Decoder- Seven segment Decoders- Encoders -	6	Lecture , ICT and Assignment
	Exclusive OR Gates- Parity Generators and Checkers- Magnitude comparator.	6	Lecture ,Group discussion and Assignment

Course Outcomes (Cos)	Programme Outcomes (POs)					Progra	Programme Specific Outcomes (PSOs)				Mean scores of Cos
	PO1	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5									
CO1	4	3	4	4	3	4	3	4	4	4	3.7
CO2	4	4	3	4	4	4	4	3	4	4	3.8
CO3	4	4	3	4	4	3	4	3	4	4	3.7
CO4	4	3	4	3	4	4	3	4	4	4	3.7
CO5	5 4 4 3 4 4 4 4 3 4 4								3.8		
Mean Overall							e				3.74

Result: The Score for this Course is 3.74 (High Relationship)

Mapping	1-20%	21-40%		41-60%	61-80	%	81-100%		
Scale	1	2		3	4		5		
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.	0	4.1-5.0		
Quality	Very Poor	Poor		Moderate	High		Very High		
Mean Score of COs = Total No. of Pos & PSOsTotal No. of COs = Total No. of COs									
ASSESSMENT RUBRICS									
BLOOM'S TA	XANOMY	IN	ΓERNAL		EXTER	NAL			
K1 (Remember	ing/Recalling)	209	70		20%				

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL							
K1 (Remembering/Recalling)	20%	20%							
K2 (Understanding/Comprehension)	20%	20%							
K3 (Application & Analysis)	30%	30%							
K4 (Synthesis & Evaluation)	30%	30%							

Course Designer:

1.DR. N.NAGARANI 2.DR.G.KRISHNA BAMA Programme : M.Sc. Semester : I Sub. Code : P22DSP1A

DSEC- I Hours : 5 P/W 75Hrs P/S Credits : 4

TITLE OF THE PAPER: MICROPROCESSOR AND MICROCONTROLLER

Pedagogy	Hours	s Lecture Peer Teaching (GD/VIDOES/TUTORIAL	ICT
	5	2	1	1	1

PREAMBLE: To understand the basics, internal architecture, languages, instruction sets and operations involved in microprocessors and microcontroller. To describe counters using time delay, programmable peripheral interface, and basic concepts of serial I/O and data communication and to develop programming skill.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the semester, the students will be able to		
CO1 :list the basics of microprocessor 8085, architecture, memory and input/output	Ι	15
CO2 : classify the languages and instruction sets in microprocessor and design a counter with time delay using subroutine and develop programming skill	II	15
CO3: discuss the interfacing of microprocessor	III	15
CO4: know the basics of microprocessor 8086	IV	15
CO5:discuss about the microcontroller	V	15

SYLLABUS

UNIT I: MICROPROCESSOR ARCHITECTURE AND MICROCOMPUTER SYSTEMS

Microprocessor Architecture and its operations-Microprocessor initiated operations and 8085 Bus organization - Internal Data operations and the 8085 registers -Peripheral or Externally initiated operations - Memory - Flip flop or Latch as a storage element - Memory map and Addresses - Memory Address Range of a 1K memory chip - Memory address lines - Memory word size - Memory and Instruction Fetch - Memory classification - Example of a Microcomputer system.

UNIT II : INTRODUCTION TO 8085 ASSEMBLY LANGUAGE PROGRAMMING

Machine language - 8085 Machine language - 8085 Assembly language - Writing and Executing an Assembly language Program - Instruction classification - The 8085 Instruction set - Instruction, Data format and storage - Instruction word size - Opcode format - Data Format - Looping, counting, and indexing - Counters and Time delays - Time delay using one register - Stack - Subroutine - Subroutine Documentation and Parameter passing.

UNIT III : INTERFACING OF MICROPROCESSOR 8085

Basic concepts of programmable device -8255 Programmable Peripheral Interface (PPI) - interface of ADC and DAC -8237 Direct Memory Access (DMA) controller - Basic concepts of serial

I/O and data communication – interface of 8251 Universal Synchronous Aynchronous Receiver Transmitter (USART)

UNIT IV : MICROPROCESSOR 8086

Intel 8086 microprocessor – Introduction – Architecture – Pin configuration – Operating modes – Minimum mode – Maximum mode – Interrupts– The 8085 interrupt – RST 7.5,6.5,and 5.5 – Restart as software instructions.

UNIT V: MICROCONTROLLER 8051 ARCHITECTURE AND PROGRAMMING

Intel 8051 microcontrollers - Microcontrollers and embedded systems - Data transfer (copy) operations - Addressing Modes - Arithmetic operations - Addition - Subtraction - Logic operations - Logic AND - OR,Exclusive –OR, and NOT - Branch operations - Unconditional Jump - Conditional Jumps.

TEXT BOOK:

Microprocessor Architecture program and Application with the 8085 - Ramesh S.Gaonkar, 5th Edition, Penram International Publishing Pvt Ltd, 2013.

Unit I: **Ch. 3**(Sec.3.1, 3.1.1, 3.1.2, 3.1.3, 3.2, 3.2.1 - 3.2.7, 3.4)

Unit II : Ch.1,2,7,8, & 9(Sec.1.2.1, 1.2.2, 1.2.3, 1.2.5, 2.2, 2.2.1, 2.3, 2.3.1, 2.3.2, 2.3.3,

7.1.,7.1.1.,7.1.2.,8.1.,8.1.1., 9.1.,9.2.,9.2.2.)

Unit III : Ch.15 & 16(Sec. 15.1., 15.1.1., 15.1.2., 15.1.3., 15.6., 15.6.1., 16.1., 16.1.1., 16.1.2., 16.1.3.,

16.1.4.,16.1.5.,16.4.,16.4.1.

Unit IV: **Ch.12&18**(Sec. 18.2.,18.2.1.,18.2.2.,18.3.,18.3.1.,12.1.,12.1.1.,12.2.2.,12.3.,12.3.1.) Unit V :**Ch.6& 18**(Sec.18.5.,18.5.1.,18.5.5.,6.1.,6.1.1.,6.2.,6.2.1.,6.2.3.,6.3.,6.3.1.,6.3.3.,6.4., 6.4.1.,6.4.3.)

REFERENCE BOOKS:

1. Microprocessor and its applications, - B.Ram, DhanpatRai publications.

2. Introduction to Microprocessors - Aditya P.Mathur, 2nd Edition, Tata Mc Graw Hill Ltd, 1985.

3. The Intel Microprocessor Architecture Programming and Interfacing - Barry B.Bray, 8th Edition,

Dorling kindersley (India) Pvt. Ltd, Pearson Education, 2009

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
	Microprocessor Architecture and its		Lecture, peer
	operations-Microprocessor initiated	5	teaching,GD&ICT
	operations and 8085 Bus organization-		
	Internal Data operations and the 8085		
	registers		
	Peripheral or Externally initiated operations -		
UNIT I	Memory - Flip flop or Latch as a storage	5	Lecture, peer
	element - Memory map and Addresses		teaching,GD& ICT

	Memory Address Range of a 1K memory chip - Memory address lines - Memory word size - Memory and Instruction Fetch - Memory classification - Example of a Microcomputer system	5	Lecture , peer teaching,GD& ICT
	Machine language - 8085 Machine language - 8085 Assembly language - writing and Executing an Assembly language Program	5	Lecture , peer teaching,GD& ICT
UNIT II	Instruction classification - The 8085 Instruction set - Instruction, Data format and storage - Instruction word size - Opcode format - Data Format	5	Lecture , peer teaching,GD& ICT
	Looping, counting, and indexing - Counters and Time delays - Time delay using one register - Stack - Subroutine - Subroutine Documentation and Parameter passing	5	Lecture , peer teaching,GD& ICT
	Basic concepts of programmable device – 8255 Programmable Peripheral Interface (PPI)	5	Lecture , peer teaching,GD& ICT
UNIT III	interface of ADC and DAC – 8237 Direct Memory Access (DMA) controller	5	Lecture , peer teaching,GD& ICT
	Basic concepts of serial I/O and data communication – interface of 8251 Universal Synchronous Aynchronous Receiver Transmitter (USART)	5	Lecture , peer teaching,GD& ICT
	Intel 8086 microprocessor – Introduction – Architecture	5	Lecture , peer teaching,GD& ICT
UNIT IV	Pin configuration – Operating modes – Minimum mode – Maximum mode	5	Lecture , peer teaching,GD& ICT
	The 8085 interrupt – RST 7.5,6.5,and 5.5 – Restart as software instructions	5	Lecture , peer teaching,GD& ICT
	Intel 8051 microcontrollers - Microcontrollers and embedded systems -	5	Lecture , peer teaching,GD& ICT
UNIT V	Data transfer (copy) operations - Addressing Modes - Arithmetic operations - Addition - Subtraction	5	Lecture , peer teaching,GD& ICT
	Logic operations - Logic AND – OR,Exclusive –OR, and NOT - Branch operations - Unconditional Jump - Conditional Jumps	5	Lecture , peer teaching,GD& ICT

Course	Progr	amme	Outco	mes (P	Os)	Programme Specific Outcomes				Mean	
Outcome						(PSOs)				score	
S	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	s of
(COs)	1	2	3	4	5	1	2	3	4	5	COs
CO1	3	3	3	4	3	4	3	3	3	5	3.4
CO2	3	4	3	4	3	4	3	3	3	5	3.5

CO3	3	3	4	4	4	4	3	3	3	5	3.6
CO4	3	3	3	4	3	4	3	3	3	5	3.4
CO5	3	3	3	4	3	4	3	3	3	5	3.4
Mean Overall Score									3.46		

Mean Overall Score3.46Result: The Score for this Course is 3.46 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%		
Scale	1	2	3	4	5		
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0		
Quality	Very Poor	Poor	Moderate	High	Very High		
Mean Score of	COs =		Mean Overall Score of COs =				
Total of Value	Total	No. of POs&	Total of Mean Score				
PSOs			Total No. of C	COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 – Remembering/Recalling	20%	20%
K2 – Understanding /Comprehension	20%	20%
K3 – Application and Analysis	30%	30%
K4 – Synthesis and Evaluation	30%	30%

Course Designer: Dr. G.Selvarani Department of Physics

Programme : M.Sc. Semester : I Sub. Code : P22DSP1B

DSEC I Hours : 5 P/W 75Hrs P/S Credits : 4

TITLE OF THE PAPER: MICROPROCESSOR AND EMBEDDED MICROCONTROLLER

Pedagogy	Hours	Lecture	Peer Teaching GD/VIDOES/TUTORIAL		ICT				
	5	2	1 1			1			
PREAMBLE:	PREAMBLE: To acquire an extensive knowledge about the architecture and assembly language								
programming of	of microp	processors 8	085, microcontro	ller 8051 and embedded mic	cro cont	roller. It also			
explains interfa	icing mer	nory and I/C) devices.						
		COUR	SE OUTCOME		Unit	Hrs P/S			
At the end of th	ne semest	er, the stude	nts will be able to)					
CO1:understar	ndthe arc	hitecture of	microprocessor 8	085 and its timing	Ι	15			
diagramarchite	cture, me	mory and in	put/output						
CO2: describe	the mem	ory interface	and input/output		II	15			
CO3: discuss a	bout the	microcontro	ller		III	15			
<u> </u>						1.5			
CO4: enhance	IV	15							
CO5 and the second of miner and miner at all and the field of V 15									
COS: apply the	e concept	s of micropr	ocessor and micro	scontroller in the field of	v	15			
communication		isu y		DUC					

SYLLABUS

UNIT I: 8085 ARCHITECTURE AND PROGRAMMING 8085

Architecture - Programmer's model - ALU - Registers and Flags - Stacks - Complete instruction set of Intel 8085 - State transition and timing diagrams - T States - Machine cycles - Instruction cycles - Timing diagram for memory read and memory write cycles - Addressing modes - Maskable and Non-maskable Interrupts - Assembly language programs – time delay subroutines and delay calculations.

UNIT II: INTERFACING MEMORY AND I/O DEVICES

Interfacing memory and devices – I/O and Memory mapped I/O – Simple polled I/O and Handshaking operations - Programmable keyboard / display interface 8279 - Programmable peripheral device 8255A - 8253 Timer Interface – DAC and ADC interface - Wave form generation (Sine, square, triangular and ramp wave) - Programmable communication interface 8251 (USART).

UNIT III: MICROCONTROLLER 8051

Introduction – 8 and 16 bit Microcontroller families –Flash series – Embedded RISC Processor – 8051 Microcontroller Hardware – Internal registers – Addressing modes – Assembly Language Programming – Arithmetic, Logic, Sorting operations and BCD to binary and binary to BCD conversion. **UNIT IV: INTERFACING I/O AND MEMORY WITH 8051**

Interfacing I/O Ports, External memory, counters and Timers - Serial data input/output, Interrupts – Interfacing 8051 with ADC, DAC, LED display, Keyboard, Sensors and Stepper motor. **UNIT V: EMBEDDED MICROCONTROLLER**

Embedded microcontroller system – types of embedded operating system – Micro chip PIC 16C6X /7X family – features – Architecture – Memory Organization – Register file map – I/O ports – Data and flash program memory – asynchronous serial port – Applications in communication and industrialcontrols

BOOKS FOR STUDY:

1. Microprocessor Architecture, programming and Application with the 8085 - R.S. Gaonkar, 3 rd Edition, Penram International Publishing, Mumbai, 1997.

2. The 8051 Micro Controller Architecture, Programming and Applications -Kenneth J. Ayala, 3rd Edition, PenramInternational

3. Introduction to Embedded System - K. V. Shibu, Tata Mc Graw-Hill Education Private Ltd., NewDelhi.

BOOKS FOR REFERENCE:

1. Fundamentals of Microprocessors and Microcomputers - B. Ram, Dhanpat Rai publications, New Delhi.

2. Microprocessor and its applications - R. Thiagarajan, S. Dhanasekaran, S.Dhanapal, New Age International, NewDelhi.

3. The 8051 Microcontroller and Embedded Systems - Muhammed Ali Mazidi, JaniceGillespie Mazidi, Fourth Indian Reprint, Pearson Education ,2004.

4. Introduction to Embedded Systems - Raj Kamal, TMS,2002

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
	Architecture - Programmer's model - ALU -	5	Lecture, peer
	instruction set of Intel 8085.		teaching,GD&IC I
UNIT I	State transition and timing diagrams - T	5	Lecture, peer
	States - Machine cycles - Instruction cycles -		teaching,GD& ICT
	memory write cycles.		
	Addressing modes - Maskable and Non-	5	Lecture, peer
	maskable Interrupts - Assembly language		teaching,GD& ICT
	calculations.		
	Interfacing memory and devices – I/O and	5	Lecture, peer
	Memory mapped I/O – Simple polled I/O and Handshaking operations		teaching,GD& ICT
UNIT II	Programmable keyboard / display interface	5	Lecture, peer
	8279 - Programmable peripheral device 82554 - 8253 Timer Interface – DAC and		teaching,GD& ICT
	ADC interface		
	Wave form generation (Sine, square,	5	Lecture, peer
	communication interface 8251 (USART).		teaching,GD& ICT
	Introduction – 8 and 16 bit Microcontroller	5	Lecture, peer
	families –Flash series – Embedded RISC		teaching,GD& ICT
	Processor		
UNIT III	8051 Microcontroller Hardware – Internal	5	Lecture, peer
	registers – Addressing modes – Assembly		teaching,GD& ICT
	Language Programming.		

	Arithmetic, Logic, Sorting operations and BCD to binary and binary to BCD conversion.	5	Lecture , peer teaching,GD& ICT
	Interfacing I/O Ports, External memory, counters and Timers	5	Lecture , peer teaching,GD& ICT
UNIT IV	Serial data input/output, Interrupts – Interfacing 8051 with ADC, DAC	5	Lecture , peer teaching,GD& ICT
	LED display, Keyboard, Sensors and Stepper motor.	5	Lecture , peer teaching,GD& ICT
	Embedded microcontroller system – types of embedded operating system	5	Lecture , peer teaching,GD& ICT
UNIT V	Micro chip PIC 16C6X /7X family – features – Architecture – Memory Organization	5	Lecture , peer teaching,GD& ICT
	Register file map – I/O ports – Data and flash program memory – asynchronous serial port – Applications in communication and industrial controls	5	Lecture , peer teaching,GD& ICT

Course	Programme Outcomes (POs)				Programme Specific Outcomes				Mean		
Outcome						(PSOs)					score
S	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	s of
(COs)	1	2	3	4	5	1	2	3	4	5	COs
CO1	3	3	3	4	3	4	3	3	3	5	3.4
CO2	3	4	3	4	3	4	3	3	3	5	3.5
CO3	3	3	4	4	4	4	3	3	3	5	3.6
CO4	3	3	3	4	3	4	3	3	3	5	3.4
CO5	3	3	3	4	3	4	3	3	3	5	3.4
					Mea	n Overal	ll Score				3.46

Result: The Score for this Course is 3.46 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%		
Scale	1	2	3	4	5		
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0		
Quality	Very Poor	Poor	Moderate	High	Very High		
Mean Score of	COs =		Mean Overall Score of COs =				
Total of Value	Total	No. of POs&	Total of Mean Score				
PSOs			Total No. of COs				

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 – Remembering/Recalling	20%	20%
K2 – Understanding /Comprehension	20%	20%
K3 – Application and Analysis	30%	30%
K4 – Synthesis and Evaluation	30%	30%

Course Designer: Dr. G.Selvarani

Department of Physics

Programme : M.Sc., PHYSICS Semester : I Sub. Code : P22SEP1 Part III: SEC-I Hours : 2 P/W 30Hrs P/S Credits : 2

TITLE OF THE PAPER: SOLAR ENERGY AND ITS APPLICATIONS

Pedagogy	Hours	Lecture	Peer Discussion/Teaching	GD/VIDOES/TUTORIAL	ICT
	2	1	1/2	1/2	1

PREAMBLE:

To impart fundamental aspects of solar energy utilization. To provide an introductory account about the solar collectors, solar heaters and and to design simple solar cell. To become a self-secured.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
CO1 : Impart the knowledge of Solar energy measuring instruments.	Ι	6 hrs
CO2 : Impart the knowledge of understanding the function of solar collectors.	II	6 hrs
CO3 : Impart the knowledge of application of solar energy Heaters.	III	6 hrs
CO4: Impart the knowledge of solar energy to produce Hydrogen.	IV	6 hrs
CO5 : Impart the knowledge about, how to design simple solar cells.	V	6 hrs

SYLLABUS

Unit I: Solar Energy Measuring Instruments:

Introduction – Classification – Angstrom Compensation Pyroheliometer – Sun-Shine Recorder – Solar Radiation Data – Estimation of Average Solar Radiation

Unit II: Solar Collectors :

Introduction – The General Description of Flat-plate Collectors – Typical liquid collector – Typical Air Collector - The General Characteristics of Flat-plate Collectors.

Unit III : Solar Heaters :

Introduction - Types of Solar Water Heaters – Design of Heating System for a Building.

Unit IV: Solar Production of Hydrogen :

Introduction – Methods of Production of Hydrogen.

Unit V: Simple Design of Solar Panel.

Introduction – Requirements - Procedure to Design the Solar Panel.

Text Book:

Solar Energy Utilization – G.D.RAI, KHANNA PUBLISHERS, DELHI- 110006.Fifth Edition, Fourth Reprint 2001.

1. Unit I : Chapter : 4 (Sec:- - 4.1, 4.2, 4.4, 4.5 and 4.6).

- 2. Unit II : Chapter : 5 (Sec:- 5.1, 5.3 and 5.5).
- 3. Unit III : Chapter : 11 (Sec:- 11.1, 11.2 and 12.7)
- 4. Unit IV : Chapter : 16 (Sec:- 16.7)
- 5. Unit V : https://www.instructables.com

Reference Book:

Solar Energy Principles of Thermal Collection and Storage – Suhas P Sukhatme, TMH Publications, New Delhi, Second Edition .

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
Unit I	Introduction – Classification – Angstrom Compensation Pyroheliometer.	3 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT.
	Sun-Shine Recorder – Solar Radiation Data – Estimation of Average Solar Radiation.	3 hrs	peer group discussion and by demonstrating through ICT.
Unit II	Introduction – The General Description of Flat-plate Collectors – Typical liquid collector.	3 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT.
	Typical Air Collector - The General Characteristics of Flat-plate Collectors.	3 hrs	peer group discussion and by demonstrating through ICT.
Unit III	Introduction - Types of Solar Water Heaters .	3 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT.
	Design of Heating System for a Building.	3 hrs	peer group discussion and by demonstrating through ICT.
Unit IV	Introduction – Methods of Production of Hydrogen.	6 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT.
Unit V	Introduction – Requirements - Procedure to Design the Solar Panel.	6 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT.

Cours	Programme Outcomes (POs)	Programme Specific Outcomes	Mean
e Out		(PSOs)	scores
			of Cos

comes	PO 1	PO 2	PO 3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	
(COs)											
CO1	3	4	3	3	3	3	4	4	3	3	3.3
CO2	3	3	4	4	3	3	3	3	3	4	3.3
CO3	3	4	3	3	3	4	3	4	3	3	3.3
CO4	3	3	3	4	3	4	3	4	3	3	3.3
CO5	4	3	4	4	4	3	4	4	4	3	4.0
Mean Overall Score 3.									3.5		
	Result: The Score for this Course is 3.5 (High Relationship))	

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of COs = To Total No	tal of Value b. of POs & P	SOs	Mean Overall Score of COs = <u>Total of Mean Score</u> Total No. of COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 – Remembering/Recalling	20%	20%
K2 – Understanding /Comprehension	20%	20%
K3 – Application and Analysis	30%	30%
K4 – Synthesis and Evaluation	30%	30%

Course Designer : Dr. Mrs. SANTHI.

Department of PHYSICS

Programme : M. Sc. Semester : I Sub. Code : P22CP4P Part III : Core - IV Hours : 6 Hrs P/W 90 Hrs P/S Credits : 3

TITLE OF THE PAPER : PHYSICS PRACTICAL - I

Pedago	gy Hours	Lab	Peer Teaching	TUTORIAL	ICT					
		Experimentation	1	1	1					
	6	3	l	l	l					
PREAN	IBLE : The	e purpose of the course is	to make the stude	nts to develop their skills in	doing non					
electron	electronics practical and to make them to determine and analyze physical parameters.									
At the en	COURSE OUTCOME At the end of the Semester, the Students will be able to									
CO1 :	acquire kno	wledge about the usage of	f electronic and no	n-electronic devices .						
CO2 :	determine v	arious physical parameter	`S							
CO3 :	construct di	fferent types of bridges ar	nd circuits.							
CO4 :	analyze Ha	rtmann's interpolation for	mulae, self and m	utual inductance, refractive	e index of					
		in alvilla in handling the in	*****							
CU5 :	develop the	ir skills in nandling the in	struments							
S.NO		EXPERIM	ENT							
1	Mutual ind	uctance determination by	Maxwell's bridge							
2	Self induct	tance determination by O	wen's bridge							
3	Boltzmann	's constant determination	for various types	of diodes						
4	Planck's co	onstant determination and	verification of Pla	nck's inverse square law u	sing					
	photosensit	ive device								
5	Determinat	tion of Sodium D-lines us	ing spectrometer							
6	Refractive	index determination of gl	ass prism using sp	ectrometer at minimum dev	viation					
	position									
7	Refractive	index determination of ho	ollow glass prism u	using spectrometer at minin	num					
	deviation po	osition								
8	Determinat	tion of Hartmann's constant	ants by interpolation	on formula using spectrome	eter					
9	Determinat	tion of resolving power of	the Telescope							
10	Determinat	tion of wavelength of I an	d II order spectral	lines using grating by norn	nal incidence					

Course Designer : Dr. J.S.P. CHITRA, Department of PHYSICS

Programme : M.Sc. Semester : II Sub. Code : P22CP5

method

Core - V Hours : 6 Hrs P/W 90Hrs P/S Credits : 4

TITLE OF THE PAPER: MATHEMATICAL PHYSICS - II

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	6	3	1	2	-

PREAMBLE: The student shall have gained a broad knowledge of the scientific theories and methods of her field of study and they know how to apply her knowledge on new subject areas within Mathematics and physics

Wathematics and physics.		
COURSE OUTCOME	Unit	Hrs P/S
At the end of the Semester, the Students will be able to		
CO1 : analyze differential equations	Ι	18
CO2: predict the partial differential equations	II	18
CO3 : define tensor analysis	III	18
CO4 : apply the complex variable	IV	18
CO5: solve the problems using integral transforms	V	18

SYLLABUS

UNIT I : DIFFERENTIAL EQUATIONS

Legendre equation – Generating function Pn(X) – Orthogonality of functions - Orthogonality of Legendre's polynomials – recurrence relations for Pn(X) – Bessel's differential equations – Bessel's functions of the third kind (Hankel function) – Generating function for Jn(X) - Recurrence relation for Jn(X) – Orthogonality of Bessel's functions

UNIT II : PARTIAL DIFFERENTIAL EQUATIONS

Introduction - Partial differential equation in Physics – Laplace's equation in 3 dimension and its solutions - wave equation in three dimension and its solutions - Green's function - Solution of Poisson's equation using Green's function

UNIT III : TENSOR ANALYSIS

Definition of Tensors – Contravariant, covariant and mixed tensors – addition and subtraction of Tensors – Summation convention- Symmetry and Anti-symmetry Tensor – Contraction and direct product – Quotient rule- Pseudo tensors, Levi-Civita Symbol - Dual tensors, irreducible tensors-Metric tensors-Christoffel symbols – Geodesics.

UNIT IV : COMPLEX VARIABLE

Functions of complex variable-Analytic functions-Cauchy- Riemann equations- integration in the Complex plane-Cauchy's theorem- Cauchy's integral formula-Taylor and Laurent expansions-Singular Points.

UNIT V: INTEGRAL TRANSFORMS

Fourier transforms - cosine and sine transforms - Linearity theorem - Parseval's theorem - solution of differential equation. Laplace transforms - Definition - Linearity, shifting and change of scale properties. Inverse Laplace transforms – Definition - Problems

TEXT BOOK:

1.Mathematical Physics - S.L. Kakani ,C.Hemrajani. II Edition CBS Publishers &Distributors Pvt.. LTD., 2010.

Unit - I Ch.7 (sec. 7.1,7.5,7.7) Unit - II Ch.9(sec. 9.1 –9.4, 9.9,9.10) Unit – III Ch. 3(3.1-3.15, 3.18, 3.19, 3.22-3, 24) Unit - IV Ch. 6 (sec. 6.1 –6.9,6.11, 6,13, 6.14) Unit - V Ch.8 (sec. 8.1, 8.2, 8.4, 8.9 - 8.12)

REFERENCES:

- B. D. Gupta, Mathematical Physics 4th edition Vikas Publishing House Pvt Ltd reprint 2013
 Suresh Chandra, Mohitkumar Sharma, An Introduction to Mathematical Physics Narosa Publishing House 2013.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
	Legendre equation – Generating function Pn(X) – Orthogonality of functions - Orthogonality of Legendre's polynomials	6	Lecture & Tutorial
	recurrence relations for Pn(X) – Bessel's differential equations – Bessel's functions of the third kind	6	Lecture & Tutorial
UNIT I	Generating function for Jn(X) - Recurrence relation for Jn(X) – Orthogonality of Bessel's functions	6	Lecture & Tutorial
UNIT II	 Partial differential equation in Physics – Laplace's equation in 3 dimension and its solutions 	6	Lecture & Tutorial
	wave equation in three dimension and its solutions - Green's function -	6	Lecture & Tutorial
	Definition of Tensors – Contravariant, covariant and mixed tensors – addition and subtraction of Tensors – Summation convention-	6	Lecture & Tutorial
UNIT III	Symmetry and Anti-symmetry Tensor – Contraction and direct product – Quotient rule- Pseudo tensors	6	Lecture & Tutorial
	Levi-Civita Symbol - Dual tensors, irreducible tensors- Metric tensors-Christoffel symbols – Geodesics	6	Lecture & Tutorial
	Functions of complex variable- Analytic functions-Cauchy- Riemann equations- integration in the Complex plane	8	Lecture & Tutorial
	Cauchy's theorem- Cauchy's integral formula-	6	Lecture & Tutorial

UNIT IV	Taylor and Laurent expansions- Singular Points-	4	Lecture & Tutorial
UNIT V	Fourier transforms - cosine and sine transforms - Linearity theorem - Parseval's theorem - solution of differential equation	4	Lecture & Tutorial
	Laplace transforms - Definition - Linearity, shifting and change of scale properties.	4	Lecture & Tutorial
	Inverse Laplace transforms – Definition - Problems	10	Lecture & Tutorial

Course	Programme Outcomes (POs)					Programme Specific Outcomes					Mean
Outcomes						(PSOs))				Scores
(COs)											of
											Cos
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	4	3	4	4	4	3	3	3	5	3.6
CO2	5	3	4	4	5	3	3	4	3	4	3.8
CO3	3	3	4	3	3	3	5	4	3	3	3.4
CO4	3	3	4	3	3	3	5	4	3	4	3.5
CO5	4	3	3	4	4	3	3	5	4	3	3.6
				Mean	Overa	ll score					3.58

Result: The Score for this Course is 3.58 (High Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%		
Scale	1	2		3	4	5		
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0		
Quality	Very Poor	Poor		Moderate	High	Very High		
Mean Score of C	$\cos =$		Mean Overall Score of COs =					
Total of Value				Total of Mean Score				
Total No. of Pos& PSOs				Total No. of COs				

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1:REMEMBERING/RECALLING.	20%	20%
K2: UNDERSTANDING / COMPREHENSION.	20%	20%
K3: APPLICATION AND ANALYSIS.	30%	30%

Course Designer : Dr. G. SAROJA, Department of PHYSICS

Programme : M.Sc., PHYSICS Semester : II Sub. Code : P22CP6

Part III: MAJOR Core Hours : 6 P/W 90Hrs P/S Credits : 5

		TITLE	OF THE PAPER:	QU	ANTUM MECHANICS- I	
Pedagogy	Hours	Lecture	Peer		GD/VIDOES/TUTORIAL	ICT

			Discussion/Teaching							
	6	3	1	1		1				
PREAMBL	tions on	the								
Wave function	ons, and t	rial functio	n linear in variational pa	rameter and Hydrogen molecu	ule with					
perturbation	theory.									
		С	OURSE OUTCOME		Unit	Hrs P/S				
At the end of	f the Sem	ester, the S	tudents will be able to							
CO1: Study	the funda	mentals of	wave mechanics.		Ι	18 hrs				
List the Boh	's postul	ates and ex	hibit the main characteri	stics features of quantum						
system with	the aid of	simple exa	amples and to show how	these features arise from the						
conditions or	n the Sch	rodinger wa	ave function.							
CO2: Study	the statio	nary state a	and Eigen spectrum of s	ystems using time	II	18 hrs				
dependent So	chrodinge	er equation.				101				
CO3: Solve	the exactl	ly soluble E	ligen value problems.		III	18 hrs				
CO4: Know	the matri	x formulati	on of quantum theory ar	d how it can	IV	18 hrs				
be used to un	nderstand	the equation	on of motion.							
Know quantu	um states,	, the Hilber	t space of state vectors a	nd wave functions,						
degeneracy a	and transf	ormations a	and symmetries.							
CO5: Unders	stand the	theory of id	dentical particles and An	gular momentum.	V	18 hrs				
To obtain spi	in angula	r momentu	m and Clebsch –Gordan	Coefficients.						
			SYLLABUS							
UNIT-I: FO	UNIT-I: FOUNDATIONS OF WAVE MECHANICS:									
Introduction Introduction	- Wave M) - The P	Nature of I rinciple of	Particles (Matter Waves) Superposition – Wave Po) – The Uncertainty Principle (ocket – Time Dependent 1D S	(Brief chrodin	ger				

equation for a free particle - Interpretation of the wave function – Probability Interpretation – Probability Current Density – Expectation Value - Ehrenfest's theorem - Admissibility Condition on the Wave Function.

Linear Vector Space – Linear Operators (Brief Introduction) – Hilbert Space (Definition) - Eigen Functions And Eigen Values – Hermitian Operator - Postulates of Quantum Mechanics – Dirac's Notation.

UNIT-II: STATIONARY STATE AND ENERGY SPECTRA:

Introduction – Stationary states - Time independent Schrodinger equation - A Particle in a Square well Potential – Bound states in a Square well – Square Potential Barrier (Quantum Mechanical Tunnelling) – System of identical particles – Interchange of Particles; Symmetric and antisymmetric wave functions – Spin and Statistics (Brief Explanation).

UNIT-III: EXACTLY SOLUBLE EIGENVALUE PROBLEMS:

Introduction – The Simple Harmonic Oscillator – The Schrodinger Equation for One dimensional Linear Harmonic Oscillator – Properties of Stationary States- The Angular Momentum Operators -Stationary State Wave Functions – The Hydrogen Atom – Stationary State Wave Functions.. UNIT-IV: MATRIX FORMULATION OF QUANTUM THEORY, EQUATION OF MOTION & ANGULARMOMENTUM:

Introduction - Quantum States; State Vectors and Wave Functions – The Hilbert Space of State Vectors; Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws.

Angular Momentum

Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis -Spin

Angular Momentum – Addition of Angular Momenta – Clebsch - Gordan coefficients. UNIT-V: SCATTERING THEORY:

Introduction - Kinematics of Scattering Process: Differential and Total Cross- Sections - Wave Mechanical Picture of scattering: The Scattering Amplitude – The Born Approximation and its Validity –Born Series .

Partial Wave Analysis

Introduction - Asymptotic behavior of Partial Waves: Phase Shift – The Scattering Amplitude in terms of Phase Shifts – The Differential and Total Cross Sections: Optical Theorem .

BOOKS FOR STUDY:

1. **Quantum Mechanics** – G. Aruldhas, SECOND EDITION Prentice Hall of India Pvt. Ltd., Delhi -92, **2009.**

UNIT-I: CHAPTER 2 & 3 (Sec : - 2.1 – 2.7 & 2.10 AND 3.1 – 3.5 & 3.8).

2. A Text book Of Quantum Mechanics -SECOND EDITION , P.M. Mathews and K.Venkatesan, McGraw Hill Education (India) Pvt. Ltd., 2014.

UNIT-II: CHAPTER 2C & 3 (Sec :- 2.9 – 2.13 and 3.16).

UNIT-III: CHAPTER 4:- 4A (Sec :- 4.1 – 4.3, 4.6, 4.16 AND 4D-4.16).

UNIT-IV: CHAPTER 7 & 8 (Sec:- 7.1 -7.2, 7.12 AND 8.1 – 8.3, 8.5 & 8.6).

UNIT-V: CHAPTER 6 (Sec :- 6.1, 6.2, 6.4, 6.5 & 6.8 - 6.10).

BOOKS FOR REFERENCE:

- 1. **Quantum Mechanics** Theory and applications A. K. Ghatak and Lokanathan, Macmillan India Ltd Publication, Fifth Edition,**2015.**
- 2. **Quantum Mechanics** Leonard I. Schiff, McGraw-Hill International Publication, Third Edition, **1968.**
- 3. **Quantum Mechanics** V. K. Thankappan, New Age International (P) Ltd. Publication, Second Edition, **2003.**
- 4. **QuantumMechanics**-E.Merzbacher,JohnWileyIntersciencePublications,Third Edition,**2011.**
- 5. **Quantum Mechanics (Vol.I)** Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë, JohnWiley Interscience Publications, First Edition,**1991.**
- 6. Quantum Mechanics Pauling & Wilson, Dover Publications, New Edition, 1985.
- Principle of Quantum Mechanics R. Shankar, Plenum US Publication, Second Edition, 1994.
 Web REFERENCE:

1. http://physics .mq.edu.au/~jcresser/phys304/Handouts/QuantumPhysicsNotes.pdf

2. http://quantumphysics.iop.org

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
	Introduction – Wave	4hrs	Motivation by asking questions
	Nature of Particles		– peer group discussion and by
	(Matter Waves) – The		lecturing through ICT (power
	Uncertainty Principle		point presentation)
--------	-------------------------	--------	---------------------------------
	(Brief Introduction) -		
	The Principle of		
	Superposition		
	Wave Pocket – Time	5hrs	Lecturing – deriving the
	Dependent 1D		condition by group discussion.
	Schrodinger equation		
	for a free particle -		
	Interpretation of the		
UNIT I	wave function		
	Probability	5hrs	Peer group teaching and
	Interpretation –	51118	locturing
	Probability Current		lecturing.
	Density – Expectation		
	Value - Ehrenfest's		
	theorem -		
	Admissibility		
	Condition on the Wave		
	Function.		
	L' V (C	4	T / ' '/1 1' ' 1
	Linear Vector Space –	4nrs	Lecturing with discussion and
	(Brief Introduction) –		deriving the expression along
	Hilbert Space (with example problems.
	Definition) - Eigen		
	Functions And Eigen		
	Values – Hermitian		
	Operator - Postulates		
	of Quantum Mechanics		
	- Dirac's Notation .	5 hrs	Lasturing deriving the
	Stationary states Time	5 11/8	Lecturing – deriving the
	independent		expression by group discussion.
	Sobrodinger equation		
	A Dorticle in a Square	1 hrs	Lasturing deriving the
	A Particle III a Square	4 1118	Lecturing – deriving the
	well Potential – Bound		theorem by group discussion.
	states in a Square well	41	
	Square Potential	4 nrs	Lecturing – deriving the
	Barrier		expression by group discussion.
	(Quantum Mechanical		
	Tunnelling) – System		
	of identical particles		
	Interchange of	5 hrs	Lecturing – deriving the
	Particles; Symmetric		expression by group discussion.
	and anusymmetric		
	and Statistics (Brief		
	Explanation)		
	-Aprillation /.		

	Introduction – The	5 hrs	Motivation by asking questions
	Simple Harmonic		– peer group discussion and by
	Oscillator		lecturing through ICT (power
			point presentation)
	T	4 hrs	Lecturing – by group
	The Schrödinger		discussion and emphasizing the
UNIT III	dimensional Linear		importance of Schrodinger
	Harmonic Oscillator		Equation .
	Properties of Stationary	4 hrs	Peer group teaching and
	States		discussion.
	The Angular	3 hrs	Lecturing with discussion .
	Momentum Operators	·	
	Stationary State Wave	2 hrs	Lecturing – deriving the
	Functions	- 115	expression by group discussion
	Introduction - Quantum	5hrs	Motivation by asking questions
	States: State Vectors		- peer group discussion and by
	and Wave Functions –		lecturing through ICT (power
	The Hilbert Space of		point presentation)
	State Vectors- The		
	Hydrogen Atom –		
	Stationary State wave		
	Functions		
			I actually and small in the
	Dirac Notation Bra	4hrs	Lecturing and explaining by
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors –	4hrs	group discussion.
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and	4hrs	group discussion.
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws	4hrs	group discussion.
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws.	4hrs	group discussion.
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws.	4hrs 4hrs	Peer group discussion and
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction The	4hrs 4hrs	Peer group discussion and lecturing.
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Figenvalue Spectrum –	4hrs 4hrs	Peer group discussion and lecturing.
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation	4hrs 4hrs	Peer group discussion and lecturing.
UNIT IV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of Lin the lim Rasis –	4hrs 4hrs	Peer group discussion and lecturing.
UNITIV	Dirac Notation, Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular	4hrs 4hrs	Peer group discussion and lecturing.
UNITIV	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum	4hrs 4hrs	Peer group discussion and lecturing.
UNITIV	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum	4hrs 4hrs	Peer group discussion and lecturing.
UNITIV	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch	4hrs 4hrs 5hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features
UNITIV	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch - Cordan coefficients	4hrs 4hrs 5hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features of Clebsch – Gordan
UNITIV	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch - Gordan coefficients.	4hrs 4hrs 5hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features of Clebsch - Gordan
	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch - Gordan coefficients.	4hrs 4hrs 5hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features of Clebsch - Gordan coefficients.
	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch - Gordan coefficients.	4hrs 4hrs 5hrs 5 hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features of Clebsch - Gordan coefficients. Motivation by asking questions – peer group discussion and by
	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch - Gordan coefficients. Introduction - Kinematics of Scattering Process:	4hrs 4hrs 5hrs 5 hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features of Clebsch - Gordan coefficients. Motivation by asking questions – peer group discussion and by lecturing through ICT (power
	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch - Gordan coefficients. Introduction - Kinematics of Scattering Process: Differential and Total	4hrs 4hrs 5hrs 5 hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features of Clebsch - Gordan coefficients. Motivation by asking questions – peer group discussion and by lecturing through ICT (power point presentation)
	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch - Gordan coefficients. Introduction - Kinematics of Scattering Process: Differential and Total Cross Sections Wave	4hrs 4hrs 5hrs 5 hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features of Clebsch - Gordan coefficients. Motivation by asking questions – peer group discussion and by lecturing through ICT (power point presentation)
	Dirac Notation , Bra Vectors, Ket Vectors – Symmetries and Conservation Laws. Angular Momentum Introduction – The Eigenvalue Spectrum - Matrix representation of J in the jm> Basis - Spin Angular Momentum Addition of Angular Momenta – Clebsch - Gordan coefficients. Introduction - Kinematics of Scattering Process: Differential and Total Cross- Sections - Wave	4hrs 4hrs 5hrs 5 hrs	Lecturing and explaining by group discussion. Peer group discussion and lecturing. Lecturing with discussion and expressing the essential features of Clebsch - Gordan coefficients. Motivation by asking questions – peer group discussion and by lecturing through ICT (power point presentation)

	scattering:		
	The Scattering	4 hrs	Lecturing – deriving the
	Amplitude – The Born		expression by group discussion
	Approximation and its		
UNIT V	Validity –Born Series .		
	Partial Wave	4 hrs	Peer group discussion and
	Analysis		deriving the expression
	Introduction -		
	Asymptotic behavior of		
	Partial Waves: Phase		
	Shift		
	The Scattering	5 hrs	Lecturing with discussion.
	Amplitude in terms of		
	Phase Shifts – The		
	Differential and Total		
	Cross Sections: Optical		
	Theorem .		

Course Out	Progran	nme Ou	itcomes	(POs)		Progra	mme Sp	ecific Ou	tcomes ((PSOs)	Mean scores of Cos
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	4	3	3	3	3	4	4	3	3	3.3
CO2	3	3	4	4	3	3	3	3	3	4	3.3
CO3	3	4	3	3	3	4	3	4	3	3	3.3
CO4	3	3	3	4	3	4	3	4	3	3	3.3
CO5	4	3	4	4	4	3	4	4	4	3	3.7
				Mean	Overal	l Score					3.38

Result: The Score for this Course is 3.38 (High Relationship)
---	--------------------

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of $COs = $ <u>Total of Value</u>		Mean Overall S	Score of $COs = 1$	Total of Mean Score	

Total No. of POs & PSOs	Total No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1:REMEMBERING/RECALLING.	20%	20%
K2: UNDERSTANDING /	20%	20%
COMPREHENSION.		
K3: APPLICATION AND	30%	30%
ANALYSIS.		
K4: SYNTHESIS AND	30%	30%
EVALUATION.		

Course Designer : Dr. Mrs. SANTHI.

Department of PHYSICS

Programme : M.Sc. Semester : II Sub. Code : P22CP7 PART III: CORE -VII Hours : 5 P/W 75 Hrs P/S Credits : 4

TITLE OF THE PAPER: ELECTROMAGNETIC THEORY

D J	Hours	Lecture	Peer Teaching	GD/ Videos/Tutorial	ICT
Pedagogy	5	2	1	1	1

PREAMBLE: To understand the basic principles of electrostatics and magneto statics and their applications and electromagnetic wave propagation.

COURSE OUTCOME At the end of the Semester, the students will be able to	Unit	Hrs P/S
CO 1 : understand the fundamental principles and laws of electrostatics and their applications	Ι	15
CO 2: know the principles of magnetostatics and their applications	II	15
CO 3: explain the phenomenon of electromagnetic induction and apply Maxwell's equations to specific physical situations	III	15
CO 4: acquire knowledge in deriving wave equations and discuss the propagation of electromagnetic wave in different media	IV	15
CO 5: discuss the importance of scalar and vector potentials	V	15

SYLLABUS

UNIT I - ELCTROSTATICS

Electric charge-Coulombs law -Electric field - Electrostatic potential- Gauss's Law-Applications of Gauss's Law-electric dipole-multipole expansion of electric fields- Poisson's equation - Laplace equation-Laplace equation in one independent variable-solutions to Laplace equation in spherical coordinates- Polarization -Field outside of a Dielectric medium -The electric field inside a dielectric-Gauss law in dielectric- The electric displacement – electric susceptibility and dielectric constant.

UNIT II - MAGNETOSTATICS

Magnetic Field-Magnetic induction- force on a current carrying conductor- Biot-Savart Law-Application of Biot-Savart Law-Ampere's circuital law - Magnetic vector potential-magnetic field of a distant circuit- Magnetic Scalar potential-magnetic flux-Magnetization –Magnetic field produced by magnetized material -Magnetic scalar potential and magnetic pole density..

UNIT III- ELECTRODYNAMICS AND CONSERVATIONS LAWS

Ohm'sLaw–electromotiveforce–motionalemf–Faraday'sLaw– The inducedelectricfield–Inductance– energy in magnetic fields – Electrodynamics before Maxwell – How Maxwell Fixed Ampere's law – Maxwell's equation-magnetic charge – Maxwell's equations in matter – boundary conditions. Charge and energy -The Continuity equation – Poynting's theorem.

UNIT - IV ELECTROMAGNETIC WAVES

Waves in one dimension: Wave equation – sinusoidal waves – boundary conditions - reflection and transmission – polarization. Electromagnetic waves in vacuum: Wave equation for **E** and **B** – monochromatic plane waves – energy and momentum in electromagnetic waves. Electromagnetic waves in matter: Propagation in linear media – reflection and transmission at normal incidence – reflection and transmission at oblique incidence. Absorption and dispersion: Electromagnetic waves in conductors – reflection at a conducting surface

UNIT - V GUIDED WAVES, POTENTIAL AND FIELDS

Guided waves: Wave guides - waves in a rectangular wave guide – coaxial transmission line. The potential formulation: Scalar and vector potentials - gauge transformations - Coulomb gauge and Lorenz gauge-Lorentz force law in potential form. Continuous distributions: Retarded potentials - Jefimenko's equations. -Point charges: Lienard-Wiechertpotentials

Books for Study :

1. Foundations of Electromagnetic theory, John R.Reitz, Fredrick J.Milford, Robert W.Christy, Third edition, Norosa Publishing House, New Delhi, 1989.

UNIT – I Ch.2 (2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.8, 2.9, 3.1, 3.2, 3.3, 3.4.4.1-4.5)

UNIT – II Ch.8 (8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.1, 9.2, 9.3)

2. Introduction to Electrodynamics, David J.GriffithsThird edition, PHI Learning Private Limited,2012.

UNIT-III:Chapter7&8: (7.1.1-7.3.6, 8.1.1& 8.1.2)

UNIT-IV:Chapter9: (9.1.1-9.4.2)

UNIT-V:Chapter9&10 (9.5.1-9.5.3, 10.1.1-10.3.1)

BOOKSFORREFERENCE:

- 1. ElectromagneticTheoryandElectrodynamics,SathyaPrakash,KedarNath,Ram NathandCo,2017.
- 2. Electromagnetics, B.B.Laud, WileyEasternCompany, 2000.
- 3. FundamentalsofElectromagnetic,WazedMiah,TataMcGrawHill,1980.
- 4. BasicElectromagneticswithApplication,Narayanarao,(EEE)PrenticeHall,1997.
- 5. ClassicalElectrodynamics–J.D.Jackson,IIEdition,WileyEasternLimited,1993.
- 6. ElectromagneticFieldsandWaves-P.LorrainandD.Corson.
- 7. Electromagnetic, B.BLaud, WileyEasternCompany, 2000.

Web Resources:

- 1. <u>https://www.britannica.com/science/Coulomb-force</u>
- 2. https://en.wikipedia.org/wiki/Gauss%27s law
- 3. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/electric/laplace.html</u>
- 4. https://www.electrical4u.com/biot-savart-law/
- 5. https://booksite.elsevier.com/9780444594365/downloads/16755_10027.pdf
- 6. <u>https://www.electrical4u.com/faraday-law-of-electromagnetic-induction/</u>
- 7. <u>https://en.wikibooks.org/wiki/Electrodynamics/Maxwell%27s_Four_Equations</u>

- 8. https://opentextbc.ca/universityphysicsv2openstax/chapter/maxwells-equations-and-<u>electromagnetic-waves/</u>
 <u>https://www.allaboutcircuits.com/textbook/alternating-current/chpt-14/waveguides/</u>

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
	Electric charge-Coulombs law - Electric field - Electrostatic potential- Gauss's Law-Applications of Gauss's Law-	5	Lecture ,ICT and Seminar
UNIT I	electric dipole-multipole expansion of electric fields- Poisson's equation - Laplace equation-Laplace equation in one independent variable-solutions to Laplace equation in spherical coordinates-	5	Lecture ,ICT,Group Discussion and Assignment
	Polarization -Field outside of a Dielectric medium -The electric field inside a dielectric-Gauss law in dielectric- The electric displacement – electric susceptibility and dielectric constant pendulum	5	Lecture ,ICT, Group Discussion and seminar
	Magnetic Field-Magnetic induction- force on a current carrying conductor- Biot-Savart Law-Application of Biot- Savart Law-Ampere's circuital law -	7	Lecture ,ICT and Seminar
UNIT II	Magnetic vector potential-magnetic field of a distant circuit- Magnetic Scalar potential-magnetic flux-	4	Lecture ,ICT,Group Discussion.
	Magnetization –Magnetic field produced by magnetized material - Magnetic scalar potential and magnetic pole density	4	Lecture ,ICT,Group Discussion
	Ohm'sLaw-electromotiveforce- motionalemf-Faraday'sLaw- inducedelectricfield-Inductance- energy in magnetic fields	5	Lecture , Group Discussion and ICT
UNIT III	Electrodynamics before Maxwell – How Maxwell Fixed Ampere's law – Maxwell's equation-magnetic charge	5	Lecture , Group Discussion,ICTandSeminar
	Maxwell's equations in matter – boundary conditions. Charge and energy -The Continuity equation – Poynting's theorem.	5	Lecture , Group Discussion and ICT, seminar
UNIT IV	Waves in one dimension: Wave equation – sinusoidal waves – boundary conditions - reflection and transmission – polarization.	5	Lecture , Group Discussion and ICT

	Electromagnetic waves in vacuum: Wave equation for E and B – monochromatic plane waves – energy and momentum in electromagnetic waves. Electromagnetic waves in matter: Propagation in linear media	5	Lecture , Group Discussion and ICT
	reflection and transmission at normal incidence – reflection and transmission at oblique incidence. Absorption and dispersion: Electromagnetic waves in conductors – reflection at a conducting surface	5	Lecture , Group Discussion and ICT
	Guided waves: Wave guides - waves in a rectangular wave guide – coaxial transmission line.	5	Lecture, Group Discussion and ICT
UNIT V	The potential formulation: Scalar and vector potentials - gauge transformations - Coulomb gauge and Lorenz gauge-Lorentz force law in potential form.	5	Lecture , Group Discussion and ICT,Seminar
	Continuousdistributions:Retardedpotentials-Jefimenko's equationsPointcharges:Lienard-Wiechertpotentials-	5	Lecture, Group Discussion and ICT

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	4	3	4	4	3	4	3	4	3.7
CO2	4	4	3	4	4	4	3	4	4	4	3.8
CO3	4	4	3	4	3	4	4	3	4	4	3.7
CO4	4	3	4	3	4	4	4	3	4	4	3.7
CO5	4	4	4	3	4	4	3	4	4	4	3.8
Mean Overall Score								3.74			

Result: The Score for this Course is 3.74 (High Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of COs = <u>Total Values</u> Total No. of Pos & PSOs				n Overall Score	of COs = <u>Total o</u> Total	<u>f Mean scores</u> No. of COs

ASSESSMENT RUBRICS

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 (Remembering/Recalling)	20%	20%
K2 (Understanding/Comprehension)	20%	20%
K3 (Application & Analysis)	30%	30%
K4 (Synthesis & Evaluation)	30%	30%

Course Designer:

1.D.G.KRISHNA BAMA 2. DR.N.NAGARANI

Programme : M.Sc. Semester : II Sub. Code : P22DSP2A DSEC – II Hours :5 Hrs P/W 75Hrs P/S Credits : 4

TITLE OF THE PAPER: PROGRAMMING IN C++

Pedagogy Hours Lecture Pe	aching GD/ Videos/Tutorial	ICT
---------------------------	----------------------------	-----

5	2	1	1	1

PREAMBLE: This course helps to provide the fundamental knowledge of a programming language and its features which enhances the user to write general purpose application programs.

COURSE OUTCOME At the end of the Semester, the students will be able to	Unit	Hrs P/S
CO1: identify the basic concepts needed to develop a program	Ι	15
CO2: list the features of object oriented programming	II	15
CO3: discuss the concept of object oriented programming.	III	15
CO4: use array and structure to handle volume of data	IV	15
CO5: apply advanced programming concepts	V	15

SYLLABUS

UNIT I: INTRODUCTION

Identifiers & keywords - Literals – Operators – Type Conversion – Declaration of variables – Statements – Simple C++ program – Features of iostream.h – Manipulator Functions – Conditional Expressions – Switch Statement – Loop Statements - Breaking Control Statements.

UNIT II: FUNCTIONS, PROGRAM STRUCTURES & ARRAYS

Defining a function – Return statement – Types of functions – Actual and Formal Arguments – Local and Global variables – Default Arguments – Structure of the C++ program – Header files – Array Notation – Array Declaration- Array Initialization – Processing with Array – Arrays & Functions – Multidimensional Arrays – Character Array.

UNIT III : POINTERS, STRUCTURES & UNIONS

Pointer Declaration – Pointer Arithmetic – pointers and Functions – Pointers and Arrays – Pointers and Strings -Array of Pointers – Pointers to pointers – Declaration of Structure – Initialization of Structures – Arrays of Structures – Arrays within a Structure – Structures within a Structure (Nested Structure) Pointers & Structures – Unions

UNIT IV: CLASSES AND OBJECTS

Introduction – Structures and classes – Declaration of class – Member Functions – Defining the object of a class – Accessing a member of class – Array of class objects – Pointers and classes – Unions and classes – Classes within classes (nested class) – Constructors- Destructors

UNIT V : INHERITANCE AND POLYMORPHISM

Introduction – Single Inheritance – Types of Base Classes- Type of Derivation – Ambiguity in Single Inheritances- Multiple Inheritance – Polymorphism – Early Binding – Polymorphism with pointers – Virtual Functions – Constructors under Inheritance.

List of programs

• Program to perform a single arithmetic operation and display the result using c in and c out function.

- Program to show the base of a numeric value of variable using hex and dec manipulation function.
- Program to show the base of a numeric value of a variable using set base manipulator function.
- Program to display the data variable using set W manipulator function.
- Program to use the set precision manipulator function while display the floating point value onto screen.
- Program to display a floating point with all decimal places.
- Program to demonstrate how a fill and width member function is used to display a numerical value in C++.
- Program in C++ to perform the following:
 - 1. Area of a circle
 - 2. Area of a rectangle
- Program to find the simple interest for a given principal, rate of interest and number of years.
- Program to find the largest value of any three numbers.
- Program to display the name of the day in a week using if...else/ switch case/ break with switch case structure.
- Program to display the numbers from zero to ten using for loop.
- Program to find the sum and average of the given to numbers using while and for loop.
- Program to the sum of even numbers using do... while loop.
- Program to demonstrate how to declare and invoke a function in the main program using function.
- Program to find the area and circumference of a circle for a given value of radius using function.
- Program to find the sum of the given two numbers using function.
- Program to perform simple arithmetic operations using function.
- Program to find the sum of series using a function.

 $Sum = 1 + 2 + 3 + + \dots + n$

- Program to illustrate how to declare local variable.
- Program to find the sum of the given numbers using default argument declaration.
- Program to initialize a set of numbers in an array and to display them.
- Program to read 'n' numbers from the keyboard to store it in one dimensional array and to display the content of the array.
- Program to read a set of numbers and to find out the largest number in the given array.
- Program to read a set of numbers and to sort them in ascending order.
- Program to read the elements of the given matrix of order n x n and to display the contents.
- Program to read a set of lines and to store it in a one dimensional array A; copy the contents of A to an array B and display contents of arrays A and B separately.
- Program to assign an address of an integer variable to the pointer variable and display the content of and address of the pointer.
- Program to display the memory address of a variable using pointer before incrementation / decrementation and after incrementation / decrementation.
- Program to display the content of a pointer variable using a pointer arithmetic.
- Program to exchange the contents of two variables using pointers and functions.
- Program to display the contents of pointers using an array of pointers.

- Program to declare the pointer to pointer variable and display the contents of pointer.
- Program to demonstrate how to initialize the members of a structure and display the contents of the structure.
- Program to initialize few members of an array of structures and display the contents of the structure.
- Program to demonstrate how to define, declare and realize a nested structure in C++.
- Program to initialize the members of a union and the contents of the union.
- Program to assign values to the data members of a class such a day, month and year and display the same.
- Program to demonstrate how to define both data member and member function of a class withy in a scope of class definition.
- Program to read the data variable of a class by the member function and display the content of the class object on the screen.
- Program to illustrate the simple arithmetic operation using member function.
- Program to generate Fibonacci series using copy constructor within class.
- Program to data members of base class and display the same.
- Program to get the information of a derived class data members and again to read data for another derived class and display the contents of the newly created class.
- Program to demonstrate how ambiguity is avoided in single inheritance using scope resolution operator.
- Program to illustrate how a multiple inheritance can be declare and defined in a program.
- Program to illustrate how to assign the pointers of the derived class of the object of a base class using explicit casting.
- Program to find the virtual function within the line code substitution for run time binding the member function of a class.
- Program to define and declare a constructor member function under inheritance.

TEXT BOOK:

Programming with C++ - D. Ravichandran, Third edition, Tata McGraw Hill Publishing Company Ltd., 2011.

Unit I -**Ch.3, 4 &5** (Sec.3.1, 3.4, 3.7-3.14, 4.2, 4.4, 4.6, 4.8, 5.1., 5.1.1. - 5.1.3., 5.2, 5.4) Unit II -**Ch. 6 & 7** (Sec.6.2 - 6.9, 6.18, 7.2 - 7.8) Unit III -**Ch.8 & 9** (Sec.8.1 - 8.3, 8.6 - 8.9, 9.2, 9.4, 9.6 - 9.10) Unit IV -**Ch.10 & 11** (Sec.10.1 - 10.10, 11.2, 11.3)

Unit V -Ch.12 & 14 (Sec.12.1 – 12.5, 12.7, 14.1 -14.4, 14.8)

BOOK FOR REFERENCE:

1. Let us C++ - YashavantKanettkar, 2nd edition, BPB Publications, 2013.

2. Object Oriented Programming with C++ - E. Balagurusamy, 6th edition,

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
-------	-------	------------------	------------------

	Identifiers & keywords - Literals –		
	Operators – Type Conversion –		Lecture, peer teaching.
LINUT I	Declaration of variables – Statements –	5	GD&ICT
	Simple C++ program		
	Features of iostream.h – Manipulator	5	Lecture, peer teaching.
UNIT I	Functions – Conditional Expressions –	-	GD & ICT
	Program		
	Switch Statement Loon Statements	5	Lecture, peer teaching,
	Breaking Control Statements- Program		GD & ICT
	Defining a function Deturn statement	5	Lesture recentesching
	Tupos of functions Actual and Formal	3	$CD \approx ICT$
	Arguments Legal and Global variables		GD & ICI
	Arguments – Local and Global variables –		
	Structure of the C++ program Header	5	Lactura poor tooching
UNIT II	files Program	5	GD & ICT
	Array Notation - Array Declaration-	5	Lecture peer teaching
	Array Initialization – Processing with	5	GD & ICT
	Array – Arrays & Functions –		
	Multidimensional Arrays – Character		
	Array – Program		
	Pointer Declaration – Pointer Arithmetic –	5	Lecture, peer teaching,
	pointers and Functions – Pointers and		GD & ICT
	Arrays – Pointers and Strings - Array of		
	Pointers – Pointers to pointers- Program		
UNIT III	Declaration of Structure – Initialization of	5	Lecture, peer teaching,
	Structures – Arrays of Structures – Arrays		GD & ICT
	within a Structure - Structures within a		
	Structure (Nested Structure) Pointers &		
	Structures – Unions – Program		
	Introduction – Structures and classes –	5	Lecture, peer teaching,
	Declaration of class – Member Functions-		GD & ICT
	Program	~	
UNIT IV	Defining the object of a class – Accessing	5	Lecture, peer teaching,
UNITIV	a member of class – Array of class objects		GD&ICI
	Pointers and classes – Unions and classes	5	Lecture, peer teaching,
	– Classes within classes (nested class) –		GD & ICT
	Constructors- Destructors- Program		
	Introduction – Single Inheritance – Types	5	Lecture, peer teaching,
	of Base Classes- Type of Derivation -		GD & ICT
	Ambiguity in Single Inheritances-		
	Multiple Inheritance- Program		
UNIIV	Polymorphism – Early Binding –	5	Lecture, peer teaching,
	Polymorphism with pointers- Program		GD & ICT
	Virtual Functions – Constructors under	5	Lecture, peer teaching,
	Inheritance – Program		GD & ICT

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	2	3	3	4	3	3	2	4	3.2
CO2	4	3	2	2	4	4	3	3	2	4	3.1
CO3	4	4	3	3	3	4	3	3	3	3	3.3
CO4	4	3	2	3	3	4	3	2	3	3	3.0
CO5	4	4	3	3	4	4	3	3	2	4	3.4
Mean Overall Score									3.16		

Result: The Score for this Course is 3.16 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	ality Very Poor Poor		Moderate	High	Very High
Mean Score of (Total of COs = Total No. of	Value POs & PSOs	Mean Overall Score	Total o e of COs = Total	of Mean Score No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 – Remembering/Recalling	20%	20%
K2 – Understanding /Comprehension	20%	20%
K3 – Application and Analysis	30%	30%
K4 – Synthesis and Evaluation	30%	30%

Course Designer: Dr.K.Lilly Mary Eucharista, Department of Physics

Programme : M.Sc.DSEC IISemester : IHours : 5 P/W 75Hrs P/SSub. Code : P22DSP2BCredits : 4TITLE OF THE PAPER: COMPUTATIONAL PHYSICS

D	Hours	Lecture	Peer Teaching	GD/ Vedos/Tutorial	ICT
Pedagogy	5	2	1	1	1

PREAMBLE:

To provide the core tools and methodology of computational physics. The emphasis is on gaining practical skills and a key objective is that the students gain the techniques and the confidence to tackle a broad range of problems in physics. To provide a broad basis of skills and each is illustrated by application to physical system using MATLAB. To provide knowledge about various mathematical methods. This course helps to provide the fundamental knowledge of a programming language and its features which enhances the user to write general purpose application programs.

COURSE OUTCOME At the end of the Semester, the students will be able to	Unit	Hrs P/S
CO1: understand the basic methodology of computational physics	Ι	15
CO2 : gain the practical skills and a key objective to solve problem in physics object oriented programming	II	15
CO3: apply the physics concepts using MATLAB	III	15
CO4: acquire knowledge about various mathematical methods	IV	15
CO5: enhance the program writing skill	V	15

SYLLABUS

UNIT I: NUMERICAL DIFFERENTIATION

Finding Roots of a Polynomial-Bisection Method-Newton Raphson Method- Solution of Simultaneous Linear Equation by Gauss Elimination Method- Solution of Ordinary Differential Equation by Euler, Runge-Kutta Fourth Order Method for solving first order Ordinary Differential Equations

UNIT II: NUMERICAL INTEGRATION

Newton's cotes formula-Trapezoidal rule-Simpson's 1/3 rule- Simpson's 3/8 ruleBoole's rule-Gaussian quadrature method-(2 point and 3 point formulae)- Giraffe's root square method for solving algebraic equation

UNIT III: MATLAB FUNDAMENTALS

Introduction - Matlab Features-Desktop Windows: Command, Workspace, Command History, Array Editor and Current Directory - Matlab Help and Demos- Matlab Functions, Operators and Commands. Basic Arithmetic in Matlab-Basic Operations with Scalars, Vectors and Arrays-Matrices and Matrix Operations- Complex NumbersMatlab Built-In Functions-Illustrative Examples **UNIT IV: MATLAB PROGRAMMING**

Control Flow Statements: if, else, else if, switch Statements - for, while Loop Structuresbreak Statement- Input/Output Commands-Script "m" Files -Function "m" Files-Controlling Output UNIT V: MATLAB GRAPHICS

2D Plots-Planar Plots, Log Plots, Scatter Plots, Contour Plots-Multiple Figures, Graph of a Function-Titles, Labels, Text in a Graph- Line Types, Marker types, Colors-3D Graphics-Curve Plots-Mesh and Surface Plots-Illustrative Examples State Integrated Board of Studies – Physics PG 33

BOOKS FOR STUDY:

1. Numerical methods in Science and Engineering- M.K. Venkataraman- National Publishing Co. Madras, 1996.

2. Getting Started With Matlab-RudraPratap-Oxford University Press-New Delhi.

BOOKS FOR REFERENCE:

1. Engineering and Scientific Computations Using Matlab- Sergey E. LyshevskiJohnWiley&Sons.

2. A Guide to Matlab for Beginners & Experienced Users-Brian Hunt, Ronald Lipsman, Jonathan Rosenberg-Cambridge University Press.

3. Matlab Primer-Timothy A. Davis & Kermit Sigmon-Chapman & Hall CRC PressLondon. 4.

Matlab Programming-David Kuncicky-Prentice Hall.

5. An Introduction to Programming and Numerical Methods in MATLAB- S.R. Otto and J.P.Denier-Springer-Verlag-London.

- 6. Numerical Methods Using Matlab-John Mathews &Kurtis Fink-Prentice Hall-New Jersey,2006.
- 7. Introductory Methods of Numerical Analysis- S.S. Sastry-Prentice Hall, 2005

UNITS	ΤΟΡΙϹ	LECTURE HOURS	MODE OF TEACHING
	Finding Roots of a Polynomial-Bisection Method-Newton Raphson Method-	5	Lecture , peer teaching, GD & ICT
LINIT I	Solution of Simultaneous Linear Equation by Gauss Elimination Method-	5	Lecture , peer teaching, GD & ICT
	Solution of Ordinary Differential Equation by Euler, Runge-Kutta Fourth Order Method for solving first order Ordinary Differential Equations	5	Lecture , peer teaching, GD & ICT
	Newton's cotes formula-Trapezoidal rule	5	Lecture , peer teaching, GD & ICT
UNIT II	Simpson's 1/3 rule- Simpson's 3/8 ruleBoole's rule-Gaussian quadrature method-(2 point and 3 point formulae)-	5	Lecture , peer teaching, GD & ICT
	Giraffe's root square method for solving algebraic equation	5	Lecture , peer teaching, GD & ICT
	Introduction - Matlab Features-Desktop Windows: Command, Workspace, Command History	5	Lecture , peer teaching, GD & ICT
UNIT III	Array Editor and Current Directory - Matlab Help and Demos- Matlab Functions, Operators and Commands. Basic Arithmetic in Matlab	5	Lecture , peer teaching, GD & ICT
	Basic Operations with Scalars, Vectors and Arrays-Matrices and Matrix Operations- Complex Numbers - Matlab Built-In Functions-Illustrative Examples		
	Control Flow Statements: if, else, else if, switch Statements -	5	Lecture , peer teaching, GD & ICT
UNIT IV	for, while Loop Structures-break Statement- Input/Output Commands	5	Lecture , peer teaching, GD & ICT
	Script "m" Files -Function "m" Files- Controlling Output	5	Lecture , peer teaching, GD & ICT
	2D Plots-Planar Plots, Log Plots, Scatter Plots, Contour Plots-Multiple Figures,	5	Lecture , peer teaching, GD & ICT
UNII V	Graph of a Function-Titles, Labels, Text in a Graph- Line Types, Marker types,	5	Lecture , peer teaching, GD & ICT

Colors-3D		
Graphics-Curve Plots-Mesh and Surface Plots-Illustrative Examples State Integrated Board of Studies – Physics PG 33	5	Lecture , peer teaching, GD & ICT

Course Outcomes (COs)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	2	3	3	4	3	3	2	4	3.2
CO2	4	3	2	2	4	4	3	3	2	4	3.1
CO3	4	4	3	3	3	4	3	3	3	3	3.3
CO4	4	3	2	3	3	4	3	2	3	3	3.0
CO5	4	4	3	3	4	4	3	3	2	4	3.4
Mean Overall Score 3.16											

Result: The Score for this Course is 3.16 (High Relationship)

Mapping	1-20%	1-20% 21-40%		61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of (Total of V COs = Total No. of	/alue POs & PSOs	Mean Overall Scor	Total o e of COs = Total	f Mean Score No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL		
K1 – Remembering/Recalling	20%	20%		
K2 – Understanding /Comprehension	20%	20%		
K3 – Application and Analysis	30%	30%		
K4 – Synthesis and Evaluation	30%	30%		

Course Designer: Dr. K.Lilly Mary Eucharista Department of Physics

Programme : M..Sc Semester : II Sub. Code : P22SEP2

SEC - II Hours : 2 P/W , 30 Hrs P/S Credits : 2

TITLE OF THE PAPER: NANOSCIENCE AND NANO TECHNOLOGY

Padagagy	Hours	Lecture	Peer Teaching	GD/ Vide	IC T	
reuagogy	2	1				1
PREAMBLE: To characterization of	o understand th nano particles	e history of nan and their appli	o science, differen cations.'	t types, synthes	sis and	
COURSE OUTCOME Unit At the end of the Semester, the students will be able to Unit						
CO 1 : know the h	istory of nano	science and Na	notechnology		Ι	6
CO 2: understand	the different ty	pes of nano par	ticles		Π	6
CO 3:Gain knowle	edge in various	methods used	for synthesis ofnar	o particles	III	6
CO 4: Explain the materials	various charac	terization techn	iques used for ana	lysis of nano	IV	6
CO 5:Understand	the application	of nano mater	ials in various field	ls	V	6
NANOSCIENCE UNIT I – INTRO Introduction- Histo Effect of surface at UNIT II – TYPES Quantum Dots - Q UNIT III –SYNT Top Down and Bo Nanolithography- I UNIT IV - CHAR Powder X - Ray D (TEM), UV-Visib UNIT V - APPLIO Nano electronics- I Applications	AND NANO DUCTION TO ory of Nano tector rea to volume of S OF NANOS uantum wires- HESIS OF NA ttom Up appro Bottom Up Tector ACTERIZAT iffraction, Scar le absorption - CATIONS OF Nano robotics-	TECHNOLOG O NANOSCIE chnology- Class ratio on the pro TRUCTURES Quantum well- ANOMATERL aches- Top Dov cchniques – Hyo TION TECHN nning electron r Energy dispers F NANO MAT Photo electro cl	GY NCE AND NANC ification of Nanon operties of materia Fullerenes-Carbon ALS wn Techniques- Ba frothermal - Sol-C IQUES nicroscope (SEM), ive X– ray analys ERIALS hemical cells- Sola	DTECHNOLO naterials-Proper ls. nano tubes. Il Milling –Etc del – Co precip Transmission is (EDAX) r cells -Nano d	OGY rties of Nano n ching- itation process. electron micro lrug delivery- N	naterials scope Medical
TEXT BOOKS: 1. Viswanathan, H	3., 2013, "Nan	omaterials", Fo	urth Edition, Naro	sa Publishing H	House Pvt. Ltd.	,

- New Delhi.
- 2. Ramachandra Rao, M. S. and Singh, S., 2013, "Nanoscience and Nanotechnology : Fundamentals to Frontiers",

First Edition, Wiley India Pvt. Ltd., New Delhi.

REFERENCE BOOKS:

1.Introduction to Nanotechnology - Charles P.Poole, Frank J. Owens, Wiley – India, 2009.

2.Nanostructures and Nanomaterials synthesis, properties and applications - Guozhong Gao, Imperial College Press, London, 2004.

3.Metal Oxides - V. Henrich, P.A.Cox, Cambridge University Press, New York, 1994.

- 4. NATO ASI Series, Science and Technology of Nanostructured Magnetic Materials Ed. George C. Hadjipanyis and Gary A.Prinz, , Plenum Press, New York, 1991.
- 5. Introduction to Magnetism and Magnetic Materials D.Jiles, Chapman and Hall, London, 1991.
- 6.Physics and Chemistry of Metal Cluster Compounds J.de Jongh, Kluwer Academic Publishers, Dordrecht, 1994.

Web Resources

1. <u>https://www.nanowerk.com/nanotechnology/introduction/introduction to nanotechnology 1.</u> php

- 2. https://www.azonano.com/article.aspx?ArticleID=4938
- 3. https://pubs.rsc.org/en/content/articlehtml/2021/ma/d0ma00807a
- 4. https://innovareacademics.in/journals/index.php/ijcpr/article/view/41556/24630
- 5. <u>https://www.ijesm.co.in/uploads/68/4481_pdf.pdf</u>
- 6. <u>https://www.researchgate.net/publication/331470948_Different_Applications_of_Nanomateria_lsand_Their_Impact_on_the_Environment</u>
- 7. https://www.uc.edu/content/dam/refresh/cont-ed-62/olli/olli_docs/nano-meta-materials.pdf

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I	Introduction- History of nanotechnology – Classifications of nanomaterials – Properties of nanomaterials – Effect of surface area to volume rat on the properties of materials.	6	Lecture, ICT and Group discussion
UNIT II	Quantum Dots- Quantum wires - Quantum well – Fullerenes – Carbon nanotubes.	6	Lecture and Group discussion, ICT
UNIT III	Top Down and Bottom Up approaches- Top Down Techniques- Ball Milling –Etching- Nanolithography- Bottom Up Techniques – Hydrothermal - Sol-Gel – Co precipitation process	6	Lecture, ICT and Group discussion
UNIT IV	Powder X - Ray Diffraction-Scanning electron microscope (SEM)- Transmission electron microscope (TEM)- UV-Visible absorption - Energy dispersive X- ray analysis (EDAX)	6	Lecture, ICT and Group discussion
UNIT V	Nano electronics- Nano robotics-Photo electro chen cells- Solar cells -Nano drug delivery- Medical Applications	6	Lecture, ICT and Group discussion

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	3	4	4	4	4	3	3	3	4	3.6
CO2	4	3	4	3	4	3	3	4	3	4	3.5
CO3	4	4	3	4	3	4	4	3	4	4	3.7
CO4	4	3	4	3	4	3	4	3	4	4	3.6
CO5	4	4	3	4	4	4	3	4	3	4	3.7
	Mean Overall Score 3.62							3.62			
			Resu	lt: The	Score fo	or this C	ourse is	3.62 (Hi	igh Rela	tionship)
Mapping	g	1-20	%	21-4	40%	41-60% 61-80%		51-80%		81-100%	
Scale		1		2		3			4		5
Relation	ı	0.0-1	.0	1.1-	-2.0	2.1-3.0 3.		3.1-4.0		4.1-5.0	
Quality	Very Poor Poor			or	Moderate High			,	Very High		
Total of Value Mean Score of COs = Total No. of Pos& PSOs				Total of Mean Score Mean Overall Score of COs = Total No. of COs							

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 (Remembering/Recalling)	20%	20%
K2 (Understanding/Comprehension)	20%	20%
K3 (Application & Analysis)	30%	30%
K4 (Synthesis & Evaluation)	30%	30%

Course Designer: 1. DR.N.NAGARANI

Programme : M. Sc.,Part III: Core paperSemester: I IHours: 6 P/W90 Hrs P/SSub. Code: P22CP8PCredits : 3TITLE OF THE PAPER: PHYSICS PRACTICAL - II

Pedagogy	Hours	Lab	Peer	GD/VIDOES/TUTORIAL	ICT
		Experimentation	Teaching		
	3+3	3+3	-	-	-

PREAMBLE: The purpose of the *course* is to make the students to construct electronic circuits using Diodes, transistors and ICs and study their behavior. To make the students to know the applications of ICs as Astable, Bistble, Schimtt Trigger and Phase-Shift Oscillator ...by construction .

COURSE OUTCOME

At the end of the Semester, the Students will be able to

CO1: Construct electronic circuits using logic gates & ICs

CO2: Perform arithmetic operations using ICs

CO3: Construct different types of waveforms

CO4: Understand the theoretical concepts by doing experiments

CO5: Understand applications of ICs by doing experiments

S.NO	EXPERIMENT (ANY TEN)
1.	CONSTRUCT THE DUAL POWER SUPPLY AND MEASURE ITS OUTPUT.
2.	STUDY OF VARIOUS LOGIC FAMILIES (DRL, DTL AND TTL).
3.	DESIGN STUDY OF TWO -STAGE RC-COUPLED TRANSISTOR AMPLIFIER.(With and
	without FEED BACK).
4.	DESIGN AND STUDY OF VARIOUS FLIP-FLOPS (RS, D, JK, AND T).
5.	VERIFICATION OF ASSOCIATIVE AND DISTRIBUTIVE LAWS BY IC'S.
6.	STUDY THE BOOLEAN LOGIC OPERATION USING IC'S.
7.	DESIGN AND STUDY THE ADDER AND SUBTRACTOR USING IC 741.
8.	DESIGN AND STUDY OP-AMP IC741 AS A ASTABLE MULTIVIBRATOR.
9.	DESIGN AND STUDY OP-AMP IC741 AS A BISTABLE MULTIVIBRATOR.
9.	DESIGN AND STUDY OP-AMP IC741 AS A SCHMITT TRIGGER.
10.	DESIGN AND STUDY OP-AMP IC741 AS A PHASE SHIFT OSCILLATOR.
11.	DESIGN AND STUDY THE DIFFERENTIATOR AND INTEGRATOR USING IC 741.

Course Designer : Dr. Mrs. SANTHI.

Department of PHYSICS

Programme : M.Sc. Semester : III Sub. Code : P22CP9 CC : IX Hours : 6 Hrs P/W 90Hrs P/S Credits : 5

TITLE OF THE PAPER: CONDENSED MATTER PHYSICS -I

Pedagogy	Hours	Lecture	Peer Teaching	GD/Videos/Tutorial	ICT

		6	3	1	1	1
--	--	---	---	---	---	---

PREAMBLE: Give strong foundation in the conceptual understanding of the development of solid state physics with appropriate theoretical background.

COURSE OUTCOME	Unit	Hrs P/S
At the end of the semester, the students will be able to		
CO1 : explain about the crystal structure and crystal binding	Ι	18
CO2 : predict about diffraction of waves and particles by Crystals	II	18
CO3 : demonstrate about crystal imperfections	III	18
CO4 : explain about phonon, heat capacity of phonon and anharmonic effects	IV	18
CO5 : interpret the theory of electrons	V	18

SYLLABUS

UNIT I : CRYSTAL PHYSICS

Crystal structure: Lattice representation - Simple symmetry operations - Unit cell, Wigner - Seitz cell, Bravais Lattices - Miller indices - Structural features of NaCl, CsCl, Diamond, ZnS – Hexagonal Close-packed structure.

Crystal binding: Interactions in inert gas crystals and cohesive energy – Lennard – Jonespotential - Interactions in ionic crystals and Madelung energy - Covalent bonding – Metallic bonding - Hydrogen bonding.

UNIT II : DIFFRACTION OF WAVES AND PARTICLES BY CRYSTALS

X-ray diffraction – The Laue equations – Equivalence of Bragg and Laue equations – Interpretation of Bragg equation – Ewald construction – Reciprocal lattice –Reciprocal lattice to SC, BCC and FCC crystals – X-ray Diffraction experiment - The Powder method – Powder Diffractometer - The Laue method – The Rotating / Oscillation method – Other Diffraction Methods.

UNIT III : CRYSTAL IMPERFECTIONS

Point imperfections – Concentrations of Vacancy, Frenkel and Schottky imperfections – Line Imperfections – Burgers Vector – Presence of dislocation – Dislocation motion – Perfect and imperfect dislocations - surface imperfections – Grain boundary – Tilt and Twist boundary – Stacking Faults – Stacking Faults in hcp Crystals.

UNIT IV : LATTICE DYNAMICS

Quantization of elastic waves - Phonons - Phonon momentum - In elastic scattering by phonon.

Heat Capacity : Phonon heat capacity – Planck Distribution – Density of states in One and Three dimensions - Debye Model and Einstein model of heat capacity. Anharmonic Effects: Explanation for Thermal expansion – Thermal Conductivity and Resistivity – Umklapp process.

UNIT V : THEORY OF ELECTRONS

Energy levels in one dimension – Effect of temperature on the Fermi Dirac distribution – Free

electron gas in three dimensions – Heat Capacity of the Electron gas – Electrical Conductivity and Ohm's law – Hall effect – Wiedemann-Franz law.

Nearly free electron model and the origin and magnitude of energy gap – Bloch functions -Kronig – Penney model - Approximate solution near a zone boundary –Metals and insulators – effective mass - Construction of Fermi surfaces: Reduced and periodic zone schemes of construction- De Haas – van Alphen effect.

TEXT BOOKS :

 Introduction to Solid State Physics, Charles Kittel, VII Edition Wiley India Pvt. Ltd., 2011. Unit I -Ch. 1,2 & 3 (pg. 4,6,8,11,13-17,49,58,60,67,69,70) Unit IV-Ch. 4 & 5 (pg. 99,100,107,108,111,112,114,120,121,123,125) Unit V - Ch. 6,7 & 9 (pg. 134,136,137,141,147,153,156,164,166-168,177,181,197,223-225,244)

2. Solid State Physics – Structure and Properties of Materials, M. A. Wahab, Narosa, New Delhi, 1999.

Unit II -Ch. 8 (Sec. 8.6-8.12, 8.15-8.20) Unit III-Ch. 5 (Sec. 5.1-5.7,5.10,5.12)

BOOK FOR REFERENCE:

- 1. Electrical Engineering Materials, A. J. Dekker, Prentice Hall of India, 1975.
- 2. Problems and Solutions in Solid State Physics, S.O. Pillai, New Age international Publishers, New Delhi, 1994.
- M. Ali Omar, Elementary Solid State Physics Principles and Applications, Pearson, 1999.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
	Lattice representation - Simple symmetry operations - Unit cell, Wigner -Seitz cell, Bravais Lattices - Miller indices	6	Lecture, Peer Teaching Tutorial & ICT
UNIT I	Structural features of NaCl, CsCl, Diamond, ZnS – Hexagonal Close-packed structure	5	Lecture, Peer Teaching Tutorial

			& ICT
	Interactions in inert gas crystals and cohesive energy –	7	Lecture, Peer
	Lennard – Jones potential - Interactions in ionic crystals		Teaching Tutorial
	and Madelung energy - Covalent bonding - Metallic		& ICT
	bonding - Hydrogen bonding.		
	X-ray diffraction – The Laue equations – Equivalence of	6	Lecture, Peer
	Bragg and Laue equations – Interpretation of Bragg		Teaching Tutorial
	equation		& ICT
	Ewald construction – Reciprocal lattice – Reciprocal	5	Lecture Peer
UNIT II	lattice to SC BCC and FCC crystals	5	Teaching Tutorial
			& ICT
	X-ray Diffraction experiment - The Powder method –	7	Lecture, Peer
	Powder Diffractometer - The Laue method - The		Teaching Tutorial
	Rotating / Oscillation method – Other Diffraction		& ICT
	Methods.		
	Point imperfections – Concentrations of Vacancy,	6	Lecture, Peer
	Frenkel and Schottky imperfections		Teaching Tutorial
			& ICT
	Line	6	Lecture, Peer
	Imperfections – Burgers Vector – Presence of		Teaching Tutorial
	dislocation – Dislocation motion – Perfect and imperfect		& ICT
UNIT III	dislocations		
	surface imperfections – Grain boundary – Tilt and Twist	6	Lecture, Peer
	boundary – Stacking Faults – Stacking Faults in hcp		Teaching Tutorial
	Crystals		& ICT
	Quantization of elastic waves - Phonons – Phonon	6	Lecture, Peer
	momentum – In elastic scattering by phonon		leaching lutorial
	Dhanan haat aanaaity. Dlanak Distribution Dansity of	6	& ICI
UNITIV	rionon near capacity – Planck Distribution – Density of	0	Lecture, Peer
	Finstein model of heat connecity		
	Explanation for Thermal expansion Thermal	6	Lactura Poor
	Conductivity and Resistivity Umklapp process	0	Teaching Tutorial
	Conductivity and Resistivity – Officiapp process		
	Energy levels in one dimension – Effect of temperature	6	Lecture. Peer
	on the Fermi Dirac distribution – Free electron gas in	Ũ	Teaching Tutorial
	three dimensions – Heat Capacity of the Electron gas		& ICT
			I (D
	Electrical Conductivity and Ohm's law – Hall effect –	6	Lecture, Peer
	the origin and magnitude of energy gen. Plack functions		
UNIT V	Kronig – Dennov model		
	Approximate solution near a zone boundary _Metals	6	Lecture Peer
	and insulators – effective mass - Construction of Fermi	U	Teaching Tutorial
	surfaces: Reduced and periodic zone schemes of		& ICT
	construction- De Haas – van Alphen effect		

Course	Programme Outcomes (POs)					Programme Specific Outcomes			Mean Scores of		
Outcomes						(PSOs)			Cos		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	

CO1	3	4	3	4	3	3	3	3	3	5	3.4
CO2	5	3	4	3	5	3	3	4	3	4	3.7
CO3	3	3	3	3	3	3	5	4	3	4	3.4
CO4	3	3	4	3	3	3	5	4	3	4	3.5
CO5	4	3	3	4	4	3	3	4	4	3	3.5
Mean Overall score									3.5		
Result: The Score for this Course is 3.5 (High Relationship)											
Mapping		1-2	0%	2	1-40%		41-60%		61-80%)	81-100%
C 1 .		1			2		2		4		F

Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of	COs = <u>Total</u> Total No. o	<u>of Value</u> f POs & PSOs	Mean Overall S	Score of $COs = 1$	<u>Fotal of Mean Score</u> Total No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 - Remembering/Recalling	20%	20%
K2 - Understanding/Comprehension	20%	20%
K3 - Application & Analysis	30%	30%
K4 - Synthesis & Evaluation	30%	30%

Course Designer: Dr.M. Mahalakshmi, Department of Physics

Programme : M.Sc PHYSICS Semester : III Sub code : P22CP10 PART III : Core - X Hours : 6 P/W, 90 Hrs P/S Credits : 5

TITLE OF THE PAPER : QUANTUM MECHANICS – II

Pedagogy Hours Lecture	Hours Lecture Peer teaching				
		AL			
6 3	1	1	1		
PREAMBLE :					
The aim of this course is to give reasonable def	alls about the approx	ximation met	nods for time		
independent and time dependent perturbationthe	eory, WKB approxit	nation, quant	tum theory of		
atomic and molecular structure, relativistic qual	num mechanics and	quantization of	of the field.		
COURSE OUTCOME		UNIT	Hrs P/S		
At the end of the Semester, the students will be	able to				
CO1 :Acquire knowledge about perturbation th	eory for discrete	1	18		
levels, differentiate degenerate and non- degene	erate, understand				
stark effect in hydrogen atom.					
CO2 : Know transition probability of first orde	er transition,	2	18		
interpret constant perturbation, harmonic pertur	bation, understand				
interaction of atoms with electromagnetic field	, dipole				
approximations					
CO3: Know variation method , determine asym	ptotic solution of	3	18		
Schrodinger equation, analyse solution near a t	urning point,				
understand Bohr-Sommerfeld quantum condition	on.				
CO4 : Get knowledge about central field appro	ximation,	4	18		
interpret residual electrostatic interaction and sp	on orbit interaction				
, determine central field by Thomas Fermi meth					
method, understand Born Oppenheimer approx					
approximation .	5	10			
cus: Derive Klein – Gordon equation, Dirac e	5	18			
charge and current density from Kieln – Gordol					
solutions of Direc equation determine spin of	Dirac particle				
understand significance of negative energy state					

SYLLABUS

UNIT-I : APPROXIMATION METHODS FOR TIME INDEPENDENT PROBLEMS

Perturbation theory for discrete levels – equations in various orders of perturbation theory Nondegenerate case :first and second order – Degenerate case- Stark effect in ground state of hydrogen atom.

UNIT-II : APPROXIMATION METHODS FOR TIME DEPENDENT PERTURBATION THEORY

First order transitions : transition probability – Constant perturbation : Fermi Golden Rule (constant transition rate) – Harmonic perturbation : amplitude for transition with change of energy - Interaction of an atom with electromagnetic radiation - Dipole approximation- Selection rules – Forbidden transitions - Einstein's coefficients : spontaneous emission

UNIT-III : VARIATION METHOD

Variation method : upper bound on ground state energy – Application to excited states - WKB approximation :one dimensional Schrodinger equation : Asymptotic solution - solution near a turning point – Asymptotic connection formula – Bohr-Sommerfeld quantum condition.

UNIT-IV : QUANTUM THEORY OF ATOMIC AND MOLECULAR STRUCTURE

Central field approximation -Residual electrostatic interaction-spin-orbit interaction -Determination of central field: Thomas Fermi statistical method-Hartree self - consistent method -Born-Oppenheimer approximation – Molecular orbital method (LCAO approximation) – MO treatment of Hydrogen molecule.

UNIT-V : RELATIVISTIC QUANTUM MECHANICS

Generalization of Schrodinger equation - Charge and current densities – Dirac's relativistic Hamiltonian – Position probability density - Plane wave solutions of the Dirac equation – Spin of Dirac particle – Significance of negative energy states – Dirac particle in electromagnetic field

BOOKS FOR STUDY:

- 1. A Text book of Quantum Mechanics P. M. Mathews and K. Venkatesan, Tata McGraw Hill Publications, Second Edition, 2010.
 - Unit I : page no. (178-182, 183,184, 186-188)
 - Unit II : page no. (339-341, 351-352, 354-359)
 - Unit III : page no. (192-193, 200-203, 205-208)
 - Unit IV : page no. (448-452)
 - Unit V : page no. : (388-390, 394 396 398 402 , 404-406)
- A Text book of Quantum Mechanics G. Aruldhas, second edition, Prentice Hall of India Pvt. Ltd., 2016

Unit – IV : page no. (442-444, 448-451)

BOOKS FOR REFERENCE

- Quantum Mechanics V. K. Thankappan, New Age International (P) Ltd. Publication, Second Edition, 2003.
- 2. Quantum mechanics Franz Schwabl, Narosa Publications, Fourth Edition, 2007.
- 3. Molecular Quantum mechanics P.W.Atkins and R.S. Friedman,), Oxford University Press publication, Fifth Edition, 2010.
- 4. Quantum Mechanics Theory and Applications, A. K. Ghatak and Lokanathan, Macmillan India Ltd Publication, Fifth Edition, 2015.
- 5. Quantum Mechanics Leonard I. Schiff

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
	Perturbation theory for discrete levels	3	(L), (I), (P)
	Equations in various orders of perturbation	3	(L), (I), (P)
UNIT – I	theory		
	Non-degenerate case – first order	3	(2L), (T)
	Second order	3	(L), (P), (I)
	Degenerate case	3	(2L), (T)
	Stark effeck in ground state of hydrogen atom	3	(L), (I), (T)
	First order transition – transition probability	3	(L), (I), (P)
	Constant perturbation : constant transition rate (3	(L),(I), (T)
	Fermi-Golden rule)		
	Harmonic perturbation – amplitude for transition	3	(L),(P),(I)
	with change of energy		
UNIT –II	Interaction of an atom with electromagnetic	3	(2L),(T)
	radiation		
	Dipole approximation, selection rules,	3	(2L),(P)
	forbidden transition		
	Einstein's coefficients : spontaneous emission	3	(2L),(T)
	Variation method : upper bound on ground state	3	(L),(I), (P)
	energy		
	Application to excited states	3	(L),(I)(P)
UNIT-III	WKB approximation : one dimension	3	(2L),(T)
	Schrodinger equation		
	Asymptotic solution, solution near a turning	3	(2L),(I)
	point		
	Asymptotic connection formula	3	(L),(T),(P)
	Bohr-Sommerfeld quantum condition	3	(2L),(T)

	Central field approximation	3	(L),(P),(I)
	Residual electrostatic interaction, spin orbit	3	(2L),(T)
	interaction		
	Determination of central field – Thomas Fermi	3	(L),(P),(I)
UNIT-IV	statistical method		
	Hartree self- consistent method	3	(2L)(T)
	Born-Oppenheimer approximation	3	(L),(T) ,(I)
	Molecular orbital method, MO treatment of	3	(2L),(P)
	hydrogen molecule		
	Generalization of Schrodinger equation : Klein –	3	(2L),(I)
	Gordon equation , charge and current densities		
	Dirac's relativistic Hamiltonian	3	(L),(I), (P)
UNIT-V	Position probability density	3	(L),(T),(I)
	Plane wave solutions of Dirac's equation	3	(2L),(T)
	Spin of the Dirac particle	3	(L),(T),(P)
	Significance of negative energy states, Dirac	3	(2L),(P)
	particle in electromagnetic field		

Course outcomes	Programme outcomes					Programme specific outcomes				Mean scores	
	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO1	5	5	3	3	3	5	5	4	4	3	4.0
CO2	5	5	3	3	3	5	5	4	3	3	3.9
CO3	5	5	4	4	4	5	5	4	3	3	4.2
CO4	5	5	4	4	4	4	4	4	3	3	4.0
CO5	5	5	4	3	4	5	5	4	4	3	4.2
				Mear	n overa	ll score					4.06

Result : The Score for this course is 4.06 - High

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 (Remembering/Recalling)	20%	20%
K2 (Understanding/Comprehension)	20%	20%
K3 (Application & Analysis)	30%	30%
K4 (Synthesis & Evaluation)	30%	30%

Course Designer : Dr. J.S.P.CHITRA, Department of PHYSICS

Programme : M.Sc. Semester : III Sub. Code : P22CP11

CC : XI Hours : 5 Hrs P/W 75 Hrs P/S Credits : 5

TITLE OF THE PAPER : MOLECULAR SPECTROSCOPY

Pedagogy	Hours	Lecture	Peer Teaching	GD/Videos/Tutorial	ICT			
	5	2	1	1	1			
PREAMBLE:	PREAMBLE: To acquire in-depth knowledge and understanding of Molecular Spectroscopy and its							
	applica	uons.						
	COURSE OUTCOME Unit Hrs P/S							
At the end of th	At the end of the Semester, the Students will be able to							
CO1 : understand the theory of rotational spectra of a rigid diatomic molecule						15		
vibration and IR spectrometer.						15		
CO3 : discuss Raman Scattering with the effect of rotation and vibration of molecules.						15		
CO4: understand NMR and ESR with its applications.						15		
CO5 : explain Mossbauer effect and magnetic hyperfine interaction.						15		
SYLLABUS								

UNIT I: MICROWAVESPECTROSCOPY

Classification of Molecules (linear, symmetric tops, spherical tops, asymmetric tops) – Interaction of Rotation with Rotating molecule - Rotational Spectra of Rigid Diatomic Molecules – Isotopic Effect of Rotational Spectra - Intensity of Spectral Lines –Linear Polyatomic Molecules -Stark Effect – Microwave Spectrometer - Information derived from Rotational Spectra Substitution (Molecular Structure, Dipole Moment, Atomic mass, Nuclear Quadrupole Moment).

UNIT II: INFRARED SPECTROSCOPY

Vibrational energy of a diatomic molecule - Vibrating diatomic molecule –Diatomic vibrating rotator-Vibrations of poly atomic molecules – Normal Vibration of CO_2 and H_2O molecules – Normal modes of vibration in crystal - Interpretation of vibrational spectra-Group frequencies – IR spectrophotometer - Instrumentation – Sample handling techniques –Fourier Transform Infrared spectroscopy – Applications.

UNIT III: RAMAN SPECTROSCOPY

Introduction-Theory of Raman scattering (classical theory and quantum theory) -Rotational Raman spectra-Vibrational Raman spectra-MutualExclusionprinciple-Ramanspectrometer-Samplehandlingtechniques-Ramaninvestigation of phase transitions-Hyper Raman effect-Stimulated Raman scattering-Inverse Raman effect-Coherent -Anti-Stokes Raman scattering.

UNIT IV: NUCLEAR MAGNETIC & ELECTRON SPINRESONANCE

Magnetic properties of Nuclei – resonance condition – NMR Instrumentation– relaxation processes– Bloch Equation –chemical shifts, ESR- Introduction - Basic principle - ESR spectrometer – Total Hamiltonian – Hyperfine structure – ESR spectrum of hydrogen atom –one electron coupled to a nucleus of spin 1 – unpaired electron with two equivalent nuclei of spin ½ - unpaired electron

with two non equivalent nuclei of spin $\frac{1}{2}$.

UNIT V: NUCLEAR QUADRUPOLE RESONANCE AND MOSSBAUERSPECTROSCOPY

The quadrupole nucleus – principle –Transition frequency–Half and Integral spin– Instrumentation.Mossbauereffect-recoillessemissionandabsorption-Mossbauerspectrometer – isomer shift –quadruple interactions – magnetic hyperfine interaction applications.

TEXT BOOK:

1. Molecular Structure and Spectroscopy, G Aruldhas, II Edn., Prentice Hall of India, 2007.

Unit I - Ch. 6 (Sec. 6.1 - 6.5, 6.8, 6.11, 6.14, 6.15).

Unit II - Ch. 7 (Sec. 7.1, 7.4, 7.5, 7.7, 7.1, 7.12, 7.14, 7.16 - 7.19.5).

Unit III - Ch. 8 (Sec. 8.2-8.7, 8.13, 15.5-15.8).

Unit IV - Ch. 10 (Sec 10.1-10.3, 10.5, 10.6, 10.8), Ch 11- (Sec 11.1-11.5.5).

Unit V - Ch. 12 (Sec 12.1-12.3.3,12.5.1,12.5.2), Ch 13- (Sec 13.1-13.6).

BOOK FOR REFERENCE:

1. Introduction to Molecular Spectroscopy, G.M.Barrow International Student Edn. MC Graw Hill International Company, 1984.

2.Introduction to Molecular Spectroscopy, C.N. Banwell, III Edn

3.Spectroscopy, Gurdeep R Chatwaal & Shyam K Anand, V Edn., Himalaya Publishing house, 2002.

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
	Classification of Molecules (linear, symmetric	5	Lecture, Peer
	tops, spherical tops, asymmetric tops),		teaching, GD, ICT
	Interaction of Rotation with Rotating molecule,		
	Rotational Spectra of Rigid Diatomic Molecules		
	Isotopic Effect of Rotational Spectra, Intensity of	5	Lecture, Peer
	Spectral Lines, Linear Polyatomic Molecules,		teaching, GD, ICT
	Stark Effect		
UNIT I	Microwave Spectrometer Information derived	5	Lecture, Peer
	from Rotational Spectra Substitution (Molecular		teaching, GD, ICT
	Structure, Dipole Moment, Atomic mass,		
	Nuclear Quadrupole Moment).		
	Vibrational energy of a diatomic molecule,	5	Lecture, Peer
	Vibrating diatomic molecule –Diatomic vibrating		teaching, GD, ICT
	rotator, Vibrations of poly atomic molecules		
UNIT II	Normal Vibration of CO ₂ and H ₂ O molecules,	5	Lecture, Peer
	Normal modes of vibration in crystal,		teaching, GD, ICT
	Interpretation of vibrational spectra, Group		
	frequencies		
	IR spectrophotometer, Instrumentation, Sample	5	Lecture, Peer
	handling techniques, Fourier Transform Infrared		teaching, GD, ICT

	spectroscopy – Applications.		
	Introduction, Theory of Raman scattering	5	Lecture, Peer
	Rotational Raman spectra.		teaching, GD, ICI
	Vibrational Raman spectra, Mutual Exclusion	5	Lecture, Peer
UNITIII	principle, Raman spectrometer, Sample handling		teaching, GD, ICT
	techniques, Raman investigation of phase		
	Uransitions. Hyper Remen effect Stimulated Remen	5	Lactura Door
	scattering Inverse Raman effect Coherent Anti-	5	teaching GD ICT
	Stokes Raman scattering.		teaching, OD, ICT
	Magnetic properties of Nuclei, resonance	5	Lecture, Peer
	condition, NMR Instrumentation, relaxation		teaching, GD, ICT
	processes, Bloch Equation.		
	Chemicalshifts, ESR- Introduction, Basic	5	Lecture, Peer
	principle, ESR spectrometer, Total Hamiltonian,		teaching, GD, ICT
UNITIV	Hyperfine structure, ESR spectrum of hydrogen		
	atom.	~	
	One electron coupled to a nucleus of spin 1,	5	Lecture, Peer
	unpaired electron with two equivalent nuclei of		teaching, GD, IC I
	equivalent nuclei of spin ¹ / ₂		
	The quadrupole nucleus principle	5	Lecture Peer
	Transitionfrequency, Half and Integral spin	5	teaching GD ICT
UNIT V	Instrumentation. Mossbauer effect, recoilless	5	Lecture. Peer
	emission and absorption.		teaching, GD, ICT
	Mossbauer spectrometer, isomer shift, quadruple	5	Lecture, Peer
	interactions, magnetic hyperfine interaction		teaching, GD, ICT
	applications.		

Course	Programme Outcomes (Pos)					Programme Specific Outcomes (PSOs)					Mean	
Outco												scores
mes												of Cos
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3	4	4	3	3	4	4	4	4	3	3	3.54
CO2	3	4	4	3	3	4	4	4	4	3	3	3.54
CO3	3	4	4	3	3	4	4	4	4	3	3	3.54
CO4	3	4	4	3	3	4	4	4	4	3	3	3.54
CO5	3	4	4	3	3	4	4	4	4	3	3	3.54
Mean Overall Score								3.54				

Result: The Score for this Course is **3.54** (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Mean Score of COs =	Total of Value	Mean Overall Score of Cos = <u>Total of Mean Score</u>
Total	No. of POs & PSOs	Total No. of Cos

T

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 - Remembering/Recalling	20%	20%
K2 - Understanding/Comprehension	20%	20%
K3 - Application & Analysis	30%	30%
K4 - Synthesis & Evaluation	30%	30%

Course Designer: Dr. R.Vijayalakshmi, Department of Physics

Programme : M.Sc. Semester : III Sub. Code : P22DSP3A

ELECTIVE PAPER : III Hours : 5 P/W, 75 Hrs P/S Credits : 4

TITLE OF THE PAPER :CRYSTAL GROWTH AND THIN FILMS

Pedagogy	Hours	Lecture	Peer Teaching	GD/ Videos/Tutorial	ICT
	5	2	1	1	1

PREAMBLE: To understand the theories of nucleation, various methods of crystallization, various methods of preparation of thin films and characterization techniques used for materials.

COURSE OUTCOME At the end of the Semester, the students will be able to	Unit	Hrs P/S
CO 1 : know the theories of nucleation and derive equations for various types of nucleus	Ι	15
CO 2: understand various methods of crystallization	II	15
CO 3: explain the principle and working of vapour, melt and gel growth techniques	III	15
CO 4: gain knowledge in various methods used for synthesis of thin films	IV	15
CO 5: Understand the various characterization techniques used for materials	V	15

SYLLABUS

CRYSTAL GROWTH AND THIN FILMS

UNIT I : NUCLEATION

Nucleation - Theories of nucleation – Classical theory of nucleation – Gibbs Thomson equation for vapour-Modified Thomson's equation for melt- Gibbs Thomson equation for solution – Energy of formation of a nucleus–Spherical nucleus – Cylindrical nucleus–Heterogeneous Nucleation – Capshaped nucleus–Disc-shaped nucleus.

UNIT II : SOLUTION GROWTH

Low temperature solution growth –Solution, solubility and super solubility–Expression of supersaturation– Methods of crystallization – Crystallization by slow cooling of solution– Crystallization by solvent evaporation–Temperature gradient method–Crystal growth system – Constant temperature bath – crystallizer- High temperature solution growth-principles of flux growth

UNIT III : MELT, VAPOUR AND GEL GROWTH TECHNIQUES

Growth from the melt: Bridgeman Technique- container selection- Czochralski Technique-Vapour Growth–Physical Vapour Deposition–Chemical Vapour Deposition–Advantages of CVD– Disadvantages of CVD–Gel Growth–Principle–Various Types of Gel- Structure of gel–Growth of Crystals in gels–importance of gel Technique- Experimental Procedure –Single and Double diffusion method–Chemical reduction method–Complex -decomplexion method–Solubility reduction method.

UNIT IV: THIN FILMS

Introduction –Nature of Thin films —Electron beam method – Cathodic sputtering -Reactive sputtering- Radio Frequency Sputtering–Chemical vapour deposition –Pyrolysis- - vapour phase reaction-Chemical Deposition - electro deposition – anodic oxidation- Electroless plating.

UNIT V CHARACTERIZATION TECHNIQUE

Crystallinity, Structural phase, Stress, Strain, Dislocation density, Characterisation using XRD– Fourier transform infrared analysis – Elemental analysis — Scanning Electron Microscopy (SEM) — Transmission Electron Microscope (TEM)- Chemical etching – Vickers micro hardness – Basic principles and operations of AFM and STM - UV–Vis spectrometer—Photoluminescence spectrophotometer- Thickness measurement of thin fiom by profilometer.

TEXT BOOKS

1. Crystal Growth Processes and Methods, P.Shanthana Ragavan and P. Ramasamy, KRU

Publications, 2001

Unit-I - Chapter.2 (Sec. 2.2,2.2.1,2.2.2.1-2.2.2.6, 2.2.3, 2.2.3.1, 2.2.3.2)

Unit- II - Chapter.4 (Sec.4.1,4.1.1-4.1.3,4.1.3.1-4.1.3.3, 4.2, 4.2.1,4.2.2,4.8,4.8.1)

Unit- III – Chapter.3&5 (Sec. 3.2-3.4, Sec.5.1, 5.1.1, 5.1.2, 5.1.2.1, 5.1.2.2, 5.4.1-5.4.7)

2. Thin Film Fundamentals, A. Goswami, New age International Pvt, 2014.

Unit- IV-Ch. 1 (Sec.1,2, 5, 6, 6.3, 6.4, 7,7.1,7.2, 8, 8.1, 8.2,8.3)

Unit-V -C.R.Brundle, C. A.Evans and S.Wilson (Edn)

Encyclopedia of materials characterization, London(1992)

REFERENCE BOOKS:

- 1. A.Holden and P.Singer ,Crystals and Crystal Growing, ValkisFeffer and Simons Pvt.
- 2. J.C. Brice, Crystal Growth Processes, John Wiley and Sons, New York (1986).
- 3. N.F.M.Henry, H.Lipson and W.A.Wooster **,The Interpretation of X ray Diffraction Photographs-**,Macmillan & Co Ltd, 1969.
- 4. L.I.Maissel and R.Glang, **Handbook of Thin Film Technology**, McGraw Hill Book Company ,1970
- 5 K.L.Chopra , Thin Film Phenomena, McGraw Hill Book Company , 1969.

Web Resources

1.https://acadpubl.eu/hub/2018-119-12/articles/2/489.pdf 2.https://www.researchgate.net/publication/229466529_Crystal_Growth 3.https://www.ndsu.edu/pubweb/~qifzhang/Tech_Sputter-01.pdf 4.https://www.alicat.com/thin-film-deposition-techniques/ 5.https://www.aif.ncsu.edu/mct/ 6.https://en.wikipedia.org/wiki/Characterization_(materials_science)
UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
	Theories of nucleation – Classical theory of nucleation–	5	Lecture, Group discussion
UNIT I	Gibbs Thomson equation for vapour, melt solution– Energy of formation of a nucleus–	5	Lecture, ICTand Assignment
	Spherical nucleus – Cylindrical nucleus– Heterogeneous Nucleation – Cap- shaped nucleus–Disc-shaped nucleus.	5	Lecture and Group discussion, seminar
	Low temperature solution growth – Solution, solubility and supersolubility– Expression of supersaturation	5	Lecture and Group discussion, ICT
UNIT II	Crystallization by slow cooling of solution–Crystallization by solvent evaporation–Temperature gradient method	5	Lecture and Group discussion,seminar
	Crystal growth system –Constant temperature bath – crystallizer- High temperature solution growth-principles of flux growth	5	Lecture , Group discussion and Assignment
	Growth from the melt: Bridgeman Technique- container selection- Czochralski Technique-Vapour Growth– Physical Vapour Deposition–Chemical Vapour Deposition–Advantages of CVD–Disadvantages of CVD	6	Lecture , ICTand seminar
UNIT III	Gel Growth–Principle–Various Types of Gel- Structure of gel–Growth of Crystals in gels–importance of gel Technique	4	Lecture, Group discussion and Seminar
	Experimental Procedure –Single and Double diffusion method–Chemical reduction method–Complex - decomplexion method–Solubility reduction method.	5	Lecture , ICT and Group discussion
UNIT IV	Introduction –Nature of Thin films — Electron beam method – Cathodic sputtering -Reactive sputtering- Radio Frequency Sputtering–	7	Lecture , ICT and Seminar
UNIT	Crystallinity, Structural phase, Stress, Strain, Dislocation density, Characterisation using XRD– Fourier transform infrared analysis – Elemental analysis	7	Lecture , ICTand Group discussion
V	Scanning Electron Microscopy (SEM) — Transmission Electron Microscope (TEM)-Chemical etching – Vickers micro hardness – Basic principles and operations of AFM and STM UV–Vis	8	Lecture , ICT and Group discussion

spectrometer—Photoluminescence spectrophotometer- Thickness measurement of thin film by profilometer.	

Course Outcomes (Cos)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				mes	Mean scores of Cos
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	3	4	4	4	4	3	4	3	4	3.7
CO2	4	3	4	3	4	4	3	4	3	4	3.6
CO3	4	4	3	4	3	4	4	3	4	4	3.7
CO4	4	3	4	3	4	4	4	3	4	4	3.7
CO5	4	4	3	4	4	4	3	4	4	4	3.8
Mean Overall Score										3.7	

Result: The Score for this Course is 3.7 (High Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%	
Scale	1	2		3	4	5	
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor		Moderate	High	Very High	
Mean Score of COs =Total of Values Total No. of Pos & PSOsMean Overall Score of COs =Total of Mean scores Total No. of COs							

ASSESSMENT RUBRICS

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 (Remembering/Recalling)	20%	20%
K2 (Understanding/Comprehension)	20%	20%
K3 (Application & Analysis)	30%	30%
K4 (Synthesis & Evaluation)	30%	30%

Course Designer: 1.DR.**G**.KRISHNA BAMA 2. DR. N.NAGARANI

Programme : M.Sc. Semester : III Sub. Code : P22DSP3B

DSEC III Hours : 5 P/W 75Hrs P/S Credits : 4

TITLE OF THE PAPER: PLASMA PHYSICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT						
	5	2	1	1	1						
PREAMBLE:	PREAMBLE: Explore the plasma universe by means of in-situ and ground-based observations,										
understand the	model pl	asma phenor	mena in the unive	rse and explore the physical j	processe	es which					
occur in the spa	ace enviro	onment.									
		COUR	SE OUTCOME		Unit	Hrs P/S					
At the end of th	ne Semes	ter, the Stud	ents will be able t	0							
CO1:define fur	ndamenta	l concepts a	bout plasma		Ι	15					
CO2: explain a	bout the	motion of cl	narged particles		II	15					
CO3: interpret	the plasn	na oscillation	ns and waves		III	15					
CO4: predict a	bout plas	ma diagnost	ics techniques		IV	15					
CO5: explain about the applications of plasma physics V 15											
SYLLABUS											

UNIT I: FUNDAMENTAL CONCEPTS ABOUT PLASMA

Debye shielding – Fundamental concepts - Kinetic pressure in a partially ionized – Mean free path and collision cross section – Mobility of charged particles – Effect of charged particles on the mobility of ions and electrons – Thermal conductivity – Dielectric constant of plasma – Optical properties of plasma.

UNIT II: MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD

Particle in a uniform magnetic field - Particle in the uniform electric and magnetic fields – Particle in the uniform force and uniform magnetic fields – Gravitational force – Curvature drift -Particle in a non uniform magnetic field – Grad-B drift – Curvature and Grad-B drifts - Magnetic mirrors - Particle in a time varying electric field and uniform magnetic field.

UNIT III: PLASMA OSCILLATIONS AND WAVES

Representation of waves – Group velocity of a wave – Linearization of equations – Linearization of equation of motion - Linearization of equation of continuity - Plasma oscillations – Plasma frequency - Electron plasma waves – Ion waves – Hydromagnetic waves – Magnetosonic waves.

UNIT IV: PLASMA DIAGNOSTICS TECHNIQUES

 $\label{eq:single_sing$

UNIT V: POSSIBLE APPLICATIONS OF PLASMA PHYSICS

Magneto hydrodynamic Generator - Basic theory - Principle of Working – Faraday Generator – Generation of microwaves utilizing High density Plasma – Magnetosonic waves.

TEXT BOOK

1. Text book of Plasma Physics Suresh Chandra CBS Publisher & Distributor Pvt. Ltd., New Delhi, 2008.

Unit I-**Ch. 1** (Sec. 1.3,1.4,1.4.1,1.4.2,1.4.3,1.4.4,1.4.5,1.4.6,1.4.7)

Unit II-**Ch. 4** (Sec. 4.1,4.2,4.3,4.3.1,4.4,4.5,4.5.1,4.5.2,4.6,4.8)

Unit III-**Ch. 6** (Sec. 6.1,6.4,6.3,6.3.1,6.4,6.4.1,6.4.2,6.5,6.7,6.16,6.17)

Unit IV-**Ch. 3** (Sec. 3.1,3.1.1,3.1.2,3.1.3,3.2,3.3,3.3,1,3.4,3.4,1,3.4.2,3.6,3.6.1)

Unit V-**Ch. 11**(Sec. 11.2,11.2.1,11.2.2,11.2.3,11.3)

BOOKS FOR REFERENCE:

1. Introduction to Plasma Physics - F.F.Chen, Plenum Press, London

- 2. Principles of Plasma Physics Krall & Trivelpiece
- 3. Introduction to Plasma Theory-D.R. Nicholson

4. Plasma Physics- Plasma State of Matter - S.N.Sen, PragatiPrakashan, Meerut.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I	Debye shielding – Fundamental concepts - Kinetic pressure in a partially ionized – Mean free path and collision cross section	5	Lecture, Peer teaching, GD & ICT
	Mobility of charged particles – Effect of charged particles on the mobility of ions and electrons	5	Lecture, Peer teaching, GD & ICT
	Thermal conductivity - Dielectric constant of plasma – Optical properties of plasma.	5	Lecture, Peer teaching, GD & ICT
UNIT II	Particle in a uniform magnetic field - Particle in the uniform electric and magnetic fields – Particle in the uniform force and uniform magnetic fields	5	Lecture, Peer teaching, GD & ICT
	Gravitational force – Curvature drift - Particle in a non uniform magnetic field – Grad-B drift – Curvature and Grad-B drifts	6	Lecture, Peer teaching, GD & ICT
	Magnetic mirrors -Particle in a time varying electric field and uniform magnetic field	4	Lecture, Peer teaching, GD & ICT
UNIT III	Representation of waves – Group velocity of a wave – Linearization of equations – Linearization of equation of motion	6	Lecture, Peer teaching, GD & ICT
	Linearization of equation of continuity - Plasma oscillations – Plasma frequency - Electron plasma waves	5	Lecture, Peer teaching, GD & ICT
	Ion waves – Hydromagnetic waves – Magnetosonic waves	4	Lecture, Peer teaching, GD & ICT
UNIT IV	Single probe method –Determination of electron Temperature T_e - Determination of electron density n_e – limitations of the single probe method	5	Lecture, Peer teaching, GD & ICT
	Double probe method – Magnetic probe method - Sources of error in	5	Lecture, Peer teaching, GD & ICT

	probe measurements - Microwave method		
	Reflection Method – Transmission Method - spectroscopic method – Electron temperature from the ratio of spectral line intensity	5	Lecture, Peer teaching, GD & ICT
	Magneto hydrodynamic Generator - Basic theory	5	Lecture, Peer teaching, GD & ICT
UNIT V	Principle of Working - Faraday Generator	5	Lecture, Peer teaching, GD & ICT
	Generation of microwaves utilizing High density Plasma - Magnetosonic waves	5	Lecture, Peer teaching, GD & ICT

Course	Programme Outcomes (POs)					Programme Specific Outcomes				Mean Scores	
Outcomes						(PSOs))				of
(COs)											COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	4	3	4	3	3	4	3	3	5	3.5
CO2	5	3	4	3	4	3	3	4	3	4	3.6
CO3	3	3	3	4	3	3	5	4	3	3	3.4
CO4	3	3	4	3	3	3	4	4	3	4	3.4
CO5	4	3	3	4	4	3	3	4	4	3	3.5
Mean Overall score										3.48	

Result: The Score for this Course is 3.48 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	Ds = <u>Total of</u> Total No. of	<u>Value</u> POs& PSOs	Mean Overall Sco	re of COs = $\frac{\text{Tot}}{\text{Tot}}$	<u>al of Mean Score</u> al No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 (Remembering/Recalling)	20%	20%
K2 (Understanding/Comprehension)	20%	20%
K3 (Application & Analysis)	30%	30%
K4 (Synthesis & Evaluation)	30%	30%

Course Designer : Dr.M. Mahalakshmi, Department of Physics

Programme : M.Sc Semester : III Sub. Code : P22NMP1

Part III: NME- I Hours : 2 Hrs/W Credits : 2

TITLE OF THE PAPER: BATTERIES AND THEIR APPLICATIONS

Pedagogy	Hours	Lecture	Peer	GD/VIDOES/TUTORIAL	Ι	СТ
per unit			Discussion/Teaching			
	2	1	-	-		1
PREAMBLI	E: To und	lerstand the	e Working Principles and	d types of battery cells		
COURSE O	UTCOM	E			Unit	Hrs P/S
At the end of						
CO1 : To de	escribe th	e Working	Principles of batteries		Ι	6
CO2 : To Im	part the	knowledg	e RECHARGEABLE B	ATTERIES	II	6
CO3 : To An	alyse the	Material us	sed		III	6
C04 : To und	IV	6				
CO5 : To un	derstand	the Theory	of Batteries Installatio	n.	V	6

SYLLABUS

UNIT - I BASICS OF BATTERIES

Battery- Working Principles – Types – Primary and Secondry batteries

UNIT - II TYPES OF BATTERY CELLS

Cylindrical cell-Button cell-PRISMATIC CELL –Pouch cell

UNIT- III RECHARGEABLE BATTERIES

Charecteristics of Nickal Cadmium Battery -Nickal Metal Hydride Battery -Lead Acid Battery-

Lithium Ion Battery-Lithium Ion Polymer Battery

UNIT-IV LEAD ACID BATTERY AND NICKAL CADMIUM BATTERY

Lead Acid Batteyr- Working -Material used –Advantages and Disadvantages –Nickal Cadmiium Battery Working -Material used –Advantages and Disadvantages

UNIT V-BATTERIES AND INVERTERS

Batteries- Batteries Installation – Maintanance and disposal- Inverter Installation Grid Connected Inverters –Battery Charging

Text book

Material Prepared by the Department

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
Unit I	Battery- Working Principles – Types – Primary and Secondry batteries	6 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT. Lecture & Tutorial
Unit II	Cylindrical cell-Button cell-PRISMATIC CELL –Pouch cell	6 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT. Lecture & Tutorial
Unit III	Charecteristics of Nickal Cadmium Battery -Nickal Metal Hydride Battery -Lead Acid Battery-	3 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT.
	Lithium Ion Battery- Lithium Ion Polymer Battery	3 hrs	Lecture & Tutorial
Unit IV	Lead Acid Battery Working -Material used –Advantages and Disadvantages –Nickal Cadmiium Battery Working -Material used –Advantages and Disadvantages	6 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT.
Unit V	Batteries Installation – Maintanance and disposal- Inverter Installation Grid Connected Inverters – Battery Charging	6 hrs	Motivation by asking questions – peer group discussion and by demonstrating through ICT.

Course Outcome s	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				5	Mean scores of Cos
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	4	3	3	3	3	4	4	3	3	3.3
CO2	3	3	4	4	3	3	3	3	3	4	3.3
CO3	3	4	3	3	3	4	3	4	3	3	3.3
CO4	3	3	3	4	3	4	3	4	3	3	3.3
CO5	4	3	4	4	4	3	4	4	4	3	4.0
				Mean	Overall	Score					3.5

Result: The Score for this Course is **3.5** (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5

Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of Co Total N	Os = <u>Total c</u> No. of POs & PS	<u>of Value</u> Os	Mean Overall Score of C	$COs = \frac{Total}{Total}$	of Mean Score No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1:REMEMBERING/RECALLING.	20%	20%
K2:UNDERSTANDING /	20%	20%
COMPREHENSION.		
K3:APPLICATION AND ANALYSIS.	30%	30%
K4:SYNTHESIS AND EVALUATION.	30%	30%

Programme : M.Sc Semester : III Sub. Code : P22CP12P Part III: Core - XII Hours : 6Hrs Credits: 3

TITLE OF THE PAPER: PHYSICS PRACTICAL - III

PREAMBLE: The Objective of this course is to make the students gain practical knowledge in non-electronics experiments

COURSE OUTCOME

At the end of the Semester, the Students will be able to

- CO1: Apply the various procedures and techniques for the experiments
- CO2: Discuss the basic principle of the experiments
- CO3: learn the usage of electrical and optical systems for various measurements
- CO4: Apply the analytical techniques and graphical analysis to the experimental data.
- CO:5 Apply the mathematical concepts to obtain quantitative results

ANY SEVEN EXPERIMENTS

LIST OF EXPERIMENTS

- 1. Hall Effect-Determination of hall voltage, carrier density and carrier mobility of the given Ge crystal.
- 2. Ultrasonic Interferometer-Determination of ultrasonic velocity and compressibility of distilled water
- 3. Determination of Young's modulus and Poisson's ratio of the given glass plate by employing elliptical fringes.
- 4. Determination of dielectric constant for solid
- 5. Study of specific rotation Polarimeter
- 6. Determination of particle size using laser
- 7. Determination of wavelength of a laser source using diffraction grating.
- 8. Determination of curie temperature, energy loss, and to trace the hysteresis (B-H) loop of a ferromagnetic specimen.
- 9. Determination of width of the single slit of a laser source using diffraction grating.
- 10. Determination of width of the double slit of a laser source using diffraction grating.
- 11. Determination of the numerical aperture of the given fiber
- 12. Measurement of bending loss of the given fiber
- 13. Relative measurement of splice loss of the given fiber

Programme : M.Sc.

CC : XIII

Semester : IV Sub. Code : P22CP13

Hours : 6 Hrs P/W 90 Hrs P/S Credits : 4

TITLE OF THE PAPER: CONDENSED MATTER PHYSICS - II

Pedagogy	Hours	Lecture	Peer Teaching	GD/Videos/Tutorial	ICT		
	6	3	1	1	1		
PREAMBLE: Develop analytical thinking to understand the phenomenon that decide various							
properties of solids	thereby e	quip studen	ts to pursue higher le	arning confidently.			
		COUDSE	OUTCOME		Unit	Uro D/S	
		COURSE			Unit	ПIS F/S	
At the end of the Se	mester, tl	ne Students	will be able to				
CO1: interpret the t	heory of	dielectrics			Ι	18	
CO2: explain about	the theor	y of ferroel	ectrics and piezoelec	etrics	II	18	
CO3: define the ma	agnetic p	roperties of	the materials		III	18	
CO4: predict about Superconductivity and its types						18	
CO5: explain about	CO5: explain about the Plasmons, Polaritons and Excitons V 18						
			SYLLABUS				

UNIT I: THEORY OF DIELECTRICS

Introduction - Dipole moment – Polarization – Electric field of a dipole - Local electric field at an atom - Depolarization field – Lorentz field - Fields of dipoles inside the cavity - Dielectric constants and its measurements – Electronic Polarizability – Ionic polarizability – Classical theory of electronic polarizability – Dipolar polarizability.

UNIT II: THEORY OF FERROELECTRICS AND PIEZO ELECTRICS

Ferroelectric Crystals – Classifications of Ferroelectric crystals – Displacive transitions – Soft Optical Phonons - Landau Theory of the phase transition – Second order Transition – First Order Transition – Antiferro electricity –Ferroelectric domains -Piezo electricity.

UNIT III: MAGNETIC PROPERTIES OF MATERIALS

Langevin's diamagnetism Equation – Quantum theory of diamagnetism - paramagnetism – Quantum theory of paramagnetism –Ferromagnetic order – Curie point and the Exchange integral – Curie-Weiss law - Temperature dependence of Saturation Magnetization – Ferri magnetic order – Anti ferromagnetic order - Ferromagnetic domains – Anisotropy Energy.

UNIT IV: SUPERCONDUCTIVITY

Occurence of super conductivity - Destruction of super conductivity by magnetic fields -Meissner Effect – Type I and Type II Super conductors - Heat Capacity - Energy gap -Microwave and infrared properties - Isotope effect - Thermodynamics of the superconducting transition - London equation - Coherence Length - BCS theory of superconductivity, BCS ground state - Flux quantisation in a super conduction ring - Duration of persistence currents - Single particle tunnelling - DC Josephson effect - AC Josephson effect - Macroscopic quantum interference – High temperature super conductors – Applications.

UNIT V: PLASMONS, POLARITONS AND POLARONS

Plasma optics, Disperson relation for EM waves—Transverse & Longitudinal mode of plasma oscillations-Plasmons – Polaritons – Electron-Electron interaction – Electron-Phonon Interaction - Polarons – Optical reflectance – Excitons - Frenkel excitons - Weakly bound excitons.

BOOKS FOR STUDY:

- 1. Solid State Physics Structure and Properties of Materials, M. A. Wahab, Narosa, New Delhi, 1999. Unit I Ch.14 (Sec. 14.1-14.9)
- 2. Introduction to Solid State Physics, Charles Kittel, VII Edition Wiley India Pvt. Ltd., 2011. Unit II - Ch. 16 (pg. 467-481)
 Unit III - Ch. 11 &12 (pg. 299-304,323,326,336,340-342,346-348)
 Unit IV - Ch. 10 (pg. 260-293)
 Unit V - Ch.10 & 11 (pg. 272-279, 287-291, 294-299, 307,308, 312-319)
 BOOK FOR REFERENCE:
- 1. Electrical Engineering Materials, A. J. Dekker, Prentice Hall of India, 1975.
- 2. Problems and Solutions in Solid State Physics, S.O. Pillai, New Age international
- Publishers, New Delhi, 1994.
- 3. Elementary Solid State Physics Principles and Applications, M. Ali Omar, Pearson, 1999.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
	Introduction - Dipole moment – Polarization – Electric field of a dipole - Local electric field at an atom	6	Lecture, Tutorial, Peer Teaching & ICT
UNIT I	Depolarization field – Lorentz field - Fields of dipoles inside the cavity - Dielectric constants and its measurements	5	Lecture, Tutorial, Peer Teaching & ICT
	Electronic Polarizability – Ionic polarizability – Classical theory of electronic polarizability – Dipolar polarizability.	7	Lecture, Tutorial, Peer Teaching & ICT
	Ferroelectric Crystals – Classifications of Ferroelectric crystals – Displacive transitions – Soft Optical Phonons	7	Lecture, Tutorial, Peer Teaching & ICT
UNIT II	Landau Theory of the phase transition – Second order Transition – First Order Transition	6	Lecture, Tutorial, Peer Teaching & ICT
	Antiferroelectricity - Ferroelectric domains - Piezoelectricity	5	Lecture, Tutorial, Peer Teaching & ICT
	Langevin's diamagnetism Equation – Quantum theory of diamagnetism - paramagnetism – Quantum theory of paramagnetism	6	Lecture, Tutorial, Peer Teaching & ICT
UNIT III	Ferromagnetic order – Curie point and the Exchange integral – Curie-Weiss law - Temperature dependence of Saturation Magnetization	6	Lecture, Tutorial, Peer Teaching & ICT
	Ferrimagnetic order – Antiferromagnetic order - Ferromagnetic domains – Anisotropy Energy	6	Lecture, Tutorial, Peer Teaching & ICT
	Occurence of super conductivity - Destruction of super conductivity by magnetic fields - Meissner Effect – Type I and Type II Super conductors - Heat Capacity - Energy gap - Microwave and infrared properties	6	Lecture, Tutorial, Peer Teaching & ICT

	Isotope effect - Thermodynamics of the superconducting	6	Lecture, Tutorial, Peer Teaching & ICT
UNIT IV	transition - London equation - Coherence Length -		
	BCS theory of superconductivity, BCS ground		
	state - Flux quantisation in a super conduction ring		
	Duration of persistence currents - Single particle	6	Lecture, Tutorial, Peer
	tunnelling - DC Josephson effect - AC Josephson		Teaching & ICT
	effect - Macroscopic quantum interference - High		
	temperature super conductors – Applications		
	Plasma optics, Disperson relation for EM waves—	6	Lecture, Tutorial, Peer
UNIT V	Transverse&Longitudinal mode of plasma		Teaching & ICT
	oscillations		
	Plasmons – Polaritons – Electron-Electron	6	Lecture, Tutorial, Peer
	interaction – Electron- Phonon Interaction		Teaching & ICT
	Polarons – Optical reflectance – Excitons -	6	Lecture, Tutorial, Peer
	Frenkel excitons- weakly bound excitons		Teaching & ICT

Course	Programme Outcomes (POs)					Programme Specific Outcomes					Mean Scores
Outcomes						(PSOs))				of COs
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	4	3	4	3	3	4	3	3	5	3.5
CO2	5	3	4	3	5	4	3	4	3	3	3.7
CO3	3	3	4	3	3	3	4	4	3	4	3.4
CO4	3	3	4	3	3	3	5	4	3	4	3.5
CO5	4	3	3	4	4	3	3	4	4	3	3.5
Mean Overall Score 3.52								3.52			
Result: The	Score f	or this	Course	e is 3.5 2	2 (Hi	gh Rela	tionship)			
Mapping		1-20	%	21	-40%	2	41-60%		61-80%		81-100%
Scale		1			2		3		4		5
Relation		0.0-1	.0	1.	1-2.0		2.1-3.0		3.1-4.0		4.1-5.0
Quality		Very P	oor	F	Poor	N	Moderate High				Very High
Mean Score of	COs =	= <u>T</u>	<u>'otal of</u>	Value		Mean	Overall	Score of	COs =	Total of	Mean Score
	Total No. of POs & PSOs Total No. of COs							No. of COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 - Remembering/Recalling	20%	20%
K2 - Understanding/Comprehension	20%	20%
K3 - Application & Analysis	30%	30%
K4 - Synthesis & Evaluation	30%	30%

Course Designer: Dr.M. Mahalakshmi, Department of Physics

Programme : M.Sc. Semester : IV Sub. Code : P22CP14

Core : XIV Hours : 6 P/W 90 Hrs P/S Credits : 4

TITLE OF THE PAPER: NUCLEAR AND PARTICLE PHYSICS

	II.	T = =4	De en Treschiere			ICT		
Dadaaaay	Hours	Lecture	Peer Teaching	GD/ Videos/Tuto	orial	ICI		
Pedagogy	6	3	1	1		1		
PREAMBLE: The course of nuclear physics imparts knowledge about nuclear forces and nuclear reactions with the help of nuclear models and explains the classification of elementary particles and their interactions.								
COURSE OUTCOMEUnitAt the end of the semester, the students will be able toHrs								
CO1: explain ger forces	neral prop	perties of nucle	us, central and non ce	ntral nuclear	Ι	18		
CO2: describe th	e theories	s and models of	f nucleus.		II	18		
CO3: list out the types of nuclear reactions and transmutations.						18		
CO4: discuss radioactive decays IV						18		
CO5: explain the	concept	of elementary	particles.		V	18		

SYLLABUS

UNIT I : NUCLEAR FORCES

Neutron Proton Scattering at low energies – Partial wave analysis – scattering length - Spin dependence of Nuclear Forces - coherent Scattering of slow neutrons – Effective range theory of n-p scattering at low energies - Saturation of Nuclear Forces – Exchange forces – Non Central Forces - Experimental evidence – General form – properties- Ground state of deuteron - Magnetic moment - Quadrupole moment –Meson theory of nuclear forces.

UNIT II : NUCLEAR MODELS

Binding energy & mass defect – Weizacker's formula – mass parabola - Liquid drop model - Shell model- Spin –Orbit coupling-Spins of nuclei- Magnetic moments – Schmidt lines- Electric quadrupole moments - Collective model of Bohr and Mottelson: Nuclear vibration – Nuclear rotation –Nelson model.

UNIT III : NUCLEAR REACTIONS

Types of Nuclear Reactions - Nuclear reaction kinematics – Partial wave analysis of Nuclear reaction cross-section - Compound nucleus – Energy levels of Nuclei - Level width and De-excitation Formation –Disintegration of Compound nucleus - Resonance Scattering and Reaction cross-section (Breit-Wigner dispersion formula)- Resonance Cross sections – elastic resonance scattering - Low energy Neutron reactions - Direct Reactions - Stripping reaction.

UNIT IV : RADIOACTIVE DECAYS

Alpha decay - Beta decay –Energy release in beta decay – Fermi theory of beta decay – Shape of the beta spectrum – decay rate Fermi-Curie plot – Fermi & G.T Selection rules - Comparatives half - lives and forbidden decays- Gama decay - Multipole radiation – Angular momentum and parity selection rules – Internal conversion – Nuclear isomerism.

UNIT V: ELEMENTARY PARTICLE PHYSICS

Classification of elementary particles- Types of interaction between elementary particles – Elementary concepts of weak interactions – conservation laws–Strangeness and associate production- CPT theorem - Elementary Particles Symmetries – Iso spin multiples - SU(2)- SU(3) multiplets- Gell-Mann - Okubo mass formula - octet and de cuplet hadrons.

TEXT BOOK:

Nuclear Physics, D.C.Tayal, 5th edition, Himalaya Publishing House, 2012.

Unit I - Ch.8 (Sec.8.3, 8.8, 8.12).

Unit II - Ch. 1 & 9 (Sec. 1.6, 9.3, 9.4 (4 & 5), 9.5, 9.6).

Unit III - Ch.10 (Sec. 10.1, 10.3, 10.9, 10.15, 10.17, 10.20, 10.24).

Unit IV - Ch.5,6 &7 (Sec.5.5, 6.1, 6.2, 6.5, 6.6, 7.3, 7.4, 7.6).

Unit V - Ch.18 (Sec.18.2,18.3, 18.4, 18.18).

REFERENCE BOOKS

- 1. Nuclear Physics, Irving Kaplan, , 2nd edition, Narosa Publishing company, 1987.
- Nuclear Physics-An Introduction S.B.Patel, 2nd edition, Narosa International Publishers, 2011.
- Introduction to Nuclear and Particle Physics V.K.Mittal, R.C.Verma, S.C.Gupta , 2nd edition, PHI LearingPvt Ltd, 2011.
- 4. Nuclear Physics, V.Devanathan, 2nd edition, Narosa Publishing House, 2012.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I	Neutron Proton Scattering at low energies, Partial wave analysis, scattering length, Spin dependence of Nuclear Forces, coherent Scattering of slow neutrons.	6	Lecture, Peer teaching, GD, ICT
	Effective range theory of n-p scattering at low energies, Saturation of Nuclear Forces, Exchange forces, Non Central Forces, Experimental evidence, General form.	6	Lecture, Peer teaching, GD, ICT
	Properties, Ground state of deuteron, Magnetic moment, Quadrupole moment, Meson theory of nuclear forces.	6	Lecture, Peer teaching, GD, ICT
	Binding energy & mass defect, Weizacker's	6	Lecture, Peer

	formula, mass parabola, Liquid drop model		teaching, GD, ICT
-	Shell model, Spin, Orbit coupling, Spins of	6	Lecture, Peer
UNIT II	nuclei, Magnetic moments, Schmidt lines		teaching, GD, ICT
	Electric quadrupole moments - Collective model of	6	Lecture, Peer
	Bohr and Mottelson: Nuclear vibration – Nuclear		teaching, GD, ICT
	rotation –Nelson model.		_
	Types of Nuclear Reactions, Nuclear reaction	6	Lecture, Peer
	kinematics, Partial wave analysis of Nuclear		teaching, GD, ICT
	reaction cross-section.		
	Energy levels of Nuclei, Level width and De-	6	Lecture, Peer
	excitation Formation, Disintegration of Compound		teaching, GD, ICT
UNIT III	nucleus. Resonance Scattering and Reaction		
	cross-section (Breit-Wigner dispersion formula).		
	Compound nucleus Resonance Cross section.	6	Lecture. Peer
	elastic resonance scattering. Low energy	_	teaching, GD, ICT
	Neutron reactions. Direct Reactions. Stripping		
	reaction.		
	Alpha decay, Beta decay, Energy release in beta	6	Lecture. Peer
	decay. Fermi theory of beta decay. Shape of the beta		teaching, GD, ICT
	spectrum.		
	decay rate Fermi-Curie plot. Fermi & G.T	6	Lecture. Peer
UNIT IV	Selection rules. Comparatives half - lives and		teaching, GD, ICT
	forbidden decays. Gama decay		, oz , ro r
	Multipole radiation. Angular momentum and parity	6	Lecture Peer
	selection rules – Internal conversion Nuclear	0	teaching GD ICT
	isomerism		touching, OD, ICI
	Classification of elementary particles- Types of	6	Lecture Peer
	interaction between elementary particles	0	teaching GD ICT
	Elementary concepts of weak interactions		teaching, OD, ICI
	conservation laws Strangeness and associate	6	Lecture Peer
UNIT V	production CPT theorem Flementary Particles	0	teaching GD ICT
	Symmetries		teaching, OD, ICI
	Iso spin multiples SU(2) SU(3) multiplets	6	Lecture Peer
	Gell-Mann Okubo mass formula octat and do	0	teaching CD ICT
	our our la badrana		icacining, OD, ICI
	cupiet naurons.		

Course Outcomes (Cos)	Programme Outcomes (POs)			Programme Specific Outcomes (PSOs)				Mean scores of Cos			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	4	2	3	3	4	3	3	2	4	3.2
CO2	4	3	2	2	4	4	3	3	2	4	3.1
CO3	4	4	3	3	3	4	3	3	3	3	3.3
CO4	4	3	2	3	3	4	3	2	3	3	3.0
CO5	4	4	3	3	4	4	3	3	2	4	3.4
Mean Overall Score							3.16				

Result: The Score for this Course is 3.16 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of COs = <u>Total of Value</u> Total No. of Pos & PSOs			Mean Overall Sco	re of COs = $\frac{\text{Tota}}{\text{To}}$	al of Mean Score tal No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
K1 (Remembering/Recalling)	20%	20%
K2 (Understanding/Comprehension)	20%	20%
K3 (Application & Analysis)	30%	30%
K4 (Synthesis & Evaluation)	30%	30%

Course Designer: Dr.R.Vijayalakshmi, Department of Physics

Programme :M.Sc PHYSICS Semester : IV Sub code : P22DSP4A

PART III : ELECTIVE - IV Hours : 5Hrs P/W, 75HrsP/Sem. Credits : 4

TITLE OF THE PAPER : LASER AND NONLINEAR OPTICS

Pedagogy	Hours	Lecture	Peer teaching	TUTORI	ICT
				AL	
	5	2	1	1	1
PREAMBLE	:				
The aim of the	nis course is to	give a reasonat	bly comprehensive i	ntroduction t	o the fundamental
concepts, math	hematical forma	lism and working	g principles of lasers	s, nonlinearm	aterials, nonlinear
optics and fib	ore optics. Effor	rt has been take	n to make this cou	rse more upt	to date with latest
developments	in laser and non	linear optics.			
COURSE OU	TCOME			UNIT	Hrs P/S
At the end of t	he Semester, the	e students will be	able to		
CO1- LASER	S			1	15
Acquire know	ledge about var	ious types of lase	rs, understand the		
basic principle	s and working c	of lasers, predict	the type of laser		
that can be use	ed in various app	olications.	• 1		
CO2- BASIC	S OF NONLIN	EAR OPTICS		2	15
Know about r	onlinear optics	, understand harm	nonic generation,		
phase matchin	g , optical mixir	ng, differentiate	linear and		
nonlinear optio	cs, determine th	e length at which	self focusing		
occurs.					
CO3-MULTI	PHOTON PRO	OCESS		3	15
Know about r	nulti quantum pl	hotoelectric effec	t, understand the		
production of	two photons ,thr	ee photons, parar	netric generation of		
light, apply fre	equency mixing	in frequency up c	onversion, analyse		
Raman scatter	ing.				
CO4- NON I	INEAR OPTI	CAL MATERIA	LS	4	15
Know basic re	quirements of ne				
nonlinear mate	erials, use of var				
CO5-FIBER	OPTICS			5	15
Know differen	t types of fibres	, understand wave	e propagation and		
fibre modes, d	etermine numer	ical aperture, fibr	e losses,		
attenuation, de	etermine role of	band width , diffe	erentiate fibre		
modes and dis	persion				

SYLLABUS

UNIT I: LASERS

Gas lasers : He-Ne laser – Solid state lasers : Ruby laser , Nd : YAG laser – Organic dye laser – Semiconductor lasers : p-n-junction laser and GaAs laser.

UNIT II: BASICS OF NONLINEAR OPTICS

Wave propagation in an anisotropic crystal : Polarization response of materials to light – Harmonic generation – Second harmonic generation – Sum and difference frequency generation – Phase matching – Third harmonic generation – Self-focusing of light

UNIT III: MULTIPHOTON PROCESSES

Multi quantum photoelectric effect - Two photon process – experiment ($CaF_2:Eu^{++}$ doped crystals, Cesium vapour) – Three photon process – Parametric generation of light –parametric light oscillator – Amplifier(frequency up conversion)

UNIT IV: NONLINEAR OPTICAL MATERIALS

Basic requirements – Inorganics – Borates – Organics – Urea, Nitroaniline –Semiorganics – Thoreau complex .

UNIT V: FIBER OPTICS

Step – Graded index fibres – Wave propagation - Fibre modes – Single and multimode fibres – Numerical aperture - Fibre losses - Scattering, absorption, bending – Attenuation coefficient - Dispersion – Fibre band width

BOOKS FOR STUDY

1. Anuradha De, Optical fibre and Laser, 2nd Edition.(New age international publishers,2010)

Unit - I : page no. (77-83)

Unit - V : page no. (23-28, 32-34, 43-45, 48-51, 55)

2. B.B. Laud, Lasers and Nonlinear Optics, 3rd Edition(New Age, New Delhi, 2011).

Unit – II : page no. (191-202)

Unit – III : page no. (203-205,209-211, 214-217)

- 3. R.W. Boyd, Nonlinear Optics, 2nd Edition. (Academic Press, New York, 2003).
- 4. G.P. Agarwal, Fibre-Optics Communication Systems, 3rd Edition. (John Wiley, Singapore, 2003).

BOOKS FOR REFERENCE:

1. W.T. Silvast, Laser Fundamentals (Cambridge University Press, Cambridge, 2003).

2. D.L. Mills, Nonlinear Optics – Basic Concepts (Springer, Berlin, 1998).

UNITS	ΤΟΡΙϹ	LECTURE HOURS	MODE OF TEACHING
	Gas laser – He-Ne laser	3	L,P,T
UNIT – I	Solid state laser – Ruby laser	3	L,I,T
	Nd: YAG laser	2	L,T
	Organic dye laser	2	L,I
	Semiconductor laser –p-n junction laser	3	L,P,I
	GaAs laser	2	L,P
	Wave propagation in an anisotropic crystal – polarization response of materials to light	2	I,P
	Harmonic generation	2	L,T
	Second harmonic generation	2	L,P
UNIT-II	Sum and difference frequency generation	2	L,I
	Phase matching	2	L,T
	Third harmonic generation	2	L,P
	Self focusing of light	3	L,I,T
	Multi quantum photoelectric effect	2	L,I
	Two photon process	2	L,T
UNIT-III	Experiment – CaF:Eu++ doped crystal	2	L,I
	Experiment – Cesium vapour	2	L,I
	Three photon process	2	P,T
	Parametric generation of light	2	L,T
	Parametric light oscillator	2	L,I
	Amplifier (frequency up conversion)	1	P,T
	Basic requirements	2	L,P
	Inorganics	3	L,I,T
	Borates	2	L,T

	Organics – urea, nitroaniline	3	L,T,P
UNITIV	Semiorganics	2	L,I
	Thoreau complex	3	L,I,P
	Step index fibre, graded index fibre	2	L,T
	Wave propagation in single mode, multimode fibre	3	L,P,T
	Numerical aperture	2	L,T
UNIT-V	Fibre losses – scattering, absorption, bending	2	L,I
	Attenuation coefficient	2	P,I
	Dispersion	2	L,I
	Fibre band width	2	L,P

Course outcome	Р	rogran	nme o	utcom	es	Programme specific outcomes				Mean scores	
S	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO5	
	1	2	3	4	5	1	2	3	4		
CO1	5	5	4	4	4	5	4	4	4	3	4.2
CO2	5	4	4	3	4	5	4	5	3	3	4.0
CO3	5	5	4	4	4	5	5	3	3	3	4.1
CO4	5	5	3	3	3	5	4	4	3	3	3.8
CO5	5	5	4	3	3	5	5	4	4	3	4.1
				Mea	n over	all score	;				4.0
											4

Result : The Score for this course is 4.04 - High

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer :Dr.J.S.P.CHITRA, Department of PHYSICS

PART III : ELECTIVE - IV Hours : 5Hrs P/W,

Credits : 4

TITLE OF THE PAPER : INTRODUCTION TO BOSE-EINSTEIN CONDENSATION (BEC), SUPERFLUIDITY, SUPERCONDUCTIVITY

Pedagogy	Hours	Lecture	Peer teaching	TUTORIA	ICT
	5	2	1	L1	1
	5	2	1	1	1
PREAMBLE	:				
To educate stu pursue higher	idents on the inte learning in the a	eresting macrosco reas of BEC and	opic quantum pheno superfluidity.	omena and mot	ivate them to
COURSE OL	TCOME			UNIT	Hrs P/S
At the end of t	he Semester, the	students will be	able to		
CO1 Acquire know transition temp normal phase	vledge about den perature, differe	1	15		
CO2				2	15
Know about c	coherent states,	understand bosor	nic quantum fields		
, analyse gros	s-Pitaevski equa	tion	-		
CO3				3	15
Know about e	elementary excitation	ations, understan	d quasi particle		
spectrum, app	ly Hartree-Fock	theory.			
CO4				4	15
Know basic re	equirements, inte	erpret classical ar	nd quantum fields		
nonlinear mate	erials, determine	thermal de Brog	lie wavelength		
CO5				5	15
Know basic p	operties of supe	rconductors, und	erstand mean		
field Hamilton	ian, discuss BC	S ground state an	d excited state,		
interpret BCs	theory at non-ze	ro temperature			

SYLLABUS

UNIT-I: THE IDEAL BOSE GAS

The Bose distribution function – density of states - transition temperature and condensate fraction – density profile and velocity distribution - thermodynamic properties of ideal Bose gas – condensed phase and normal phase - Specific heat close to Tc.

UNIT-II: THE MEAN FIELD THEORY OF WEAKLY INTERACTING BOSE GAS

Coherent states - Bosonic quantum fields – off diagonal long ranged order – weakly interacting Bose gas in the zero temperature limit: the Gross-Pitaevskii equation - BEC in ultra-cold atomic gases: an experimental overview and current status.

UNIT-III: MICROSCOPIC THEORY OF WEAKLY INTERACTING BOSE GAS

The Bogoliubov transformation – elementary excitations and quasiparticle spectrum – quantum depletion of the condensate number – Hatree-Fock theory

UNIT-IV : SUPERFLUID HELIUM II

Introduction - classical and quantum fluids – thermal de Broglie wavelength – Superfluid properties of Helium II – superflow property and fountain effect. Flow quantization and vortices.

UNIT-V: MICROSCOPIC THEORY OF SUPERCONDUCTIVITY

Introduction – basic properties of superconductors – the mean-field Hamiltonian - the BCS ground state – BCS excited states in the zero temperature limit – BCS theory at non-zero temperature.

BOOKS FOR STUDY:

1. Bose-Einstein Condensation in Dilute Gases by C. J. Pethick and H. Smith 2nd edition, Cambridge University Press, 2002.

2. Theory of Superconductivity by G. Rickayzen, Wiley-Interscience publisher, 1965.

BOOKS FOR REFERENCE:

Introduction to Statistical Physics by Kerson Huang 2nd edition, CRC press, 2001.
 Lev P. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Clarendon Press, Oxford, 2003.

3. Theory of Superconductivity, 1st edition by J. R. Schrieffer, Perseus B

UNITS	ΤΟΡΙϹ	LECTURE HOURS	MODE OF TEACHING
	Bose distribution function	2	L,P
UNIT – I	Density of states	3	L,I,P
	Transition temperature and condensation fraction	2	L,I
	Density profile and velocity distribution	2	L,T
	Thermodynamic properties of ideal Bose gas	3	L,T,I
	Condensed phase and normal phase, specific heat close to Tc	3	L,P, T
	Coherent states, Bosonic quantum fields	2	I,P
	Off diagonal long ranged order	2	L,T
	Weakly interacting Bose gas in the zero temperature limit	2	L,P
UNIT-II	Gross-Pitaevski equation	2	L,I
	BEC in ultra cold atomic gases	2	L,T
	Experimental overview	2	L,P
	Current status	3	L,I,T
	Bogoliubov transformation	3	L,I,T
	Elementary excitations	3	L,T,I
UNIT-III	Quasi particle spectrum	3	L,I,P
	Quantum depletion of the condensate number	3	2L,I
	Hartree-Fock theory	2	P,T,L
	Introduction	2	L,P
	Classical and quantum fields	3	L,I,T
	Thermal de Broglie wavelength	2	L,T
UNIT IV	Super fluid properties of Helium II	3	L,T,P
	Super flow property and fountain effect	2	L,I

	Flow quantization and vortices	3	L,I,P
	Introduction	2	L,T
	Basic properties of superconductors	3	L,P,T
	Mean field Hamiltonian	2	L,T
UNIT-V	BCS ground states	2	L,I
	BCS excited states in the zero temperature limit	3	L,P,I
	BCS theory at non-zero temperature	3	L,I,P

Course outcome	e Programme outcomes Programme specific outco				mes	Mean scores					
S	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO5	
CO1	5	5	4	3	4	5	4	4	3	3	4.0
CO2	5	4	4	3	4	5	4	5	3	3	4.0
CO3	5	5	4	4	4	5	5	3	3	3	4.1
CO4	5	5	4	3	3	5	4	4	3	3	3.9
CO5	5	5	4	3	3	5	5	4	3	3	4.0
Mean overall score						4.0					

Result : The Score for this course is 4.0 - High

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	50%	50%
UNDERSTANDING	30%	30%
APPLY	20%	20%

Course Designer : Dr.J.S.P.CHITRA, Department of PHYSICS

PROJECT

CORE (XVI)

Code: P22CPPW

Credit : 5 8 Hrs/Week

Each Student has to do a project during fourth semester under the guidance of a faculty and has to submit progress report every fortnight. The project work has to be submitted by the students by the end of March in a standard format. The Project will be evaluated jointly by an external examiner and the guide for 100 marks. Programme : M.Sc Semester : IV Sub. Code : P22CP15P Part III: Core paper Hours : 5P/W 75Hrs P/S Credits : 4

TITLE OF THE PAPER: PHYSICS PRACTICAL PAPER - IV

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDOES/TUTORIAL	ICT
	6	4	-	2	-
PREAMBLE: The purpose of the <i>course</i> is to make the students to construct electronic circuits using ICs and study their behavior and applications.					
COURSE OUTCOME At the end of the Semester, the Students will be able to					
CO1: construct electronic circuits using ICs					
CO2: simplify arithmetic Expression using K maps					
CO3: construct parity generator and checker using ICs					
CO4: understand the theoretical concepts by doing experiments					
CO5: understand the applications of 555 Timer & IC 741					

S.NO	EXPERIMENT
1.	Magnitude comparator
2.	Multiplexer and Demultiplexer
3.	Odd &Evenparity generator and checker (IC 7486,7404)
4.	Gray to BCD and BCD to Gray code
5.	Boolean Expression using K map
6.	Full adder and Subtractor using ICs
7.	Even parity generator and checker (IC 7486)
8.	Analog to Digital Converter
9.	Digital to Analog Converter
10	Encoder and Decoder
12.	Astable Multivibrator using IC 555
13.	Schmit Trigger using IC 555
14.	Mod-n Counter using IC 7490
15.	Shift Register
16.	Low Pass and High Pass Filter using IC 741