SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN (AUTONOMOUS) MADURAI-02

DEPARTMENT OF CHEMISTRY

CBCS SYLLABUS FOR B.Sc., CHEMISTRY

FROM

2022 ONWARDS

SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN (A) DEPARTMENT OF CHEMISTRY (Academic year 2022 onwards)

ABOUT THE DEPARTMENT OF CHEMISTRY

The department of chemistry was established in the year 1965 for the pre-university course. Bachelor degree of Chemistry was started in the year 1968 with a few staff members. The department has been upgraded to post graduate department in 2017.

FACULTY

The Department comprises of a goal-oriented group of highly qualified, experienced and dynamic faculty members. The Department of Chemistry has 16 faculty members, of which 14 are Ph.D., holders. At present, 2 of our staff members are pursuing their Ph.D. degree. Their areas of expertise and research include organic, inorganic, physical, electrochemistry, phytochemistry, nanotechnology and supramolecular chemistry.

ACTIVITIES AND ACHIEVEMENTS

Most of the staff members are actively involved in research and various important decision-making committees at the College level and act as expertise in Boards of studies at college as well as University level. The staff members have been serving as NSS & NCC coordinators, Science Forums coordinator, Autonomy-in-charge, remedial/ special coaching coordinators, Sports committee member, Thaatha-paattikuzhu coordinator, Admission committee member, admission coordinator, Career guidance cell coordinator, Controller of examinations, additional controller of examinations, Deputy warden in college hostel, Youth welfare association coordinator, RUSA Coordinator, Parent Teacher Association treasurer, Old student's association, Course coordinators, syllabus committee representatives, question paper setters and external examiners at undergraduate as well as postgraduate levels. Faculty members have contributed to academics by publishing books, contributing research articles in journals, presenting papers in conferences and delivering guest lectures. Faculty members have been recognized by national agencies and Universities with awards for their contribution to research.

Four staff members (retired from service) were elevated to the cadre of Principal, Regional Joint Director and have served as efficient administrators at various colleges and regional offices. Some of the staff members are carrying out UGC funded minor research projects, received research awards, awards from All India Radio serial programme and have also served as editors in peer journals like Elsevier.

COURSE

At present our department caters to the needs of 294 (UG - 243 and PG - 51) major chemistry students and 230 Ancillary chemistry students. Our march towards the zeal will continue in the forthcoming years also.

DEPARTMENT HIGHLIGHTS

The Department organizes National Conferences, workshops and faculty Development Programmes for the benefit of students. The Department, with a focus on enhancing the knowledge and skills of the students, has been conducting inter-Departmental and intercollegiate activities, through the Chemistry Association, Science Forum and Chemistry Club. It has also been actively involved in various outreach programmes for the uplift of society. Equal opportunity centre program has been conducted by our department.

RESOURCES

The Department has five laboratories which are fully equipped with instruments for teaching and research activities. The instruments available in the laboratories include UV-visible spectrophotometer, Conductometer, Potentiometer, pH meter, Polarimeter, Turbidity meter, BOD incubator, photocolorimeter etc.

The Department has an excellent library for the benefit of students, faculty members and research scholars. Library has a large collection of books covering various branches of Chemistry like organic, inorganic, physical, electrochemistry, greenchemistry and nanochemistry. Internet facility is available in the department.

ALUMNI ACTIVITIES

During 55 years of successful journey, our department has produced flourishing alumni who have occupied various positions in different sectors like academic, administrative, research, innovative scientists, overseas employment, banking and recent blooming fields like information technology.

The alumni of the department had served as the Principal in Govt Arts College, HOD and eminent professor in the School of chemistry at MKU, Madurai. It is a privilege to specify that, 22 alumni of chemistry department are serving as Associate Professors and Assistant Professors in various esteemed institutions. Alumni meet for the 1991 – 94 batch of B.Sc., Chemistry was organized on 8thJanuary 2017.

We have further goals to enrich our department as research department for the benefits of the students.

COURSES OFFERED:

- UG COURSE: B.Sc., CHEMISTRY
- PG COURSE: M.Sc., CHEMISTRY

VISION

To create an academically sound environment that nurtures, motivates and inspires excellence in teaching along with concern for society.

MISSION

To impart theoretical and practical training in different areas of chemistry, which encourages creativity, insight development and passion for science.

PROGRAMME OBJECTIVES FOR ALL UNDERGRADUATE PROGRAMMES

PO1: Inculcate a sustained interest to learn new concepts, techniques and acquire discipline-based knowledge.

PO2: Relate their knowledge to design problem solving strategies addressing the demands in the society.

PO3: Involve themselves in capacity building and hone their skills for technical, conceptual and creative excellence.

PO4: Perceive a plan to take up Post Graduate programmes leading to research within and outside their disciplines.

PO5: Contribute to the ecological space and be sensitive to the multi-dimensional aspects of our country and strive for harmonious existence through environment –friendly academic involvement.

B.Sc., CHEMISTRY PROGRAMME SPECIFIC OUTCOMES

After successful completion of B.SC., Chemistry the student is able to

PSO 1. Exhibit Sustained arousal of curiosity and interest to know the basic and amazing facts in chemistry.

PSO 2. Ability to demonstrate the firm foundation in the fundamentals about the basic concepts in Chemistry.

PSO 3. Able to discuss the concepts of chemistry confidently and perform laboratory testing/experiments independently.

PSO 4. Ability to recognize the role of chemistry in the applications to human society and assess the key issues in the environment and health.

PSO 5. Able to adapt to various progression routes in seeking higher studies or professional career.

LEVELS OF MAPPING AND QUESTION PATTERN

Mapping	1-20%	21 - 40%	41 - 60 %	61 - 80%	81 - 100%						
Scale	1	2	3	4	5						
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0						
Quality	Very Poor	Poor	Moderate	High	Very High						
				-							
Mean Scot	re of $COs = Total$	of value	Mean Overal	Score of COs = Tot	al of Mean Score						
	Total No. of I	POs and PSOs	Total No. of COs								

BLOOM'S TAXONOMY	INTERNAL	EXTERNAL
K1 (Remembering / Recalling)	40%	40%
K2 (Understanding / Comprehension)	30%	30%
K3 (Application and analysis)	30%	30%

Year	K1	K2	К3
	Part- A (4 questions) $4x 1 = 4$	Part- A (3 questions) $3x 1 = 3$	Part- A (3 questions) $3x 1 = 3$
	Or	Or	Or
Ι	Part- A (3 questions) $3x 2 = 6$	Part- A (1 question) $1x 2 = 2$	Part- A (1 question) $1x 2 = 2$
	Part-B (3 questions) $3 \times 5 = 15$	Part-B (1 question) $1 \ge 5$	Part-B (1 question) $1 \ge 5$
	Part-C (3 questions) $3 \times 8 = 24$	Part-C (1 question) $1 \ge 8 = 8$	Part-C (1 question) $1 \ge 8 = 8$
	Part- A (3 questions) $3x 1 = 3$	Part- A (4 questions) $4x 1 = 4$	Part- A (3 questions) $3x 1 = 3$
	Or	Or	Or
II	Part- A (1 question) $1x 2 = 2$	Part- A (3 questions) $3x 2 = 6$	Part- A (1 question) $1x 2 = 2$
	Part-B (2 questions) $2 \times 5 = 10$	Part-B (2 questions) $2 \times 5 = 10$	Part-B (1 question) $1 \ge 5$
	Part-C (2 questions) $2 \times 8 = 16$	Part-C (2 questions) $2 \times 8 = 16$	Part-C (1 question) $1 \ge 8 = 8$
	Part- A (3 questions) $3x 1 = 3$	Part- A (3 questions) $3x 1 = 3$	Part- A (4 questions) $4x 1 = 4$
III	Or	Or	Or
	Part- A (1 question) $1x 2 = 2$	Part- A (1 question) $1x 2 = 2$	Part- A (3 questions) $3x 2 = 6$
	Part-B (1 question) $1 \ge 5$	Part-B (1 question) $1 \ge 5$	Part-B (3 questions) $3 \times 5 = 15$
	Part-C (1 question) $1 \ge 8$	Part-C (1 question) $1 \ge 8 = 8$	Part-C (3 questions) $3 \times 8 = 24$

SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN(A),

MADURAI-2

DEPARTMENT OF CHEMISTRY

SYLLABUS – NEW PATTERN – CBCS FOR B.Sc Chemistry For those who are admitted from July 2022 onwards

Part	Course Type	Code	Title of the Course	Hrs	Credits	Exam	I	Marks	
	- 5 F -			/Week		Hrs	Int	Ext	Total
I	LC	U221A1/ U221H1	TAMIL/HINDI	6	3	3	25	75	100
П	ELC	U222A1	ENGLISH	6	3	3	25	75	100
III	CC I	U22CC1	Core Course I GENERAL CHEMISTRY I	6	6	3	25	75	100
III	СС П	U22CC2P	Core Course II PRACTICAL-I QUALITATIVE ANALYSIS & ORGANIC PREPARATION	3	-	-	-	-	-
ΠΙ	AC	U22APCT1	Allied Physics paper 1	4	3	3	25	75	100
III	AC	U22APCP	Allied Physics Practical paper I	3	-	-	-	-	-
IV	AEC -I	U22AE1	Ability Enhancement Course - I VALUE EDUCATION	2	2	3	25	75	100
	то	TAL		30	17				500

SEMESTER-I

SEMESTER-II

Part	Course Type	Code	Title of the Course	Hrs/	Credits	Exam		Marks	
	турс			Week		Hrs	Int	Ext	Total
Ι	LC	U221A2/ U221H2	TAMIL/HINDI	6	3	3	25	75	100
II	ELC	U222A2	ENGLISH	6	3	3	25	75	100
III	ССП	U22CC2P	Core Course II PRACTICAL-I QUALITATIVE ANALYSIS & ORGANIC PREPARATION	3	3	6	40	60	100
III	CC III	U22CC3	Core Course III GENERAL CHEMISTRY II	3	3	3	25	75	100
III	CC IV	U22CC4	Core Course IV GENERAL CHEMISTRY III	3	3	3	25	75	100
III	AC	U22ACPT2	ALLIED PHYSICS PAPER –II	4	4	3	25	75	100
III	AC	U22APCP	ALLIED PHYSICS PRACTICAL PAPER-I	3	3	3	40	60	100
IV	AEC - II	U22AE2	Ability Enhancement Course - II ENVIRONMENTAL STUDIES	2	2	3	25	75	100
	TO	TAL		30	24				800

SEMESTER-III

Part	Course	Code	Title of the Course	Hrs/	Credits	Exam		Mark	S
	Туре			Week		Hrs	Int	Ext	Total
Ι	LC	U221A3/ U221H3	TAMIL/HINDI	6	3	3	25	75	100
Π	ELC	U222A3	ENGLISH	6	3	3	25	75	100
III	CC V	U22CC5	Core Course V GENERAL CHEMISTRY IV	6	5	3	25	75	100
III	CC VI	U22CC6P	Core Course VI PRACTICAL –II VOLUMETRIC ANALYSIS AND ORGANIC ESTIMATION	3	-	-	-	-	-
ш	AC	U22AMC1	ALLIED MATHEMATICS (only for maths ancillary students)	3	3	3	25	75	100
III	AC	U22AMC1/ U22AZC1	ALLIED MATHEMATICS/ALLIED ZOOLOGY	4	3	3	25	75	100
III	AC	U22AZCP	ALLIED ZOOLOGY PRACTICAL	3	-	-	-	-	-
IV	NMEC-I	U22NMC1	NME I CHEMISTRY IN LIFE	2	2	3	25	75	100
V			NCC/NSS/EXTENSION ACTIVITY		1		100	-	100
			Total	30	20 /17*				700

*20 credits and 700 marks for Maths Ancillary students and 17 credits and 600 marks for Zoology Ancillary students in Semester III. *21 credits and 700 marks for Maths Ancillary students and 24 credits and 800 marks for Zoology Ancillary students in Semester IV.

	SEMESTER-IV										
Part	Course	Code	Title of the Course	Hrs/	Credit	Exam		Marks			
	туре			Week	3	Hrs	Int	Ext	Total		
Ι	LC	U221A4/ U221H4	TAMIL/HINDI	6	3	3	25	75	100		
Π	ELC	U222A4	ENGLISH	6	3	3	25	75	100		
III	CC VI	U22CC6P	Core Course VI PRACTICAL –II VOLUMETRIC ANALYSIS AND ORGANIC ESTIMATION	3	3	6	40	60	100		
III	CC VII	U22CC7	Core Course VII PHYSICAL AND INORGANIC CHEMISTRY	4	4	4	25	75	100		
ш	AC	U22AZCP	ALLIED ZOOLOGY PRACTICAL	3	3	3	40	60	100		
III	AC	U22AMC2/ U22AZC2	ALLIED MATHEMATICS/ALLIED ZOOLOGY	7/4	4	3	25	75	100		
IV	NMEC -II	U22NMC2	NME II - DAY TO DAY CHEMISTRY	2	2	3	25	75	100		
IV	SEC-I	U22SEC1	SKILL ENHANCEMENT COURSE I CHEMISTRY FOR COMPETITIVE EXAMINATION	2	2	3	25	75	100		
			30	21/24*				800			

SEMESTER-V

Part	Course	Code	Title of the Course	Hrs/	Credits	Exa m	Marks		
	турс			Week		Hrs	Int	Ext	Total
Ш	CC VIII	U22CC8	Core Course VIII ORGANIC CHEMISTRY I	5	5	3	25	75	100
ш	CC IX	U22CC9	Core Course IX PHYSICAL CHEMISTRY I	5	5	3	25	75	100
ш	CC X	U22CC10	Core Course X ANALYTICAL TECHNIQUES	5	5	3	25	75	100
Ш	CC XI	U22CC11P	Core Course XI PRACTICAL -III GRAVIMETRIC AND ORGANIC ANALYSIS	6	5	6	40	60	100
III	DSEC -I	U22DSC1A	Discipline Specific Elective Course-I FOOD CHEMISTRY	5	5	3	25	75	100
		U22DSC1B	POLYMER CHEMISTRY						
Ш	GEC I	U22GEC1	Generic Elective Course INVENTIONS AND INNOVATIONS IN CHEMISTRY	2	2	3	25	75	100
IV	SEC-II	U22SEC2	Skill Enhancement Course II SMALL SCALE INDUSTRIES	2	2	3	25	75	100
		То	30	29				700	

SEMESTER-VI

Part	Course	Code	Title of the Course	Hrs/	Credits	Exam	Mark	S	
	Туре			Week		Hrs	Int	E-++	Total
							mı	EXI	Totai
Ш	CC XII	U22CC12	Core Course XII INORGANIC CHEMISTRY	4	4	3	25	75	100
III	CC XIII	U22CC13	Core Course XIII ORGANIC CHEMISTRY II	4	4	3	25	75	100
III	CC XIV	U22CC14	Core Course XIV PHYSICAL CHEMISTRY II	4	4	3	25	75	100
III	CC XV	U22CC15P	Core Course XV PRACTICALS -IV PHYSICAL CHEMISTRY EXPERIMENTS	6	5	6	40	60	100
III	DSEC-II	U22DSC2A	Discipline Specific Elective Course- II APPLIED CHEMISTRY	4	4	3	25	75	100
		U22DSC2B	BIOCHEMISTRY						
Ш	DSEC-III	U22DSC3A	Discipline Specific Elective Course- III PHARMACEUTICAL CHEMISTRY	4	4	3	25	75	100
		U22DSC3B	AGRICULTURAL CHEMISTRY						
IV	SEC-III	U22SEC3P	Skill Enhancement Course III APPLIED CHEMISTRY PRACTICAL	2	2	3	40	60	100
IV	AEC III	U22AE3	Ability Enhancement Course - III GENERAL KNOWLEDGE	2	2	3	25	75	100
	Total								800

VALUE ADDED COURSES	(For B.Sc.,	Chemistry)
---------------------	-------------	--------------------

Value Added	Code	Title of the Course H		Credits	Exam	Mark	KS					
course			Week		Hrs	Int	Ext	Total				
For B.Sc Chemistry (IV semester)												
1		CHEMISTRY OF HEALTH AND HERBS	2	2	2	20	30	50				
2		INDUSTRIAL CHEMISTRY	2	2	2	20	30	50				
		Common for all majors (III S	emest	er)								
1		INTRODUCTION TO CHEMICAL PRODUCTS AROUND US	2	2	2	20	30	50				

Semest	Core	Code	Title	Lecture	Credits
er	Paper			hrs. /	
	no.			Week	
Ι	1	U22CC1	General Chemistry – I	6	6
I & II	2	U22CC2P	Practical -1 (Qualitative analysis & organic	3+3	3
			preparation)		
II	3	U22CC3	General chemistry – II	3	3
II	4	U22CC4	General chemistry – III	3	3
III	5	U22CC5	General chemistry – IV	6	5
III &	6	U22CC6P	Practical 2 (Volumetric analysis and organic	3+3	3
IV			estimation)		
IV	7	U22CC7	Physical and Inorganic chemistry	4	4
V	8	U22CC8	Organic Chemistry – 1	5	5
V	9	U22CC9	Physical Chemistry – 1	5	5
V	10	U22CC10	Analytical Techniques	5	5
V	11	U22CC11P	Practical -3 Gravimetric & organic analysis	6	5
VI	12	U22CC12	Inorganic Chemistry	4	4
VI	13	U22CC13	Organic Chemistry – 2	4	4
VI	14	U22CC14	Physical Chemistry – 2	4	4
VI	15	U22CC15P	Practical -4 Physical chemistry experiments	6	5
TOTAL	15			73	64

CORE PAPERS OFFERED BY THE DEPARTMENT OF CHEMISTRY

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSEC)

Part	semester	Course	Code	Title of the Course	Hrs/	Credits
		Туре			Wook	
					WEEK	
TTT	N7			Elective 1: FOOD CHEMISTRY		
111	v				5	5
		DSEC-I		Elective 1: POLYMER CHEMISTRY		
ш	VI			Elective 2: APPLIED CHEMISTRY		
		DSEC-II			4	4
				Elective 2: BIOCHEMISTRY		
III	VI			Elective 3: PHARMACEUTICAL		
		DSEC-III		CHEMISTRY	4	4
				Elective 3: AGRICULTURAL CHEMISTRY		

Part	Semester	Course	Code	Title of the Course	Hrs/	Credits
		Туре			Week	
Ш	IV	SEC-I	U22SEC1	CHEMISTRY FOR COMPETITIVE EXAMINATION	2	2
Ш	V	SEC-II	U22SEC2	SMALL SCALE INDUSTRIES	2	2
III	VI	SEC-III	U22SEC3P	APPLIED CHEMISTRY PRACTICAL	2	2

SKILL ENHANCEMENT COURSE (SEC)

GENERIC ELECTIVE

Part	Sem	Course Type	Code	Title of the Course	Hrs/ Week	Credits
ш	V	GEC-I	U22GEC1	INVENTIONS AND INNOVATIONS IN SCIENCE	2	2

NON-MAJOR ELECTIVE COURSES OFFERED BY DEPARTMENT OF CHEMISTRY

Part	Semester	Course	Code	Title of the Course	Hrs/	Credits
		Type			Week	
IV	ш	NMEC1	U22NMC1	CHEMISTRY IN LIFE	2	2
IV	IV	NMEC II	U22NMC2	DAY TO DAY CHEMISTRY	2	2

ALLIED COURSES OFFERED BY DEPARTMENT OF CHEMISTRY

Part	Semester	Course Type	Code	Title of the Course	Hrs/ Week	Credits
ш	III	AC	ACT1	Allied Course I: ALLIED CHEMISTRY I	4	3
ш	IV	AC	ACT2	Allied Course II: ALLIED CHEMISTRY II	4	3
Ш	III & IV	AC	ACP	Allied Course II: ALLIED CHEMISTRY PRACTICAL	3+3	3

Part	Course	Total No. of Papers	Hours	Credit	Marks	
Ι	Language Course	4	24	12	400	
II	English Language	e Course (ELC)	4	24	12	400
III	Core Course (CC)	15	73	64	1500
III	Allied Course (A	C)	6	28	20	600
III	Discipline Specif (DSEC)	3	13	13	300	
III	Generic Elective	Course (GEC)	1	2	2	100
IV	Non-Major Elect	ive Course (NMEC)	2	4	4	200
IV	Skill Enhanceme	nt Course (SEC)	3	6	6	300
IV	Ability Enhancement	Value Education	1	2	2	100
IV	Course(AEC)	Environmental Studies	1	2	2	100
IV		General Knowledge	1	2	2	100
V	NCC/NSS/Extens	1	-	1	100	
Total			42	180	140	4200
Value	e Added Courses		2		4	200
	Tot	al	44		144	4400

VALUE ADDED COURSES (For B.Sc.,

Chemistry)

Value Added	Code	Title of the Course	Hrs/	Credits	Exam	Marks				
course			Week		Hrs	Int	Ext	Total		
	I	For B.Sc Chemistry								
1		CHEMISTRY OF HEALTH AND HERBS	2	2	2	20	30	50		
2		INDUSTRIAL CHEMISTRY	2	2	2	20	30	50		
	Common for all majors									
1		INTRODUCTION TO CHEMICAL PRODUCTS AROUND US	2	2	2	20	30	50		

Internal 20 marks (Test 10 and 10 Demo/Assignment)

Question paper pattern for External Exam

Either or type 5X6=30 marks

Programme: B.Sc CHEMISTRY Semester: I Code: U22C1

Part III: Core paper 1 Hours: 6 / W, 90 / S Credit–6

TITLE OF THE PAPER: GENERAL CHEMISTRY-I

Pedagogy	ogy Hours Lecture Peer Teaching/Seminar/Discussion/ProblemsolvingQuiz/Assignment/ IC				
			Periodic Table chart.		
	6	4	1		1
PREAMB	LE: The	e objective	e of the course is emphasizing the fundamental concepts of chemistr	y and	applying
them and r	nake the	e students	to understand the chemistry of alkanes, alkenes and alkynes, explain	ning th	ne atomic
models, the	eory of g	ases, perio	odicity, discussing the principles of metallurgy and the chemistry of h	ydride	es.
COURSE	OUTCO	OME: At	the end of the Semester, the students will be able to	Unit	hrs.
					/S
CO1: writ	e IUPA	C names o	rganic compounds (upto C10), bicyclo compounds and simple	1	18
aromatic co	ompound	ds.			
CO2 : (i) describe the hybridization.					18
(ii) explain	the elec	tronic effe	ects.		
(iii) apply (the influ	ence of ele	ectronic effects, relative strengths of acid and base and stability of		
radicals, ca	rbocatio	ons & carb	anions.		
CO3 (i) ex	plain the	e factors at	ffecting ionic compounds, Born Haber cycle, Pauling & Mullikan's	3	18
scales of el	ectroneg	gativity an	d Fajan's rule.		
(ii) differe	ntiate in	ter and int	ramolecular hydrogen bonding.		
(iii) apply '	VSEPR	theory to s	simple inorganic compounds.		
(iv) apply MO theory					
(v) compar	e VB an	d MO The	eories.		
CO4 : to explain the quantum numbers, Pauli's exclusion principle, Hund's rule, Aufbau 4					18
Principle and periodic properties.					
CO5: to describe the basics of atomic structure and quantum theory.5					

UNIT-I: CLASSIFICATION AND NOMENCLATURE OF ORGANIC COMPOUNDS (18 Hours)

Classification of organic compounds - based on the nature of carbon skeleton and functional groups - classification of organic compounds (primary/secondary/tertiary) - IUPAC system of nomenclature of common organic compounds (upto C-10) - alkanes, alkenes, alkynes, cycloalkanes, bicycloalkanes with and without bridges and aromatic compounds - Naming of organic compounds with one functional group - halogen compounds, alcohols, phenol, aldehydes, ketones, carboxylic acids and its derivatives, cyano compounds, amines, nitro compounds (Both aliphatic and aromatic) - Naming of compounds with two functional groups - naming of compounds with more than one carbon chain - Naming of heterocyclic compounds containing one and two hetero atoms present in five/six membered rings.

UNIT-II: BONDING IN ORGANIC MOLECULES

(18 Hours)

Hybridization and geometry –sp3, sp2 and sp - bond angle, bond length, bond strength of C-H and C-C bonds (comparison of C-C, C=C, Carbon-carbon triple bond)- Electronic effects - inductive effect, resonance effect - drawing of resonance structures - conditions for resonance -

stability of resonance structures, hyper conjugation, electromeric effect, steric effect - steric overcrowding - steric inhibition of resonance - steric relief (with examples). Dissociation of bonds - homolysis and heterolysis - radicals, carbocations, carbanions - electrophiles and nucleophiles - Influence of electronic effects - relative strengths of acids and bases (Relative strength of acidic character of phenols and alcohols, strength of inductive effect on the acidity of carboxylic acids, comparison of relative basic strength of ethylamine and aniline)- stability of radicals, carbocations and carbanions.

UNIT-III: CHEMICAL BONDING

Ionic bond – Properties of ionic compounds, factors favoring the ionic compounds - ionization potential – electron affinity – electronegativity – Lattice energy – Born-Haber Cycle – Pauling and Mullikan's scales of electronegativity – Polarizing power and Polarizability – Partial ionic character from electronegativity. Transition from ionic to covalent character and vice versa – Covalent character of ionic compounds – Fajan's rules – Covalent bond – structure and bonding of homo and heteronuclear molecules (H₂, Cl₂, HCl, HF) – Hydrogen bonding – Its nature, types, effect on properties – Intermolecular forces – London forces and van der Waals forces– ion dipole-dipole interactions. VSEPR Theory – Principles and hybridization- Shapes of simple inorganic molecules (BeCl₂, BF₃, SiCl₄, PCl₅, SF₆, IF₇, H₂O, NH₃, XeF₆) -MO Theory –Bonding and anti-bonding orbitals – Applications of MO theory H₂, He, N₂, O₂, HF and CO molecules – Comparison of VB and MO Theories.

UNIT – IV: PERIODIC PROPERTIES

Atomic orbitals - Quantum numbers- Principal, Azimuthal, Magnetic and Spin quantum numbers and their significance - principles governing the occupancy of electrons in various quantum levels- Pauli's exclusion principle – Hund's rule- Aufbau Principle, (n+1) rule-Stability of half-filled and completely filled orbitals- inert pair effect.

Periodic properties – classification of elements as s, p, d and f-block elements – variation of atomic volume – atomic and ionic radii – ionization potential – electron affinity and electro negativity along period and groups – variation of metallic characters - Factors affecting the periodic properties. Periodic properties – classification of elements as s, p, d and f-block elements – variation of atomic volume – atomic and ionic radii – ionization potential – electron affinity and electro negativity along period and groups – variation of metallic characters - Factors affecting the periodic properties.

UNIT – V: ATOMIC STRUCTURE

Planck's quantum theory - Photoelectric effect, Compton effect, Bohr's model of hydrogen atom, Wave particle duality, de Broglie equation, Heisenberg uncertainty principle - Eigen function and Eigen value - Postulates of Quantum mechanics - Schrodinger's time independent wave equation (no derivation), wave functions and its physical properties -Normalization and Orthogonal function.

(18 Hours)

(18 Hours)

(18 Hours)

TEXTBOOKS

1. Textbook of Organic Chemistry by P.L.Soni– Sultan Chand & Sons; 29th edition (2012).

2. Sathyaprakash's Modern Inorganic Chemistry by R.D. Madan; S. Chand Publishing 3rd ed. Reprint (2016).

3. Principles of Physical Chemistry- Puri, Sharma and Pathania–Vishal Publishing Co.; 46th edition (2012).

4.ArimuraiKarima Vethiyal by R. Saraswathi, N. Subbulakshmi, R.Santhanalakshmi, N. Vijayathara, M.Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

5. Kanima Vethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi N.Vijayathara, Sudhasoundirapandian, D.Sarala Thambavani, Published by Madurai Kamaraj University, Madurai, 1998.

6. ArimuraiIyarpu Vethiyal by Sudha soundirapandin, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

7. B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, 23rd edn, New Delhi, Shoban Lal Nagin Chand & Co., 1993.

References

1. Textbook of Organic Chemistry by Arun Bahl, B.S. Bahl, S. Chand & Company, 22nd edition.

2. Organic Chemistry by Morrison & Boyd, Pearson Publishers, 7th edition.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	CLASSIFICATION AND NOMENCLATURE OF ORC	GANIC CON	IPOUNDS
	Classification of organic compounds - based on the nature of carbon skeleton and functional groups - classification of organic compounds (primary/secondary/tertiary) - IUPAC system of nomenclature of common organic compounds (upto C- 10) - alkanes, alkenes, alkynes, cycloalkanes, bicycloalkanes with and without bridges and aromatic compounds	5	Atomic models
	Naming of organic compounds with one functional group - halogen compounds, alcohols, phenol, aldehydes, ketones, carboxylic acids and its derivatives, cyano compounds, amines, nitro compounds (Both aliphatic and aromatic)	6	Lecture
	Naming of compounds with two functional groups - naming of compounds with more than one carbon chain - Naming of heterocyclic compounds containing one and two hetero atoms present in five/six membered rings.	7	Lecture, Quiz & Assignment
UNIT II	BONDING IN ORGANIC MOLECULES		
	Hybridization and geometry –sp3, sp2 and sp - bond angle, bond length, bond strength of C-H and C-C bonds (comparison of C-C, C=C, Carbon-carbon triple bond)- Electronic effects - inductive effect, resonance effect - drawing of resonance structures - conditions for	9	Atomic models /ICT

· · · · · · · · · · · · · · · · · · ·			
	resonance - stability of resonance structures, hyper		
	conjugation, electromeric effect, steric effect - steric		
	overcrowding - steric inhibition of resonance - steric		
	relief (with examples).		-
	Dissociation of bonds - homolysis and heterolysis -	9	Lecture
	radicals, carbocations, carbanions - electrophiles and		
	nucleophiles - Influence of electronic effects - relative		
	strengths of acids and bases (Relative strength of acidic		
	character of phenols and alcohols, strength of inductive		
	effect on the acidity of carboxylic acids, comparison of		
	relative basic strength of ethylamine and aniline)-		
	stability of radicals, carbocations and carbanions.		
UNIT III	CHEMICAL BONDING		1
	Ionic bond – Properties of ionic compounds, factors	9	Atomic models/
	favoring the ionic compounds - ionization potential –		ICT
	electron affinity – electronegativity – Lattice energy –		
	Born-Haber Cycle - Pauling and Mullikan's scales of		
	electronegativity - Polarizing power and Polarizability -		
	Partial ionic character from electronegativity. Transition		
	from ionic to covalent character and vice versa -		
	Covalent character of ionic compounds - Fajan's rules		
	Covalent bond - structure and bonding of homo and	5	Lecture
	heteronuclear molecules - Hydrogen bonding - Its		
	nature, types, effect on properties – Intermolecular forces		
	- London forces and van der Waals forces- ion dipole-		
	dipole interactions.		
	VSEPR Theory – Principles and hybridization- Shapes of	4	Lecture &
	simple inorganic molecules (BeCl ₂ , BF ₃ , SiCl ₄ , PCl ₅ , SF ₆ ,		Assignment
	IF_7 , H_2O , NH_3 , XeF_6) -MO Theory –Bonding and anti-		
	bonding orbitals – Applications of MO theory H_2 , He, N_2 ,		
	O_2 , HF and CO molecules – Comparison of VB and MO		
	I neories.		
UNITIV	Atomia orbitala Quantum numbera Dringinal	6	Dariadia tabla
	Atomic oronais - Quantum numbers- Principal,	U	chart
	Azimuthal, Magnetic and Spin quantum numbers and		
	their significance - principles governing the occupancy of		
	electrons in various quantum levels- Pauli's exclusion		
	principle – Hund's rule- Aufbau Principle, (n+1) rule-		
	Stability of half-filled and completely filled orbitals- inert		
	pair effect.		
	Periodic properties – classification of elements as s, p, d	8	Lecture Quiz.
	and f-block elements - variation of atomic volume -		
	atomic and ionic radii - ionization potential - electron		
	affinity and electro negativity along period and groups -		
	variation of metallic characters - Factors affecting the		
	periodic properties.		
	Periodic properties – classification of elements as s, p, d	4	Discussion
	and f-block elements – variation of atomic volume –		

10		
atomic and ionic radii – ionization poter	ntial – electron	
affinity and electro negativity along peri	od and groups –	
variation of metallic characters - Factors	affecting the	
periodic properties.		
UNIT V ATOMIC STRUCTURE		
Planck's quantum theory - Photoelectric	c effect, Compton 9	ICT
effect, Bohr's model of hydrogen atom	m, Wave particle	
duality, de Broglie equation, Heiser	berg uncertainty	
principle - Eigen function and Eigen val	ue	
Quantum mechanics	9	Lecture

Course	Progra	imme O	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	4	4	2.5	4	4	3.5	3	4	3.6
CO2	4	3.5	3.5	3	3	4	3.5	3.5	3	4	3.5
CO3	4	3.5	3	4	2	4	4	3.5	3	4	3.5
CO4	4	3.5	4	4	2	4	4	3	3.5	4	3.6
CO5	4	3.5	3.5	4	2	4	4	3	3	4	3.5
Mean Overall Score									3.54		

Result: The Score for this Course is 3.54 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K1, K1	K1 (5)	K1 (8)
II	K1, K1	K1 (1.5), K2 (3.5)	K1 (1.5), K2 (6.5)
III	K2, K3	K1 (1.5), K3 (3.5)	K1 (1.5), K3 (3.5)
IV	K2, K2	K1 (1.5), K2 (3.5)	K1 (2), K2 (6)
V	K3, K3	K1 (1.5), K3 (3.5)	K1 (2), K2 (6)

Programme:B.Sc Chemistry Semester : I & II Sub. Code : U22CC2P Part III: Core paper 2 Hours : 3 /W, 45/S Credits : 3

TITLE OF THE PAPER: PRACTICALS-1 QUALITATIVE ANALYSIS & ORGANIC PREPARATION

Pedagogy	Hours	Lab session//Demonstration class/Viva voce					
	3	3					
PREAMBL	PREAMBLE: The objective of the course is to make the student analyse the mixture containing						
two cations a	and anions and	l prepare some important organic compounds in the lab	oratory	·			
COURSE O	UTCOME: At	the end of the Semester, the students will be able to	Unit	hrs.			
CO1: analys	CO1 : analyse the mixture containing two cations and two anions. 1 70						
CO2: prepare	CO2: prepare a few important organic compounds220						

Unit- I: QUALITATIVE ANALYSIS

Analysis of a mixture containing two cations and two anions (one being an interfering radical) Acid radicals: Interfering – oxalate, borate, fluoride, phosphate, chromate

Non-interfering – carbonate, sulphate, nitrate, chloride, bromide.

Basic radicals:

I group – lead,

II group – bismuth, copper, cadmium, antimony

III group - Iron, manganese, aluminium, chromium

IV group - cobalt, nickel, manganese, zinc

V group - barium, strontium, calcium

VI group – magnesium and ammonium.

Unit - II: ORGANIC PREPARATION

Hydrolysis – Ester hydrolysis, Amide hydrolysis Benzoylation of beta naphthol Bromination of acetanilide Oxidation: Benzoic acid from benzaldehyde (Demonstration)

Internal =40 marks, 40marks = Unit-I-20 + Unit 2 -20 {Preparation 15+Viva-5} External = 60 marks Qualitative analysis -25 marks (acid radicals with correct procedure 10marks+ basic radicals with correct procedure 10 + elimination and original solution preparation - 05) Organic Preparation- 25 marks {Procedure- 5+ Crude Quantity-10+ Recrystallisation-10} Record - 5 marks viva voce - 5 marks

UNITS	TOPIC	LAB HOURS	MODE OF
			TEACHING
UNIT 1: QU	ALITATIVE ANALYSIS		
	Analysis of mixture	60	Lab session
	Analysis of mixture	5	Demonstration
	Analysis of mixture	5	Viva-Voce
UNIT 11: O	RGANIC PREPARATION		
	Organic preparation	14	Lab session
	Organic preparation	3	Demonstration
	Organic preparation	3	Viva-Voce

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes		-									scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	5	4	5	5	4	4	4	4	4	4.4
CO2	5	5	4	5	4	4	4	4	4	4	4.3
	Mean Overall Score									4.35	

Result: The Score for this Course is 4.35 (Very High Relationship)

Part III: Core paper 3 Hours : 3/W, 45/S Credits:3

TITLE OF THE PAPER: GENERAL CHEMISTRY- II

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving /videos/Demonstration class /ICT	g sessi	ion/Quiz/			
	3	2	1					
PREAMBLI Alkenes, Al metallurgica	PREAMBLE: The objective of the course is to make understand the chemistry of Alkanes, Alkenes, Alkynes,cycloalkanes, Diels-Alder reactionand s-block elements and the principles metallurgical processes, qualitative analysis, gas and liquid state.							
COURSE O	UTCOM	IE: At the	end of the Semester, the students will be able to	Unit	Hrs. / S			
CO1: to des	cribe the	chemistry	Alkanes, Alkenes and Alkynes.	1	9			
CO2: to expl	lain the c	hemistry of	f cycloalkanes, Diels-Alder reaction.	2	9			
CO3 : to de qualitative ar	CO3 : to demonstrate the metallurgical processes and explain the principles of 3 9 qualitative analysis							
CO4: describ	CO4 : describe the chemistry of s-block elements 4 9							
CO5: to expl	CO5 : to explain gas and liquid state 5 9							

UNIT – I: ALIPHATIC COMPOUNDS

(9 Hours)

(9 Hours)

Alkanes: Preparation – Hydrogenation of alkenes or alkynes, reduction of alkyl halides, decarboxylation of carboxylic acids, hydrolysis of Grignard reagent, Wurtz synthesis– reactions with radical mechanism for substitution reaction.

Alkenes: Preparation from alcohol, haloalkane, and alkynes - reactions of alkenes -electrophilic addition reactions – Markownikoff's rule and peroxide effect - allylic substitution, oxidation by KMnO4 and polymerization - Application in the synthesis of following molecules - Dibenzyl (from toluene), cis and trans 2-butene.

Alkynes: Preparation- dehydrohalogenation of vicinal halides, dehalogenation of tetrahalides, reaction of calcium carbide with water. Nature of triple bond in alkynes – acidity of terminal alkynes – electrophilic addition reactions.

Environmental Awareness: Hydrocarbons and photochemical smog.

UNIT – II: ALICYCLIC COMPOUNDS

Cycloalkanes: Preparation (small, medium & large ring compounds) - reactions - cycloaddition, dehalogenation, pyrolysis of calcium salt of dicarboxylic acid - Wurtz reaction - stability of cycloalkanes - Baeyer's strain theory. Cycloalkenes: Preparation and reactions of cycloalkenes.

Conjugate dienes 1,3-butadiene- 1,2 and 1,4 addition, and Diels-Alder reaction – Examples of Diene and Dienophile.

Application in the synthesis of following molecules – cyclohexene, Phthalic Anhydride, cis and trans 1,4-dimethylcyclohexene.

UNIT – III: METALLURGY & PRINCIPLES OF QUALITATIVE ANALYSIS (9 hrs)

Metallurgy: Occurrence of metals — General methods involved in extraction of metalsconcentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – Van Arkel de Boer Method- electrolytic refining

Principles of qualitative analysis: – Sodium Carbonate extract – elimination principle- complex formation – complexes of Cu, Cd, Ni, Co, Fe, Zn.

Application of Solubility principle in the separation of elements

UNIT -IV: S- BLOCK ELEMENTS

Position of hydrogen in the periodic table, General characteristics of s – block elements – Compounds of s-block metals – oxides, hydroxides, peroxides, superoxide- oxo salts – carbonates – bicarbonates – nitrates – halides and polyhalides (Examples alone). Anomalous behavior of Li and Be – Extraction of Mg – physical and chemical properties . Complexes of s-block metals – complexes with crown ethers – Organometallic compounds of Li and Be.

Biological Importance of s-block Elements in human – Sodium, Potassium, Calcium and Magnesium (Brief Idea)

UNIT – V: KINETIC THEORY OF GASES

Maxwell-Boltzmann law of distribution of molecular velocities (Derivation not necessary) – Graphical representation –Effect of Temperature on velocity distribution- Experimental verification of Maxwell velocity distribution [Stern method] – Mean free path – Viscosity of gases and determination of molecular diameter – collision frequency – collision number – Brownian movement and determination of Avogadro Number – Loschmidt number – Principle of equipartition of energy.

TEXTBOOKS

1. Textbook of Organic Chemistry by P.L.Soni- SultanChand & Sons; 29th edition (2012).

2. Sathyaprakash'sModern Inorganic Chemistry by R.D.Madan;S. Chand Publishing 3rd ed. reprint (2016).

3. Principles of Physical Chemistry- Puri, Sharma and Pathania- Vishal Publishing Co.; 46th edition (2012).

4.Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R.Santhanalakshmi, N. Vijayathara, M. Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

(9 Hours)

(9 Hours)

5. KanimaVethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi,

N. Vijayathara, Sudhasoundirapandian, D.SaralaThambavani, Published by Madurai Kamaraj University, Madurai, 1998.

6. ArimuraiIyarpuVethiyal by Sudha Soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

References:

1. Textbook of Organic Chemistry by Arun Bahl, B.S. Bahl, S. Chand & Company, 22nd edition.

2. Organic Chemistry by Morrison & Boyd, Pearson Publishers, 7th edition.

UNITS	TOPIC	LECTURE	MODE OF
		nooks	TEACHING
UNIT –	I: ALIPHATIC COMPOUNDS	-	LOT
	Hydrocarbons and photochemical smog	l	ICT
	Chemistry of Alkanes, Alkenes and Alkynes	7	Lecture
	Acidity of Alkynes	1	Seminar
UNIT –	II: ALICYCLIC COMPOUNDS	1	1
	Chemistry of Alicyclic Compounds and Diels Alder reaction.	7	Lecture
	Application in the synthesis of following molecules -	2	Problem
	cyclohexene, Phthalic Anhydride, cis and trans 1,4-		solving
	dimethylcyclohexene.		U
UNIT –	III: METALLURGY & PRINCIPLES OF QUALITAT	IVE ANA	LYSIS
	froth floatation, magnetic separation, calcination, roasting,	2	ICT
	smelting		
	Principles of metallurgy	7	Lecture
UNIT –	IV: S - BLOCK ELEMENTS		
	Biological Importance of s-block Elements in human	2	ICT
	General characteristics of s – block elements and their	7	Lecture
	chemistry.		
UNIT –	V: KINETIC THEORY OF GASES		
	Maxwell-Boltzmann law of distribution of molecular	9	Lecture, Quiz
	velocities, Graphical representation –Effect of Temperature		
	on velocity distribution- Experimental verification of		
	Maxwell velocity distribution – Mean free nath – Viscosity of		
	gases and determination of molecular diameter - collision		
	frequency collision number. Drownian district - collision		
	irequency – collision number – Brownian movement and		
	determination of Avogadro Number – Loschmidt number –		
	Principle of equipartition of energy.		

Course Outcomes	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean scores	
(\cos)											of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	3	4	4	2	4	4	3.5	3.5	4	3.6
CO2	4	3	3.5	4	2.5	4	4	3	3	4	3.5
CO3	4	3.5	3	4	2.5	4	3	3	4	4	3.5
CO4	4	3	3	4	3	4	4	3	3	4	3.5
CO5	4	3.5	3.5	4	2	4	4	3	3	4	3.5
	Mean Overall Score										3.46

Result: The Score for this Course is 3.46 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K1, K1	K1 (5)	K1 (8)
II	K1, K1	K1 (1.5), K2 (3.5)	K1 (1.5), K2 (6.5)
III	K2, K3	K1 (1.5), K3 (3.5)	K1 (1.5), K3 (3.5)
IV	K2, K2	K1 (1.5), K2 (3.5)	K1 (2), K2 (6)
V	K3, K3	K1 (1.5), K3 (3.5)	K1 (2), K2 (6)

Programme : B.Sc Chemistry Semester : II Sub. Code : U22CC4

Part III: Core paper 4 Hours :3 /W, 45 Hrs. /S Credits:3

TITLE OF THE PAPER: GENERAL CHEMISTRY- III

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problemsolving	ICT		
			session/Quiz/ videos/Demonstration class.			
	4	2	1	1		
PREAMBL	E: The o	bjective of	the course is to make the student understand aroma	ticity a	and	
aromatic co	mpound	s, p-block	elements Boron family, Carbon family, Colloids, Nar	iomate	erials	
and Liquid	crystals.					
COURSE O	UTCON	IE: At the	end of the Semester, the Students will be able to	Unit	hrs./S	
CO1: demo	nstrate ar	omaticity,	Aromatic electrophilic substitution	1	12	
CO2: explain	n the cha	racteristics	of elements of Group III A and some important	2	12	
compounds of	of Boron	and Alumi	nium.			
CO3: demo	nstrate t	he characte	eristics of elements of IV A and the Chemistry of	3	12	
silicones.						
CO4: explain the nature of applications of colloids 4 12						
CO5: explai	CO5 : explain nanomaterials, liquid crystals and their applications. 5 12					
				(

UNIT – I: AROMATICITY AND AROMATIC COMPOUNDS (9 Hours)

Aromaticity - definition - Huckel's rule - consequence of aromaticity - stability, carbon- carbon bond lengths in benzene ring, resonance energy - Aromatic electrophilic substitution - general pattern of the mechanism involving σ and π complexes, mechanism of nitration, halogenation, sulphonation, mercuration and Friedel-Crafts reaction - Activating and deactivating substituents - orientation in mono substituted benzenes - reactions of aromatic side chain - halogenation and oxidation - Methods of formation and chemical reactions of Naphthalene.

Application– Application of aromatic compounds in day-to-day life. (Medicine, Aromatic derived products in Automotives, electronics, Polystyrene foam, Perfume, and Preservative)

UNIT – II: p-BLOCK ELEMENTS – BORON FAMILY

General characteristics of elements of Group III A – Physical and chemical properties of Boron – compounds of boron – Borax, Boric acid, Diborane, Boron nitride – Extraction of Al – Physical and Chemical properties.

Applications of Boron nitride, Aluminium chloride, Alumina, alums and alloys of Aluminium.

UNIT – III: p-BLOCK ELEMENTS –CARBON FAMILY (9 Hours)

General characteristics of elements of Group IV A – Allotropic forms of carbon – Chemistry of charcoal – Types of Charcoal – chemistry of oxides of carbon- Physical and chemical properties of Si- Oxides of silicon – structures of silicates. Chemistry of silicones –extraction of lead – physical and chemical properties – Uses – lead pigments.

Environmental Awareness: Air Pollution due to CO – Leaded Petrol- Biochemical effect of Lead in its interference with heme synthesis.

Applications of Silicones, Uses of Charcoal.

(9 Hours)

UNIT-IV: COLLOIDS

Colloids - Distinguishing characteristics of colloids, suspensions and solutions- Types of colloidal dispersions-Optical properties-Tyndall effect- Kinetic properties - Brownian motion-Electrical properties-Helmholtz and diffuse double layers - electro kinetic or zeta potential - electrophoresis and its applications Coagulation - methods of coagulation - Hardy Schultz law - Hofmeister series -Protective colloids - protective action - gold number - Emulsions - classification, preparation, Gels - preparation - properties (thixotropy, syneresis and imbibition). Applications of Colloids (Food, Medicine, Smoke precipitation, water purification, Sewage disposal, Rubber industry, Artificial rain, Leather tanning, Photography, Cleansing action of soap, and Formation of delta.).

UNIT-V NANOMATERIALS AND LIQUID CRYSTALS (9 Hours)

Nanomaterials- introduction-self assembled mono layers- nano wires- types of nano particlespure gold, silver and cobalt-metal oxides- alumina and titania- synthesis by physical vapor deposition method-reduction method.

Liquid crystals – classification of thermotropic liquid crystals – nematic, smectic and cholesteric liquid crystals with examples.

Applications of Nanomaterials (Catalysis, Sensors, Nanomedicines, Nano crystal based solar cells, fuel cells, electronic devices, Nanoscale films and nanoengineered materials).

Applications of Liquid Crystals (Technological applications- LCD Display, Computer monitor, smart windows, Liquid crystal thermometer and biosensors).

TEXTBOOKS

1. Textbook of Organic Chemistry by P.L. Soni- Sultan Chand & Sons; 29th edition (2012).

2. Sathyaprakash's Modern Inorganic Chemistry by R.D. Madan; S. Chand Publishing 3rd ed. reprint (2016).

3. Principles of Physical Chemistry- Puri, Sharma and Pathania- Vishal Publishing Co.; 46th edition (2012).

4.Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R.Santhanalakshmi, N. Vijayathara, M.Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

5. KanimaVethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi

N. Vijayathara, Sudha Soundirapandian, D.SaralaThembavani, Published by Madurai Kamaraj University, Madurai, 1998.

6. ArimuraiIyarpuVethiyal by Sudha Soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

7. S.Shanmugam, Nanotechnology, 1st Ed., MJP Publishers, 2011.

8. G.Mohankumar, Nanotechnology, nanomateraials and nanodevices, 1st Ed., Narosa Pub. House 2016.

References

1. Organic Chemistry by Morrison & Boyd, Pearson Publishers, 7th edition.

- 2. Inorganic Chemistry by J. D. Lee, Wiley publishers.
- 3. T.Pradeep, Nano The Essentials, 1st Ed., McGraw Hill Companies, 2007.

(9 Hours)

		HOURS	
UNIT I:	AROMATICITY AND AROMATIC COMP	OUNDS	
	aromaticity	1	ICT
	aromaticity, Aromatic electrophilic	7	Lecture
	substitution, activating and deactivating		
	substituents and Methods of formation and		
	chemical reactions of Naphthalene		
	Application of aromatic compounds in day-	1	Seminar/Assignment
	to-day life.		
UNIT –	II: p-BLOCK ELEMENTS – BORON FAMI	LY	•
	Applications of Boron nitride, Aluminium	2	Group discussion
	chloride, Alumina, alums and alloys of		
	Aluminium.		
	Group discussion of p-block elements and	7	Lecture with interactive
	their chemistry		discussion.
UNIT –	III: p-BLOCK ELEMENTS –CARBON FAM	AILY	
	Air Pollution due to CO – Leaded Petrol-	2	ICT
	Biochemical effect of Lead in its interference		
	with heme synthesis.		
	Group discussion and chemistry of carbon	6	Lecture
	family		
	Applications of Silicones, Uses of Charcoal	1	Seminar/ Assignment
UNIT-IV	/: COLLOIDS		
	Applications of Colloids	2	ICT
	Properties of Colloids	6	Lecture
	Emulsions and gels	1	Quiz
UNIT-V	NANOMATERIALS AND LIQUID CRYST	ALS	•
	nematic, smectic and cholesteric liquid	2	ICT
	crystals		
	Nanomaterials and Liquid crystals	5	Lecture
	Applications of Nanomaterials and liquid	2	Group discussion / Seminar
	crystals		

Course	Progra	imme Oi	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes										scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	4	5	4	4	5	4	3	4	3	4.1
CO2	4	5	4	3	3	4	5	4	3	4	3.9
CO3	4	3	5	4	5	4	3	5	4	3	4.0
CO4	5	4	3	3	4	4	5	4	4	4	4.0
CO5	5	4	3	4	5	4	3	5	4	5	4.2
Mean Overall Score									4.0		

Result: The Score for this Course is 4.0 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K1, K1	K1 (5)	K1 (8)
II	K1, K1	K1 (1.5), K2 (3.5)	K1 (1.5), K2 (6.5)
III	K2, K3	K1 (1.5), K3 (3.5)	K1 (1.5), K3 (3.5)
IV	K2, K2	K1 (1.5), K2 (3.5)	K1 (2), K2 (6)
V	K3, K3	K1 (1.5), K3 (3.5)	K1 (2), K2 (6)

Part III: Core paper 5 Hours : 6 /W, 90 hrs. /S Credits: 5

TITLE OF THE PAPER: GENERAL CHEMISTRY - IV

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving	ICT				
			session/Quiz/videos/Demonstration class.					
	6	4	1	1				
PREAMBL	E: The	objective o	of the course is to make the student understand the	e chen	nistry of			
Haloalkane	s, alcoho	ls, phenols	and ethers, principles of volumetric analysis, gravim	netric a	analysis,			
adsorption,	catalysis	s and p-blo	ock elements.					
COURSE O	UTCON	AE: At the	end of the Semester, the students will be able to	Unit	hrs./S			
CO1: demor	nstrate th	e chemistry	v of haloalkenes.	1	18			
CO2: demor	CO2: demonstrate the chemistry of alcohols, phenols and ethers.218							
CO3: explai	n the the	ory behind	the volumetric analysis and perform calculations based	3	18			
on it.	on it.							
CO4:explain	CO4 :explain the principles of gravimetric analysis, error analysis and adsorption. 4							
CO5: descri	be the ch	CO5: describe the chemistry of Nitrogen. 5 18						

UNIT – I: HALOALKANES

(18 Hours)

Classification of alkyl halides - methods of formation from alcohols, alkanes, alkenes – allylic/ benzylic bromination and chlorination – Hundiecker reaction, Finkelstein reaction and Swart's reaction - nucleophilic substitution reactions - mechanisms of nucleophilic substitution reactions - SN2 and SN1 reactions with energy profile diagrams-

dehydrohalogenation with mechanism - Saytzeff's rule - reaction with metals -Wurtz reaction and formation of Grignard reagent - Methods of formation of aryl halides nucleophilc substitution reactions of aryl halides -addition-elimination and the elimination-addition mechanisms - electrophilic substitution -Ullmann reaction – Wurtz-Fittig reaction – Relative reactivities of alkyl, allyl, vinyl and aryl halides - Synthesis and uses of DDT and BHC. **Environmental Awareness**: Environmental Issues of DDT – Safe Alternative Neem based

insecticide.

UNIT- II: ALCOHOLS, PHENOLS AND ETHERS (18 Hours)

Preparation of alcohols through reduction, hydroboration, hydration, oxymercuration and Grignard reaction. Reactions of alcohol - with metals, esterification, oxidation, dehydration, conversion to alkyl halides. Preparation of phenols - acidity of phenol vs alcohols - relative acid strength of substituted phenols - reactions of phenols - esterification, oxidation, Kolbe's, Reimer-Tiemann, Gattermann, electrophilic substitution reactions. Ethers – preparation, reactions – epoxide.

Applications: Synthesis of aspirin, t-butyl methyl ether (Gasoline additive to raise octane number) and 1-methyl-1-cyclohexanol.

Uses of Phenols (Phenol Formaldehyde resin (Novalac) as an adhesive – disinfectant – Vaccine preservative- phenol injection for muscle spasticity - Phthalein dyes and picric acid)

UNIT – III PRINCIPLES OF VOLUMETRIC ANALYSIS (18 Hours)

General principle: Types of titrations. Requirements for titrimetric analysis. Concentration systems: Molarity, molality formality, normality, wt%, ppm - problems. Primary and secondary standards, criteria for primary standards, preparation of standard solutions, standardization of solutions. Limitation of volumetric analysis, end point and equivalence point. Neutralisation-titration curve, theory of indicators, choice of indicators. Use of phenolphthalein and methyl orange. Complexometric titrations: Stability of complexes, titration involving EDTA. Metal ion indicators and characteristics. Problems based on titrimetric analysis.

Environmental Assessment: Use of titration involving EDTA in assessing water pollution (Principle only)

UNIT IV PRINCIPLES OF GRAVIMETRIC ANALYSIS, ERROR ANALYSIS AND ADSORPTION ((18 Hours)

Principle of gravimetric analysis – Formation of precipitate – coprecipitation - post precipitation – adsorption – precipitation from homogeneous solution.

Error Analysis: Definition of error- Classification of errors – definition of precision and accuracy – significant figures.

Adsorption: Definition of the various terms – adsorption of gases on solids – characteristics of adsorption of gases on solids – Differences between physisorption and chemisorption – factors influencing adsorption – adsorption isotherms – Fruendlich and Langmuir adsorption isotherms – BET theory – elementary idea.

Applications of adsorption-Production of high vacuum, gas mask, control of humidity, colour removal, separation of inert gases, heterogenous catalysis, purification of water, curing diseases and adsorption indicators.

UNIT – V: P-BLOCK ELEMENTS – NITROGEN FAMILY (18 Hours)

General characteristics of elements of V A Group –Differences between nitrogen and other family members- Chemistry of some compounds of nitrogen – hydrazine, hydroxylamine, hydrazoic acid, nitric acid – nitrogen cycle– Nitrides - Preparation of nitric oxide and nitrogen dioxide – Structure of Nitrous oxide, nitric oxide, dinitrogen trioxide, dinitrogen tetraoxide - Chemistry of phosphorous trioxide, phosphorus pentoxide, orthophosphoric acid and pyrophosphoric acids.

Uses of Nitrogen: in X-ray detector, in pharmaceutical industries, in pollution control, in food packaging, in soldering, as fire extinguisher, as purging gas, as shielding gas in welding, preserve biological specimens, used as an anesthetic.

Environmental Awareness: Nitrogen oxides as pollutants - Acid Rain.

TEXTBOOKS

1. Text book of Organic Chemistry by P.L.Soni- Sultan Chand & Sons; 29th edition (2012).

2. Principles of Physical Chemistry- Puri, Sharma and Pathania - Vishal Publishing Co.; 46th edition (2012).

3.Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R.Santhanalakshmi, N. Vijayathara, M. Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

4. ArimuraiIyarpu Vethiyal by Sudha Soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

and

5. Elements of Analytical chemistry - R.Gopalan, K.Rangarajan, Sultan Chand and Sons (2004).

References

1. Inorganic qualitative Analysis by Vogel.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I: I	HALOALKANES		
	Chemistry of Haloalkanes	14	Lecture
	Environmental Issues of DDT – Safe Alternative Neem based insecticide.	2	Seminar& Peer teaching
	Relative reactivities of alkyl, allyl, vinyl and aryl halides - Synthesis and uses of DDT and BHC.	2	Assignment
UNIT II: A	ALCOHOLS, PHENOLS AND ETHERS		
	Uses of Phenols	2	ICT
	Chemistry of Alcohols, Phenols and ethers	14	Lecture
	Applications: Synthesis of aspirin, t-butyl methyl ether (Gasoline additive to raise octane number) and 1-methyl-1-cyclohexanol.	2	Seminar
UNIT III:	PRINCIPLES OF VOLUMETRIC ANALYSIS		
	Expression of concentrations of a solution, Calculation of equivalent weight for various substances involved in volumetric analysis	6	Lecture Quiz& problem solving
	Principles of volumetric analysis	10	Lecture
	Use of titration involving EDTA in assessing water pollution (Principle only)	2	Seminar/ Group discussion
UNIT IV ADSORP	PRINCIPLES OF GRAVIMETRIC ANALYSIS, ERROR ANA TION	LYSIS AN	D
	Principles of Gravimetric Analysis	3	Demonstration
	Principles of Gravimetric Analysis, Error Analysis and Adsorption	9	Lecture
	Applications of adsorption	3	ICT
	Applications of adsorption	3	Seminar
UNIT V :	P-BLOCK ELEMENTS – NITROGEN FAMILY	r	I
	General characteristics of elements of V A Group –Differences between nitrogen and other family members- Chemistry of some compounds of nitrogen – hydrazine, hydroxylamine, hydrazoic acid, nitric acid – nitrogen cycle– Oxides of nitrogen and Phosphorous – oxyacids of phosphorus. Nitrides	8	Lecture / ICT
	Uses of Nitrogen : in X-ray detector, in pharmaceutical industries, in pollution control, in food packaging, in soldering, as fire extinguisher, as purging gas, as shielding gas in welding, preserve biological specimens, used as an anesthetic.	8	Lecture
	Environmental Awareness: Nitrogen oxides as pollutants Acid Rain	2	Group discussion

Course	Progra	mme Ou	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	3	4	3	4	4	3	3	3	3.5
CO2	4	4	3	3	4	4	4	4	3	3	3.6
CO3	4	4	3	4	3	4	3	4	3	4	3.6
CO4	4	4	3	3	4	4	4	3	3	4	3.6
CO5	4	4	4	3	4	4	4	3	3	3	3.6
Mean Overall Score									3.58		

Result: The Score for this Course is 3.58 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K1, K3	K2 / K3	K3 / K2
II	K2, K3	K3 / K1	K2 / K1
III	K1, K3	K1 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K2	K3 / K2	K3 / K3

Programme :B.Sc Chemistry Semester : III & IV Part III: Core Paper 6 Hours: 3 / W, 45 / S

3 hours per week in III semester and 3 hours in IV semester Sub. Code : U22CC6P Credits : 3

TITLE OF THE PAPER: PRACTICAL – II, VOLUMETRIC ANALYSIS AND ORGANIC ESTIMATION

Pedagogy	Hours	Lab session//Demonstration class/Viva voce						
	3	3						
PREAMBLE: The objective of the course is to make the student to prepare standard solution, estimate the given inorganic/ organic solution using suitable standard and link solution and to understand the theory behind the practical classes involved.								
COURSE O	UTCON	1E: At the end of the Semester, the students will be able to	Unit	Hours				
CO1: estimate the given inorganic solution, volumetrically160								
CO2: estima	ate the given the givent the givent the givent the given the givent the givent the givent the givent the given the givent the givent the given the givent the givent the givent the given the given the givent the givent the given the given the give	ven organic solution, volumetrically	2	30				

Unit –I: VOLUMETRIC ANALYSIS

A double titration involving the making up of the solution to be estimated and the preparation of a primary standard

Acidimetry and alkalimetry: titrations

Acids used: hydrochloric acid, sulphuric acid and oxalic acid Bases used: sodium carbonate, sodium hydroxide. Standard solutions prepared: sodium carbonate and oxalic acid. **Oxidation and reduction titrations** Oxidising agents: Potassium permanganate (permanganometry) Reducing agents: ferrous sulphate, ferrous ammonium sulphate, oxalic acid Standard solutions prepared: ferrous sulphate, ferrous ammonium sulphate and oxalic acid Iodimetry titrations Titrations of liberated iodine against sodium thiosulphate using acidified potassium permanganate, potassium dichromate and copper sulphate solutions. Standard solutions: potassium dichromate, copper sulphate. Arsenious oxide against iodine solution.

Unit – II : ORGANIC ESTIMATION

Estimation of aniline Estimation of phenol Estimation of glucose (Lane Eynon Method-Demo only) Internal =40 (unit I -20+ Unit II – 20] External = 60 mark Volumetric analysis–25 marks (procedure – 8, exp–17, 1% -17, 2% - 15, 3% - 13 4%-10, above 4% - 7) Organic estimation -25 marks (procedure-8, exp- 17, 2% -17, 3% - 15, 4% - 13 above 4% - 7) Viva voce - 5 marks, Record - 5 marks.

UNITS	TOPIC	LAB HOURS	MODE OF TEACHING					
UNIT 1: VOLUMETRIC ANALYSIS								
	Volumetric Estimation	60	Lab session					
	Volumetric Estimation	10	Demonstration					
	Volumetric Estimation	10	Viva-Voce					
UNIT 11: OI	RGANIC ESTIMATION							
	Organic Estimation	30	Lab session					
	Organic Estimation	6	Demonstration					
	Organic Estimation	4	Viva-Voce					

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	5	4	5	4	4	4	5	4	4	4.4
CO2	5	5	4	5	4	4	4	4	4	4	4.3
Mean Overall Score									4.35		

Result: The Score for this Course is 4.35 (Very High Relationship)

Part III: Core paper 7 Hours : 4/W, 60 Hrs. /S Credits: 4

(12 Hours)

TITLE OF THE PAPER: PHYSICAL AND INORGANIC CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/ Seminar/Discussion/Problem Solving session/Quiz/Videos/ Demonstration class						
	4	3	1						
PREAMBLE:	PREAMBLE: The objective of the course is to make the student understand Raoult's law, non-								
ideal solutions	and Col	ligative pro	perties iii) Phase equilibria iv) Nuclear Chemi	stry an	d v) Solid				
state Chemistr	·у			·					
COURSE OU	COURSE OUTCOME: At the end of the Semester, the students will be able to Unit Hours								
CO1: explain F	Raoult's la	w, non-idea	l solutions and Colligative properties	1	12				
CO2: describe	the conce	epts of phase	rule.	2	12				
CO3: demonstr reactions.	rate the c	omposition a	and stability of the nucleus and types of nuclear	3	12				
CO4 : explain t	CO4: explain the Natural and artificial radioactivity and applications.412								
CO5: explain c	5	12							

UNIT –I: SOLUTIONS AND COLLIGATIVE PROPERTIES (12 Hours)

Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions. Vapour pressure-composition and temperature composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes. Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications. Colligative properties- elevation of boiling point, depression in freezing point – Abnormal behavior of solutions of electrolytes.

Application of colligative property, depression in freezing point in the determination of molecular weight.

UNIT -- II: PHASE EQUILIBRIA

Phase Rule: Concepts of phase, component and degrees of freedom, with examples. Gibb's phase rule – derivation. One-component system: Phase diagrams: Water and sulphur systems. Two component system: (i) Simple eutectic: Lead-silver system- Formation of compound with congruent melting point: Ferric chloride – water system. Clausius - Clapeyron equations and their applications to equilibria in phase transitions. (Solid – liquid, liquid – vapour, solid – vapour).

UNIT –III: NUCLEAR CHEMISTRY I

Introduction – composition of nucleus and nuclear forces – nuclear stability – mass defect – binding energy – packing fraction – N/P ratio – magic numbers – nuclear models – liquid drop – Shell and collective model. Theory of radioactivity – laws of radioactivity – Soddy's Group Displacement law. Radioactive equilibrium – rate of radioactive disintegration – half-life period – average life. Radioactive series – mode of decay – alpha, beta and gamma particle emissions - orbital electron capture – nuclear isomers and internal conversion.

Places of Nuclear reactors in India.

UNIT -IV: NUCLEAR CHEMISTRY II

(12 Hours)

Artificial radioactivity: Definition – different types of artificial radioactivity brought about by accelerated particles. Artificial transmutation: of atoms by projectiles- spallation. Nuclear fission and fusion: Theories of fission – application of fission and the principle of atom bomb – nuclear reactors – nuclear fusion and emission of energy – stellar energy and hydrogen bomb. Particle accelerators: Linear accelerators – cyclotron and synchrotron.

Application of radioactivity: radioactive isotopes as tracer elements - applications in medicine, agriculture and industry –in the elucidation of structure and in the investigation of reaction mechanisms in analytical chemistry – activation analysis – carbon dating.

UNIT V: SOLID STATE CHEMISTRY & STRUCTURE OF SOLIDS (12 Hours)

Ionic bonding – lattice energy – Born equation and its derivation, radius ratio rules –Bragg's equation - superconductors

Classification of solids – amorphous and crystalline solids – Van der Waals crystals – covalent crystals (Diamond and Graphite) – Laws of crystallography – Elements of symmetry – Weiss and Miller indices – Crystal systems and Bravais lattices. Structure of ionic solids – crystal structures – Sodium chloride, Zinc blende, wurtzite, rutile, Cesium chloride, fluorite – antifluorite – Identification of simple cubic, bcc, fcc lattices. Crystal defects – Schottky and Frenkel defects – F-center.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
Unit –I: S	SOLUTIONS AND COLLIGATIVE PROPERTIES		
	Thermodynamics of ideal solutions: Ideal solutions and	7	Lecture
	Raoult's law, deviations from Raoult's law – non-ideal		
	solutions. Vapour pressure-composition and temperature		
	composition curves of ideal and non-ideal solutions.		
	Distillation of solutions. Lever rule. Azeotropes. Partial		
	miscibility of liquids: Immiscibility of liquids- Nernst		
	distribution law and its applications. Colligative properties-		
	elevation of boiling point, depression in freezing point –		

(12 Hours)
Principle of steam distillation	2	Seminar & Peer
		teaching
Critical solution temperature; effect of impurity on partial miscibility of liquids.	2	ICT & Lecture
Application of colligative property, depression in freezing	1	Demonstration
point in the determination of molecular weight.		
UNIT –II: PHASE EQUILIBRIA		
Phase rule and explaining phase diagrams	7	Lecture
Clapeyron equations and their applications to equilibria in phase transitions.	3	Lecture
Phase diagrams	2	Chart preparation
UNIT –III: NUCLEAR CHEMISTRY I		
Introduction composition of nucleus and nuclear forces	2	Lastura
nuclear stability – mass defect – binding energy – packing fraction – N/P ratio – magic numbers	Z	Lecture
Shell model and liquid drop model and collective model. Theory of radioactivity – laws of radioactivity – Soddy's Group Displacement law.	6	Lecture
Rate of radioactive disintegration, half-life period, average life and Radioactive equilibrium	2	Problem solving
Radioactive series, orbital electron capture, nuclear isomers and internal conversion.	2	Lecture
Places of Nuclear reactors in India.		Seminar/Assignment
UNIT -IV: NUCLEAR CHEMISTRY II		
Theories of Nuclear fission and fusion: principle of atom	8	Lecture
bomb – nuclear reactors, stellar energy and hydrogen bomb	-	
Artificial radioactivity: Definition, types of artificial		
radioactivity brought about by accelerated particles.		
spallation. Application of radioactivity in the elucidation of		
structure and in the investigation of reaction mechanisms in		
analytical chemistry.		
Application of radioactivity: radioactive isotopes as tracer	2	Seminar
elements - applications in medicine, agriculture and industry,		
carbon dating		
Particle accelerators: cyclotron and synchrotron	2	ICT
UNIT V: SOLID STATE CHEMISTRY & STRUCTURE OF SOLIDS	5	
crystal structures – Sodium chloride, Zinc blende, wurtzite,	1	ICT & Group
rutile, Cesium chloride, fluorite – antifluorite – Identification		discussion
of simple cubic, bcc, fcc lattices.		
Ionic bonding – lattice energy – Born equation and its	8	Lecture
derivation, radius ratio rules –Bragg's equation -		
Classification of solids – amorphous and crystalline solids –		
Van der Waals crystals – covalent crystals (Diamond and		
Graphite) – Laws of crystallography – Elements of symmetry		
– Weiss and Miller indices – Crystal systems and Bravais		
lattices. Structure of ionic solids – crystal structures – Sodium		
chloride, Zinc blende, wurtzite, rutile, Cesium chloride,		
fluorite – antifluorite – Identification of simple cubic, bcc, fcc		

lattices.		
Crystal defects – Schottky and Frenkel defects – F-center.	2	ICT&Lecture
superconductors	1	Seminar

Course	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean		
Outcomes											scores
(COs)											of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	3	3	4	3	4	3	3	3	4	3.4
CO2	4	4	3	3	4	4	4	3	3	4	3.6
CO3	4	4	4	3	4	4	4	4	3	3	3.7
CO4	4	4	4	3	4	4	4	4	3	4	3.8
CO5	4	4	3	3	4	4	4	3	3	3	3.5
Mean Overall Score										3.6	

Result: The Score for this Course is 3.6 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X $5 = 25m$)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K1, K3	K2 / K3	K3 / K2
II	K2, K3	K3 / K1	K2 / K1
III	K1, K3	K1 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K2	K3 / K2	K3 / K3

Programme :B.Sc Chemistry Semester : IV Sub. Code : U22SEC1 Part IV: SEC-I Hours : 2 /W, 30 /S Credits : 2

SKILL ENHANCEMENT COURSE I TITLE OF THE PAPER: CHEMISTRY FOR COMPETITIVE EXAMINATIONS

Pedagogy	Hours	Lecture	Peer Teaching/Seminar//Discussion//Problem solving					
			session/Quiz/videos/Library session/ICT					
	2	1	1					
PREAMB	LE: Th	e objectiv	ve of the course is to train the students face any	compe	etitive			
examinatio	ons for	jobs or e	entrance examinations for higher studies with confide	ence a	nd to			
develop th	e skill to	answer n	nultiple choice questions.					
COURSE	OUTCO	ME: At t	he end of the Semester, the Students will be able to	Unit	Hrs.			
					/S			
CO1:discu	ss Gene	ral chara	cteristics of alkanes, alkenes, alkynes, stereochemistry,	1	6			
Explain car	bohydra	tes, hybrid	lization, polar effects.					
CO2:descr	ibe the	periodic	properties, metallurgical processes, types of chemical	2	6			
bonding an	d nuclea	r chemistr	у.					
CO3: exp	CO3: explain Colligative properties, Phase rule, Catalysis, chemical kinetics and 3 6							
electrocher	electrochemistry.							
CO4 : apply the concepts of volumetric analysis, thermo gravimetric analysis. 4 6								
CO5: disc	uss the j	properties	of Paints, varnishes, cement, fuels soaps and detergents,	5	6			
insecticides	5.							

Unit I: (6 hrs.)

Multiple choice questions in organic chemistry Unit II: (6hrs.) Multiple choice questions in Inorganic chemistry Unit III (6hrs.) Multiple choice questions in Physical Chemistry Unit IV:(6hrs.) Multiple choice questions in Analytical Chemistry Unit V:(6hrs.) Multiple choice questions in Applied Chemistry

Internal: 25 marks

External: 15 questions in each unit (1mark each) – no choice.

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	ORGANIC CHEMISTRY		
	General characteristics of alkanes, alkenes, alkynes.	4	Lecture
	Stereochemistry.	1	ICT
	Carbohydrates, hybridization, polar effects.	1	Quiz

UNIT II	INORGANIC CHEMISTRY		
	periodic properties, metallurgical processes	3	Lecture
	types of chemical bonding	2	Quiz
	Nuclear chemistry	1	ICT
UNIT II	: PHYSICAL CHEMISTRY	•	
	Colligative properties	1	Lecture
	Phase rule	1	ICT
	Catalysis	1	Lecture
	chemical kinetics	1	Lecture
	electrochemistry	2	ICT and Quiz.
UNIT IV	: ANALYTICAL CHEMISTRY	l	
	concepts of volumetric analysis.	3	Demo
	thermogravimetric analysis	3	ICT, Lecture, &Assignment.
UNIT V	APPLIED CHEMISTRY		-
	properties of Paints, varnishes, cement, fuels, soaps and detergents, insecticides.	3	Lecture & Group Discussion

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	4	5	3	4	4	5	4	3	5	4.2
CO2	4	5	3	4	4	5	4	3	4	5	4.1
CO3	5	3	4	5	4	4	3	5	4	4	4.1
CO4	5	3	3	4	4	4	5	4	3	5	4.0
CO5	5	4	3	4	5	3	4	3	5	4	4.0
Mean Overall Score									4.08		

Result: The Score for this Course is 4.08 (Very High Relationship)

Programme	:	B.Sc Chemistry
Semester	:	V
Sub. Code	:	U22CC8

Part III: Core paper 8 Hours : 5 /W, 75/S Credits : 5

TITLE OF THE PAPER: ORGANIC CHEMISTRY- I

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/ Discussion/Problem solving session/Quiz/Videos/ Demonstration Class (Lab / Library session is conducted after the class hours).	ICT
	5	3	1	1

PREAMBLE: The objective of the course is to make the student understand and learn the stereochemistry of organic compounds, Chemistry of Carbohydrates, estimation methods of glucose, aliphatic and aromatic nitrogen containing compounds, aliphatic and aromatic acids, Chemistry of Alicyclic compounds and conformational analysis of simple aliphatic and alicyclic compounds.

COURSE OUTCOME: At the end of Semester V, the students will be	Unit	hrs. /S
able to demonstrate thorough and clear knowledge of the following		
given below.		
CO1: Stereochemistry of organic compounds	1	15
CO2: Chemistry of Aldehydes and Ketones	2	15
CO3: Chemistry of Aliphatic and Aromatic Carboxylic acids	3	15
CO4: Chemistry of Aliphatic and Aromatic Nitrogen compounds	4	15
CO5: Chemistry of Carbohydrates	5	15

UNIT-I: STEREOISOMERISM

(15 Hours)

Optical isomerism:

i) Optical activity – specific rotation and its polarimetric determination – definition of optical isomerism – elements of symmetry. Representation of molecules in sawhorse, Fischer, and Newman formulae and their inter-translations.

ii)Optical isomerism of compounds containing asymmetric carbon atom – lactic and tartaric acids, enantiomers and diastereomers – racemization and resolution of racemic mixtures, Walden inversion – asymmetric synthesis, chirality – specifications of absolute configuration by R and S notations using Cahn-Ingold and Prelog nomenclature.

Optical activity of compounds without asymmetric carbon atoms: allenes, spiranes and biphenyl compounds.

Geometrical isomerism – nomenclature of geometrical isomers – cis/trans, E-Z notation and syn-anti for C=C, C=N compounds - Stereospecific addition to double and triple bonds – definition of stereospecific and stereoselective reactions – addition of Br_2 to E and Z Butene-2.

Conformational analysis of ethane, n-butane, cyclohexane and mono substituted cyclohexanes.

Significance of Stereochemistry in drugs: Thalidomide disaster in 1957- Need for strict testing of optical isomer and its drug action.

UNIT-II: ALDEHYDES AND KETONES

General methods of synthesis of aldehydes and ketones - synthesis of aldehydes from acid chlorides, Stephen's reduction - Gattermann-Kosch and Etard reactions - synthesis of ketones from nitriles, dialkyl cadmium, alkyl lithium and lithium dialkylcuprate and Friedel- Crafts and Hoesch reactions. Mechanism of nucleophilic additions to carbonyl group -addition of HCN, alcohols, thiols, sodium bisulfite, Grignard reagents -condensation with ammonia and its derivatives - Aldol, Perkin, Benzoin and Knoevenagel condensations, Wittig reaction, Mannich reaction, Reformatsky reaction and Cannizaro reaction. Oxidation by Tollen's reagent, KMnO₄, SeO₂ and peracids. Reduction by H₂/Ni, H₂-Pd-C, NaBH₄, LiAlH₄, MPV, Clemmensen and Wolff-Kishner reductions.

UNIT III: CARBOXYLIC ACIDS

General methods of preparation of carboxylic acids, acidity of carboxylic acids, effects of substituents on acid strength, acidity of aliphatic vs aromatic acids. Reactions of carboxylic acids - Hell-Volhard-Zelinsky reaction (Mechanism needed), Synthesis of acid chlorides, esters and amides, Reduction of carboxylic acids, methods and mechanism of decarboxylation. Methods of preparation and chemical reactions of a) halo acids -Monochloroacetic acid b) Hydroxy acids lactic and tartaric acid. Action of heat on hydroxy acids c) unsaturated monocarboxylic acidscrotonic acid, cinnamic acid d) dicarboxylic acids. Preparation and reactivity of carboxylic acid derivatives - acid chlorides, esters, amides and anhydrides - Mechanisms of esterification and hydrolysis (acid and base catalyzed reactions) - Bouveault Blanc Reduction - Synthesis of active methylene compounds – diethyl malonate and ethyl acetoacetate.

Uses of Lactic acid, tartaric acid, crotonic acid, cinnamic acid, monochloro acetic acid

UNIT-IV: NITROGEN CONTAINING COMPOUNDS (15 Hours)

Aliphatic nitrogen compounds: cyanides and isocyanides - general methods of preparation, properties – distinction between ethyl cyanide and isocyanide.

Alkyl nitrites and nitro alkanes: General methods of preparation and properties, distinction between ethyl nitrite and nitroethane.

Aliphatic diazo compounds- preparation, properties and structure of diazomethane and diazoacetic ester.

Derivatives of carbonic acids: Manufacture, properties and structure of urea. Estimation of urea. Aromatic nitro compounds: Reduction products of nitrobenzene – TNT and TNB.

Aromatic amino compounds: Effect of substituents on the basic character of aromatic amino compounds. Preparation and properties of isomers of toluidines. Estimation of aniline. Diazotization - preparation and synthetic uses of Benzene diazonium chloride.

Uses of TNT, TNB and Urea.

UNIT V : CARBOHYDRATES

Carbohydrates: Definition - Classification with suitable examples - Classification of sugars as reducing and nonreducing sugars - Stereochemistry of carbohydrates: D- and L- configurations -Anomers and epimers with suitable examples - Monosaccharides: Glucose -chemical properties of glucose - Epimerization of glucose - Anomers of glucose and mutarotation - Fructose and its

(15 Hours)

(15 Hours)

(15 Hours)

properties - Conversion glucose into fructose and vice-versa - Formation of osazone and glycosides - Fischer open structure and evidences for open structure - Haworth projection cyclic structures (pyranose and furanose) and evidences for cyclic structures of glucose and fructose - Stepping up - Kiliani- Fischer synthesis and stepping down - Ruff degradation of monosaccharides.

Disaccharides –General Reactions - Structure of Sucrose.

Polysaccharides: Starch and cellulose [structural discussion not needed]-

Applications of cellulose derivatives.

TEXTBOOKS

1. Text book of Organic Chemistry by P.L.Soni-SultanChand & Sons; 29th edition (2012)

2. Advanced Organic Chemistry by B.S.Bahl and Arun Bahl ; S. Chand Publishing 20th edition

3. Organic Chemistry by Morrison and Boyd; Pearson Education India; 7th edition (2010)

4. Organic Chemistry Vol. 1 by I. L. Finar; Pearson Education India; 6th edition (2002)

5.Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R.Santhanalakshmi, N.

Vijayathara, M.Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998.

References

1. Stereochemistry, Conformation and mechanism by P S Kalsi, 8th edition (2015)

2. Modern Organic Chemistry by M K Jain and S C Sharma, 4th edition (2014).

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1: S	TEREOISOMERISM		
	Representation of molecules in sawhorse, Fischer, and Newman formulae and their inter-translations. Elements of symmetry.	3	ICT
	Optical Isomerism and Geometrical isomerism.	9	Lecture
	Conformational analysis of ethane, n-butane, cyclohexane and mono substituted cyclohexanes.	2	Seminar/ Assignment
	Significance of Stereochemistry in drugs: Thalidomide disaster in 1957- Need for strict testing of optical isomer and its drug action.	1	Discussion
UNIT-II:	ALDEHYDES AND KETONES	1	1
	Chemistry of Aldehydes	8	Lecture
	Chemistry of Ketones	7	Lecture
UNIT III:	CARBOXYLIC ACIDS		
	General methods of preparation of carboxylic acids, Reactions of carboxylic acids - HVZ reaction (Mechanism needed), Synthesis of acid chlorides, esters and amides, Reduction of carboxylic acids, methods and mechanism of decarboxylation. Methods of preparation and chemical reactions of a) halo acids - Monochloroacetic acid b) Hydroxy acids c) unsaturated monocarboxylic acids- Preparation and reactivity of carboxylic acid derivatives - acid chlorides, esters, amides and anhydrides - Mechanisms of esterification and hydrolysis (acid and base catalyzed reactions) –	12	Lecture

	Bouveault Blanc Reduction - Synthesis of active methylene compounds – diethyl malonate and ethyl acetoacetate.		
	acidity of carboxylic acids, effects of substituents on acid strength, acidity of aliphatic vs aromatic acids.	2	ICT
	Uses of Lactic acid, tartaric acid, crotonic acid, cinnamic acid, monochloro acetic acid.	1	Group discussion
UNIT IV: N	NITROGEN CONTAINING COMPOUNDS		
Aliphatic Nitrogen Compoun	General methods of preparation, properties of Cyanides and Isocyanides. Distinction between Ethyl Cyanide and Isocyanide.	3	Lecture & Demonstration
Alkyl nitrites and nitroalkan	General methods of preparation and properties of Ethyl Nitrite and Nitroethane. Distinction between Ethyl Nitrite and Nitroethane.	3	Lecture & Discussion
	Preparation, Properties and Structure of Diazomethane and Diazo aceticester.	2	Lecture & Discussion
carbonic acids	Manufacture, properties, structure, estimation and uses of Urea.	3	Lecture & Videos. Library
	Reduction products of Nitrobenzene - TNT and TNB.	1	Seminar
Aromatic amino compounds	Effect of substituents on the basic character of aromatic aminocompounds. Preparation and properties of isomers of toluidines. Estimation of aniline. Diazotization - preparation and synthetic uses of Benzene Diazonium Chloride.	3	Lecture, ICT, Problem Solving
UNIT V: C	ARBOHYDRATES	1	
	Study of Glucose and Fructose - Structure and Configuration, Concept of Mutarotation andEpimerization Structure of Sucrose.	2	Lecture, Demonstration class, ICT. Lecture & videos
	Starch and Cellulose, Applications of Cellulose derivatives, Polysaccharides	2	Seminar

Course	Progra	mme Ou	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes			T	T	•		T	T	T	1	scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	3	4	3	4	4	3	3	3	3.5
CO2	4	4	3	3	4	4	4	4	3	3	3.6
CO3	4	4	3	4	3	4	3	4	3	2.5	3.45
CO4	4	4	3	3	3	4	4	3	3	2	3.3
CO5	4	4	4	3	3	4	4	3	3	3	3.6
Mean Overall Score											

Result: The Score for this Course is 3.49 (High Relationship)

44

UNIT	Part A(10X1m)	Part B (5 X 5 = 25m)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K1, K3	K2 / K3	K3 / K2
II	K2, K3	K3 / K1	K2 / K1
III	K1, K3	K1 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1/K3
V	K1, K2	K3/K2	K3 / K3

Programme : B.Sc Chemistry Semester : V Sub. Code : U22CC9

Part III: Core paper 9 Hours : 5 /W, 75 /S Credits : 5

TITLE OF THE PAPER: PHYSICAL CHEMISTRY I

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion//Problem solving session/Quiz/videos/Demonstration class (Library session is conducted after the class hours).	ICT						
	5	3	1	1						
PREAMBL	PREAMBLE: The objective of the course is to make the student to recognize the significance of									
Thermodynamics and laws associated with it, decipher the importance of entropy, free energy										
and real-life	e applica	tions of th	ermodynamics such as Joule Thomson effect, the ro	ole of chemical						

and real-life applications of thermodynamics such as Joule Thomson effect, the role of chemical kinetics in studying the rate of the reaction, the relationship between chemical constitution and physical properties.

COURSE OUTCOME: At the end of the Semester, the students will be able to	Unit	hrs./S
CO1 : explain the basic terminologies and laws of thermodynamics and calculations of	1	15
enthalpy, entropy and free energies.		
CO2 : demonstrate the different ways of stating II law of thermodynamics and its	2	15
significance, Entropy, free energy function and Partial molar quantities.		
CO3: explain the III law of thermodynamics	3	15
CO4 : derive the rate constants for 1^{st} , 2^{nd} , 3^{rd} and zero order reactions	4	15
CO5 : discuss the theories of reaction rates and the influence of temperature on rate of	5	15
the reaction and correlating the physical properties and chemical constitution.		

UNIT- I: THERMODYNAMICS -I

(15 Hours)

Introduction: Scope and importance of thermodynamics – energy and its units – mechanical work and heat and their relation – thermodynamic systems and their characteristics – state of a system – state function and path function and their characteristics – thermodynamic functions – exact and inexact differentials.

First Law: Statement – mathematical formulation – change in internal energy and enthalpy – heat changes at constant volume and constant pressure – C_p - C_v relationship – work done in isothermal, reversible expansion and compression of an ideal gas – work done in isothermal irreversible expansion of an ideal gas. Calculation of ΔE , ΔH and w for adiabatic expansion – reversible adiabatic expansion (P,V and T relationship) – comparison of isothermal and adiabatic reversible expansion. Reversible isothermal expansion of a real gas – calculation of ΔE , q, w and ΔH for a van der Waal's gas – Joule-Thomson effect ($\delta E/\delta V$)_T value for ideal gas - Joule – Thomson coefficient in ideal and real gases. Inversion temperature, calculation and significance. **Thermochemistry**: Variation of enthalpies with temperature – Kirchoff's equation – Laws of thermochemistry – i) Lavoisier and Laplace's law, ii) Hess's law of constant heat summation – statement and applications. Bond enthalpies –definition–calculation from the thermochemical data and applications.

Zeroth law of thermodynamics and its significance.

UNIT - II: THERMODYNAMICS - II

(15 Hours)

II law of thermodynamics – objective of the II law – different ways of stating II law and its significance.

Conversion of heat into work - Carnot's theorem and cycle - Thermodynamic efficiency thermodynamic scale of temperature.

Entropy - definition and significance -the concept of entropy - entropy changes in isolated systems – entropy as a thermodynamic function – dependence of entropy on variables of the system. Entropy changes - in ideal gas, in mixing of gases, physical transformations and in chemical reactions. Entropy and probability

Free energy functions: Helmholtz free energy (A) – definition and temperature dependence – Gibb's free energy (G) – definition. Variation of Gibb's free energy with temperature and pressure - Gibb's-Helmholtz equation and its applications - Maxwell's relations - criteria for reversible and irreversible processes in terms of Gibb's free energy.

Partial molar quantities: Chemical potential – relationship between partial molar quantities – Gibb's-Duhem equation – chemical potential in case of a system of ideal gases – application of the concept of chemical potential - Clausius-Claypeyron equation - derivation and its applications - thermodynamic properties of real gases - fugacity and activity concepts.

UNIT - III: THERMODYNAMICS - III

(15 Hours) Application of thermodynamics to various types of equilibria – equilibrium constant and free energy changes - van't Hoff reaction isotherm and van't Hoff isochore - thermodynamic

interpretation of law of mass action and LeChatelier's principle. Thermodynamics of ideal solution – free energy change of mixing, enthalpy change of mixing and entropy change of mixing.

Relation between osmotic pressure and vapour pressure lowering - thermodynamic derivation.

Relation between the depression of freezing point and concentration, elevation of boiling point and concentration - thermodynamic derivation.

Nernst heat theorem and its applications -Third law of thermodynamics - a simple treatment of the law. Temperature dependence of heat capacity - its use in the determination of absolute entropy. Exceptions to III law – residual entropy of CO, N₂O, H₂O, NO and H₂

UNIT – IV: CHEMICAL KINETICS I

(15 Hours)

Rate of a reaction – rate law and rate constant – order and molecularity of a reaction.

Reactions of first order and pseudo first order reaction - derivation of rate constant and halflife period – catalytic decomposition of hydrogen peroxide, conversion of

N-chloro acetanilide to p- chloro acetanilide, decomposition of dinitrogen pentoxide hydrolysis of ester by acids – inversion of cane sugar

Reactions of II order: derivation of rate constant and half-life period – saponification of ester. **Reactions of III order**: derivation of rate constant and half- life period. Reaction between FeCl₃ and SnCl₂.

Methods of determining the order of reactions.

Complex reactions, consecutive, parallel and reversible reactions (preliminary discussion with examples – derivation not expected)

Reactions of zero order surface reactions – derivation of rate law - specific examples.

UNIT – V: CHEMICAL KINETICS II (15 Hours)

Influence of temperature on the rate of a reaction – Arrhenius rate equation and its significance – measurement of Arrhenius parameters, A and E_a .

Theory of reaction rates – Collision theory – unimolecular reactions – Lindemann – Christiansen mechanism– Theory of absolute reaction rates – enthalpy of activation – entropy of activation.

Magnetic properties: Types of magnetic behavior, dia, para, ferro, antiferro and ferrimagnetism – Hysteresis – Solid state lasers – inorganic phosphors – ferrites.

Catalysis: Definition – characteristics – Theories of catalysis – promoters and poisons – enzyme catalysis – acid-base catalysis –auto catalysis with suitable examples.

TEXTBOOKS

- 1. Principles of Physical Chemistry- Puri, Sharma and Pathania- Vishal Publishing Co. 46th edition.
- 2. Text book of physical chemistry by P.L.Soni., O.P.Dharmarha, U.V.Dash., S.Chand., 2016.
- 3. ArimuraiIyarpuVethiyal by Sudha soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

References

1. Essential of physical chemistry by Arun Bahl and B.S.Bahl and G.D.Tuli, S.Chand., 2014.

2. Basic chemical kinetics by G.L.Agarwal., tata Mc Graw Hill., 1990.

3. Electrochemistry byV.Viswanathan., Dr.S. Sundaram., Viswanathan Printers and Publishers, 2007.

4. Physical chemistry by Peter Atkins., Oxford Univ Press., 2017.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	THERMODYNAMICS I		
	Terminologies in thermodynamics, Laws of thermodynamics First law, Kirchoff's equation Laws of thermochemistry, Zeroth law Scope and importance of thermodynamics, Bond enthalpies and Exact and inexact differential	12	Lecture Discussion, Problem solving.
	Joule Thomson coefficient and Isothermal reversible and irreversible expansion.	3	ICT
UNIT 11	THERMODYNAMICS –II		
	Second Law of thermodynamics, Carnot Theorem and cycle, Gibbs Helmholtz equation Maxwell's relations Gibbs Duhem equation Clasius Claypeyron equation, Partial molar quantities, Concepts of entropy and free energy	12	Lecture
	Entropy, Entropy and Probability (Examples) Free energy Functions (Examples)	3	ICT

UNIT II	I THERMODYNAMICS-III		
	Vant Hoff Reaction Isotherm, Vant Hoff Isochore Enthalpy Change of mixing, Entropy changes of mixing Relation between Osmotic Pressure and Lowering of Vapour pressure, Relation between Depression of Freezing point and concentration, Elevation of Boiling point and concentration, Le Chatelier's principle, Nernst Heat Theorem and its applications, Third Law of Thermodynamics	11	Lecture
	Applications of Third Law of Thermodynamics Exceptions	1	Discussion
	to III Law (Examples of imperfection) LeChatelier's	3	ICT
	principle		
UNIT IV	CHEMICAL KINETICS I	ſ	
	Rate law and rate constant, Rate constant and half-life period for 1^{st} , 2^{nd} , 3^{rd} and zero order reactions	9	
	Order and molecularity of a reaction, Types of chemical	3	Problem solving
	reactions (complex, parallel, consecutive.) Examples for 1 st ,		Seminar &
	2^{nd} , 3^{rd} and zero order reactions		Quiz
	Methods for determining order of the reaction	3	ICT
UNIT V	CHEMICAL KINETICS II		
	Significance and measurement of Arrhenius parameters Theories of reaction rates Unimolecular, Lindemann, Absolute reaction rates Applications of bond and group moments Enthalpy of activation and entropy of activation	10	Lecture
	Influence of temperature on reaction rates	2	Seminar &
	Para, dia and ferromagnetic properties		Discussion
	Collision theory, Experimental determination of dipole moment, Guoy's method of determination of magnetic susceptibility, Magnetic properties: Types of magnetic behavior, dia, para, ferro, antiferro and ferrimagnetism – Hysteresis – Solid state lasers – inorganic phosphors – ferrites.	3	ICT

Course	Progra	mme Oı	itcomes	(POs)		Programme Specific Outcomes (PSOs)				s)	Mean
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	3	3	2	3	2	4	4	2	3	4	3
CO2	3	3	2	3	3	4	4	2	3	4	3.1
CO3	3	3	2	3	2	4	4	3	3	4	3.1
CO4	4	2	2	4	3	4	4	3	3	4	3.3
CO5	4	3	3	4	3	4	3	2	3	4	3.3
Mean Overall Score											

Result: The Score for this Course is 3.16 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K3, K1	K1/K3	K3/K3
II	K3, K2	K1/K3	K2/K1
III	K2, K1	K3/K2	K1/K3
IV	K3, K1	K2/K3	K3/K2
V	K3, K2	K3/K1	K3/K3

Programme : B.Sc Chemistry Semester : V Sub. Code : U22CC10 Part III: Core paper 10 Hours : 5 / W, 75 / S Credits : 5

TITLE OF THE PAPER– ANALYTICAL TECHNIQUES

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving ICT							
			session/Quiz/videos/Demonstration class.							
	5	3	1	1						
PREAMB	LE: The	objective	of the course is to make the student understand the basic	c conce	epts of					
different t	ypes of	chromato	graphy, their applications, the basic principles of Infra	red, R	laman					
UV, PMR,	ESR, M	lass and ¹³	³ C spectroscopy.							
COURSE	COURSE OUTCOME: At the end of the Semester, the students will be able to Unit hrs./S									
CO1: exp	lain the b	basic conce	epts of chromatography, its classification, the techniques of	1	15					
column and	l thin lay	ver chroma	tography & their applications.							
CO2: expla	ain the b	asic conce	pts, techniques of Paper and ion exchange chromatography	2	15					
and the bas	ic conce	pts of Gas	Chromatography & HPLC.							
CO3: dem	onstrate	the basic of	concepts of spectroscopy, IR and Raman spectroscopy and	3	15					
their applic	ations in	structural	diagnosis.							
CO4: demo	onstrate t	the basic p	rinciples in UV and PMR spectroscopy.	4	15					
CO5: demo	onstrate t	the basic co	oncepts of ¹³ C NMR, ESR and Mass spectroscopy.	5	15					

UNIT-I: CHROMATOGRAPHY I

(15 Hours)

(15 Hours)

Definition of chromatography, mobile phase and stationary phase. Classification of chromatography. Principles of adsorption and partition chromatography.

Column Chromatography: solid stationary phase – adsorbent –requirement of a good adsorbent – examples –liquid stationary phase – solid support- solvent mobile phase – requirement of a good solvent - Preparing a column for chromatography - Separation of a mixture of several components using adsorption column chromatography – development – identification of components - elution techniques – factors affecting column efficiency – applications of column chromatography.

Thin Layer Chromatography – adsorption and partition – preparation of plate – application of separating mixture – developing chambers – development of plate – identification of components-.

Applications of TLC- TLC is superior to other methods of chromatography

UNIT – II: CHROMATOGRAPHY II

Ion exchange chromatography – cation exchangers – anion exchangers – mode of their action – method of separation – separation of chloride and bromide ions – separation of zinc and magnesium ions – separation of cobalt and nickel ions. – other **applications of ion exchange chromatography**

HPLC – Principle and separation.

Gas chromatography- Differences between GSC and GLC- Gas solid chromatography (Principle) – Gas liquid chromatography, Instrumentation, Detectors of GLC and Applications of Gas Chromatography.

UNIT – III: SPECTROSCOPY I

Introduction to Spectroscopy - Regions of electromagnetic spectrum – parameters of electromagnetic radiation – molecular spectroscopy – Born- Oppenheimer approximation – relative energies required for rotational, vibrational, electronic transitions.

Infra-red spectroscopy - Introduction – principle – types of stretching and bending vibrations. Vibrational frequency- factors influencing vibrational frequencies - instrumentation - simple problems involving identification of organic compounds from characteristic absorption bandsfunctional group detection – fingerprint region – study of hydrogen bond.

Raman Spectroscopy - Rayleigh and Raman scattering- stoke's and anti-stoke's lines. Complementation of Raman and IR spectroscopy. - mutual exclusion principle – structural diagnosis. **Application of IR and Raman spectroscopy**.

UNIT – IV: SPECTROSCOPY II

UV spectroscopy: Instrumentation - Frank-Condon principle- predissociation. Types of electronic transitions, chromophore, auxochrome, λ_{max} and intensity of absorption bands, factors influencing λ_{max} and ϵ . identification of conjugation – calculation of λ_{max} for dienes, α , β -unsaturated carbonyl compounds and aromatic compounds

PMR spectroscopy: Principle of nuclear magnetic resonance – Instrumentation - number of signals – equivalent and non-equivalent protons - shielding mechanism – chemical shift – peak area and proton counting- spin-spin coupling – coupling constant (J) – splitting of signals – NMR spectrum of ethanol – low and high resolution. Application of UV and NMR spectroscopy.

UNIT – V: SPECTROSCOPY III

 C^{13} NMR spectroscopy – simple treatment.

ESR spectroscopy: Theory – selection rule for transition – hyperfine splitting – **ESR spectra of** simple radicals, hydrogen and methyl radicals.

Mass spectroscopy: Instrumentation – Basic principles of mass spectroscopy, molecular ion peak, base peak, isotopic peak and meta stable peak – nitrogen rule and ring rule. McLafferty rearrangement. **Mass spectrum of simple organic compounds (acetaldehyde, ethyl alcohol, methyl amine and toluene).**

Textbooks

1.Text Book of Organic Chemistry by P.L.Soni ; Sultan Chand &Sons 29th edition ; 2012

2. Analytical Chemistry by Gopalan et al; Sultan Chand & Sons (2013)

3. Analytical spectroscopy by G.R.Chatwal, Himalaya Publishing House, 1st edition, 1996.

4.Spectroscopy by B.K.Sharma, Goel Publishing House, 10th edition, 1993.

References:

- 1. Instrumental methods of Chemical Analysis by B.K.Sharma, Krishna Prakashan Media Pvt Ltd 1/e edition (2011)
- 2. Fundamentals of Molecular spectroscopy by Colin.N.Banwell and Elaine.M. Mc cash, 4th edition, Mc Graw Hill Edn (Ind) Pvt Ltd, 2016.

(15 Hours)

(15 Hours)

(15 Hours)

- Elementary of spectroscopy by Gupta, Kumar and Sharma., Prakasan,10th edition, 1995.
 Analytical chemistry by Skoog and West, Holler, HBJ publisher, 6th edition, 1992 Pragati

•

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	CHROMATOGRAPHY I		
	Preparation of column, TLC plates and separation of components.	4	ICT
	Basic principles of chromatography, classification, basic	9	Lecture
	terminologies used, separation techniques of column and thin layer		
	chromatography, R _f value and its calculation.		
	Applications of Chromatography.	2	Seminar
UNIT II	CHROMATOGRAPHY II		
	Various methods of development of paper chromatography and	3	ICT
	separation of components. Gas chromatography explanation.		
	Applications of paper	2	Seminar
	Chromatography and ion exchange chromatography.		and
			Assignment
	Basic principles of Paper chromatography, R _f value and the factors	10	Lecture
	affecting it, ion exchange chromatography, ion exchangers, Gas		
	chromatography and HPLC.		
UNIT II	I: SPECTROSCOPY I	1	1
	Regions of electromagnetic spectrum, IR instrumentation, spectral	4	ICT
	stretching frequencies.		
	Functional group detection and solving simple problems in IR	2	Group
			discussion
			& Problem
			solving
	Basic principles of molecular spectroscopy, IR and Raman	9	Lecture
	spectroscopy		
UNIT IV	: SPECTROSCOPY II	ſ	I
	Types of electronic transitions, Principle of PMR spectroscopy,	3	ICT
	Instrumentation of PMR and UV spectroscopy.		
	Calculation of λ_{max} , Finding out the number of signals in NMR	3	Problem
	spectra.		solving
			session
	Frank Condon principles of UV, pre-dissociation, factors affecting	9	Lecture
	λ_{max} , Identification of conjugation, Principles of NMR, shielding		
	mechanism, Chemical shift, spin-spin coupling, proton counting,		
	splitting of signals, NMR of ethanol.		
UNIT V:	SPECTROSCOPY III		
	Instrumentation of Mass, Basic concept of mass spectroscopy, ESR	3	ICT
	spectra of simple molecules.		
	ESR spectroscopy, theory, selection rule, hyperfine splitting, other	10	Lecture
	contents of mass spectroscopy, ¹³ C NMR spectroscopy		
	Mass spectrum of simple organic compounds, ESR of hydrogen and	2	Lecture
	methyl radical.		

Course	Progra	imme O	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes										scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
										-	
COI	4	3	4	4	4	4	4	4	4	4	3.9
		-									
CO2	4	3	4	4	4	4	4	4	4	4	3.9
					-						
CO3	4	4	4	4	3	4	4	4	4	4	3.9
					_						
CO4	4	4	4	4	3	4	4	4	4	4	3.9
CO5	4	4	4	4	3	4	4	4	4	4	3.9
Mean Overall Score											3.9

Result: The Score for this Course is 3.9 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K1, K2	K1 / K3	K3 / K2
II	K2, K3	K3 / K1	K3 / K1
III	K1, K3	K2 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K3	K3 / K2	K2 / K3

Part III: Core paper 11 Hours : 6/W, 90/S Credits :5

TITLE OF THE PAPER: PRACTICALS -3, GRAVIMETRIC AND ORGANIC ANALYSIS

Pedagogy	Hours	Lab session//Demonstration class/Viva voce						
	5	5						
PREAMBLE: The objective of the course is to make the student to estimate the weight of the								
unknown so	lution gr	avimetrically and analyse the given organic compound.	_					
COURSE	COUTC	OME: At the end of the Semester, the Students will be able to	Unit	hrs./S				
CO1: estima	CO1 : estimate the given inorganic solution gravimetrically. 1 30							
CO3: analyse the given organic compound and find out the functional group present 3 60								
in it and prepare its derivatives								

UNIT – I GRAVIMETRIC ANALYSIS

Estimation of Ca as calcium monohydrate Estimation of Ba as chromate Estimation of Lead as chromate

UNIT –II ORGANIC ANALYSIS

Analysis of the organic substance containing the following functional groups: Acids, phenols, aldehydes, ketones, esters, nitro compounds, amines, amides, anilides and halogenated hydrocarbons (side chain and nucleus) Monosaccharide –glucose.

Report should contain aromatic or aliphatic, saturated or unsaturated and a solid derivative or a colour reaction should be exhibited.

Examination: Unit I & Unit II Internal - 40 marks External - 60 marks Unit I (25 marks) Procedure -8 marks, Experiment–17 marks, error up to 1% -17, 2% -12, 3% -7, 4% and above - 5 Unit II (25 marks) Record – 5 marks Viva voce – 5 marks

UNITS	TOPIC	LAB HOURS	MODE OF TEACHING					
UNIT 1: Gravimetric Analysis								
	Gravimetric Estimation	20	Lab session					
	Gravimetric Estimation	5	Demonstration					
	Gravimetric Estimation	5	Viva-Voce					
UNIT 11: Or	ganic Analysis							
	Organic Analysis	50	Lab session					
	Organic Analysis	5	Demonstration					
	Organic Analysis	5	Viva-Voce					

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	5	4	5	4	4	4	5	4	3	4.3
CO2	5	5	5	4	4	4	4	4	4	4	4.3
Mean Overall Score								4.3			

Result: The Score for this Course is 4.3 (Very High Relationship)

Programme : B.Sc Chemistry Semester : V Sub. Code : U22DSC1A

Part III: DSEC-I Hours : 5 /W, 75 /S Credits : 5

DISCIPLINE SPECIFIC ELECTIVE COURSE-I TITLE OF THE PAPER: FOOD CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving session/Quiz/videos/Demonstration class		ICT	
	5	3	1		1	
PREAMB	LE: The	objective	of the course is to understand the nutritive value of	f food st	uffs and	
nutraceuticals, detection of food adulteration, food additives and its restriction, food preservation techniques and dairy chemistry.						
COURSE	OUTCO	ME: At th	e end of the Semester, the students will be able to	Unit	hrs./S	
CO1: demo	onstrate th	ne nutritive	e value of food stuffs and nutraceuticals	1	15	
CO2: explain the detection of food adulteration2						
CO3: discuss on food additives and its restriction3						
CO4 : demonstrate in detail about different Food preservation techniques 4						
CO5: display an in-depth knowledge of Dairy chemistry5						

UNIT – I: FOOD AND NUTRITION

Food and nutrition – role of nutrients – nutritive value of food stuffs – cereals and millets, rice, wheat, pulses, nuts and oil seeds, vegetables, fruits, animal foods - meat, egg, fish. Nutraceuticals - flavour and aroma of food - cooking processes - chemistry of cooking -Principles of microwave cooking.

UNIT – II: FOOD ADULTERATION

Food adulteration -contamination - list of food items and their contaminants - detection of adulteration – by simple techniques – prevention of food adulteration.

UNIT – III: FOOD ADDITIVES

Food additives - reasons for adding additives - examples - artificial sweeteners - saccharin, cyclamate and aspartame. Food flavours - taste sensation - chemical composition of flavourings - common characteristics of flavourings- classification - synthetic flavourings - formulation of flavourings - artificial colours - restrictions in the usage of additives - emulsifying agents leavening agents – baking powder – yeast – taste makers – MSG and vinegar.

UNIT - IV: FOOD PRESERVATION

Objective of food preservation - Traditional methods of preservation - Thermal processing chilling – freezing – canning – Microwave heating – high pressure processing of foods - Edible coating in fruits and vegetables – use of artificial preservatives.

Emerging preservation techniques - use of biotechnology in reducing spoilage of fruits and vegetables - Using membranes in food preservation – Ultrasound as a preservation technology – Modified atmosphere packaging (MAP) - Using MAP and other techniques to preserve processed meat, bakery and other products – High pressure processing.

(15 Hours)

(15Hours)

(15 Hours)

(15 Hours)

UNIT – V: DAIRY CHEMISTRY

Milk – definition – general composition of milk – constituents of milk – lipids, proteins, carbohydrates, vitamins and minerals. Physical properties of milk – colour, odour, acidity, specific gravity, viscosity and conductivity. Factors affecting the composition of milk – Pasteurization, homogenization, toning, standardization, reconstitution of milk – adulteration of milk – milk products – cream, butter, ghee, butter milk, yoghurt, curd, ice cream and Whey protein.

TEXTBOOKS

- 1. Food Science by Sri Lakshmi; New Age International Publishers; 7th edition.
- 2. Fundamental Concepts of Applied Chemistry by Jayasree Ghosh, S.Chand& Company Ltd.,
- 3. Ancillary Chemistry for Home Science students by Thankamma Jacob.

References:

- 1. Textbook of Dairy Chemistry, D.D. Roy, P. Dinakar for ICAR, M.P. Mathur 2008.
- 2. Textbook of Preventive and Social Medicine by Park and Park; Bhanot; 23rd edition (2015).

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT –	I: FOOD AND NUTRITION	•	
	Nutritive value of food stuffs	8	Discussion
	Nutraceuticals	4	Demowith charts
	Principles, advantages and disadvantages of microwave cooking	3	ICT
UNIT –	II: FOOD ADULTERATION	•	·
	Food adulteration	3	Lecture
	Detection of adulterants by simple methods	10	Lab session, ICT
	Prevention of adulteration	2	Discussion
UNIT –	III: FOOD ADDITIVES		
	Food additives	2	Discussion
	Artificial sweeteners	2	Lecture and demo
	Flavoring	6	ICT&Lecture
	Restriction in usage of food additives	2	Demonstration
	Emulsifying agents, leavening agents and taste makers.	3	Lecture
UNIT –	IV: FOOD PRESERVATION		
	Traditional methods of preservation	6	Lecture, Seminar & ICT
	Emerging preservation techniques	9	Lecture& ICT
UNIT –	V: DAIRY CHEMISTRY		
	Milk – definition, general composition of milk,	3	Lecture, ICT &
	constituents of milk, lipids, proteins, carbohydrates, vitamins and minerals.		Lab Class
	Physical properties of milk – colour, odour, acidity, specific gravity, viscosity and conductivity	3	Lecture&Demons tration
	Factors affecting the composition of milk	3	Lecture & Seminar

(15 Hours)

Pasteurization, homogenization, toning standardization, reconstitution of milk	3	Lecture& Discussion
Adulteration of milk – milk products – cream, butter, ghee, butter milk, yoghurt, curd, icecream and Whey protein.	3	Lecture

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes		•		•	•		1	1	1	1	scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	3	3	4	4	4	4	4	4	3.8
CO2	4	4	3	3	4	4	4	5	4	4	3.9
CO3	4	4	4	3	4.5	5	4	3	4	4	3.95
CO4	4	4	4	3	4.5	4.5	4	3	4	4	3.6
CO5	4	4	5	3	4	4	4	4	4	4	3.6
Mean Overall Score									3.77		

Result: The Score for this Course is 3.77 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X $5 = 25m$)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K1, K2	K1/K3	K3 / K1
II	K2, K3	K2/ K3	K3/ K2
III	K1, K3	K3/ K1	K3 / K3
IV	K1, K3	K3/ K2	K2/ K3
V	K3, K2	K3 / K3	K1/K3

Programme : B.Sc Chemistry Semester : V Sub. Code : U22DSC1B

Part III: DSEC-I Hours : 5/W, 75 /S Credits : 5

DISCIPLINE SPECIFIC ELECTIVE COURSE-I TITLE OF THE PAPER: POLYMER CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/ Discussion/Problem solving	lving ICT			
			session/Quiz/videos/Demonstration class.				
	5	3	1	1			
PREAMBL	E: The	objective	of the course is to make the student understand	the d	efinition		
classification	n with s	uitable ex	amples, bonding structure of polymers and variou	is dete	rmining		
methods of	molecul	lar mass o	of polymers, kinetics and mechanism of various	polyme	erization		
reactions, di	fferent l	kinds of po	lymer reactions and degradation, raw material and	prepa	ration of		
industrial po	olymers	and differe	ent polymer processing techniques.				
COURSE O	UTCON	IE: At the	end of the Semester, the students will be able to	Unit	Hrs /S		
CO1: descril	be the ch	nemistry be	hind structure and bonding of polymers and various	1	15		
methods of d	etermini	ng the mole	ecular mass of polymers				
CO2: charac	cterize th	ne type of	mechanisms and kinetics involved in synthesis of	2	15		
polymers.							
CO3: exhibit	t knowled	dge of vario	ous polymer reactions and methods of degradation.	3	15		
CO4: discus	s the ra	w materia	ls and methods of preparing industrially important	4	15		
polymers and elastomers.							
CO5: analyz	CO5 : analyze the additives involved in processing polymers and various processing 5 15						
techniques of	techniques of polymers.						

Unit – I INTRODUCTION TO POLYMERS

(15 Hours)

Monomers, oligomers, polymers and their characteristics – classification of polymers: natural, synthetic, linear, cross linked, homopolymers and copolymers –bonding in polymers: primary and secondary bond forces –effect of polymer structure on properties – determination of molecular mass of polymers: number average molecular mass, weight average molecular mass – determination by viscosity, light scattering method, osmometry and ultra-centrifuging.

Unit – II KINETICS AND MECHANISM OF POLYMERIZATION (15 Hours)

Chain growth polymerization: cationic, anionic, free radical polymerization – stereo regular polymers: Ziegler Natta catalyst – polycondensation: non catalysed, acid catalyzed – molecular weight distribution – step growth polymers – degrees of polymerization.

Unit –III POLYMER REACTIONS AND DEGRADATION

Introduction – hydrolysis, acidolysis, aminolysis, hydrogenation – addition and substitution reactions – cyclisation reactions – crosslinking reactions, vulcanization and cure reactions Polymer degradation – types of degradation – degradation by high energy radiation, ultrasonic waves – oxidative degradation – antioxidants.

Unit – IV INDUSTRIAL POLYMERS

Raw material, preparation, fibre- forming polymers, elastomeric material. Thermoplastics: Polyethylene, Polypropylene, polystyrene, Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluoro ethylene, nylon and polyester.

Thermosetting Plastics: Phenol formaldehyde and epoxide resin.

(15 Hours)

(15 Hours)

Elastomers: Natural rubber and synthetic rubber - Buna - N, Buna-S and neoprene. Conducting Polymers: poly sulphur nitriles, poly phenylene, poly pyrrole and poly acetylene. Poly methylmethacrylate, polyimides, polyamides, polyurethanes, polyureas, polyethylene and polypropylene glycols

Unit – V POLYMER PROCESSING

(15 Hours)

Compounding: Polymer Additives: Fillers, Plasticizers antioxidants and thermal stabilizers fire retardants and colourants.

Processing Techniques: Calendaring, Die casting, Compression moulding, Injection moulding, Blow moulding, Extrusion moulding and Reinforcing, Foaming, Spinning of fibers and Mercerization.

TEXTBOOKS

1.V.R. Gowariker, Polymer Science, Wiley Eastern, 1995.

Reference books

2. F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience, 1971.

3. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and Engineering, Tata McGraw-Hill, 1978

4. B.K.Sharma - Industrial chemistry, Krishnaprakashan Media(P) Ltd (2014) 18thedn

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT I: 1	INTRODUCTION TO POLYMERS		
	Monomers, oligomers, polymers and their characteristics – classification of polymers: natural, synthetic, linear, cross linked, homopolymers and copolymers	4	Library followed by discussion
	bonding in polymers: primary and secondary bond forces – effect of polymer structure on properties, determination of molecular mass of polymers: number average molecular mass, weight average molecular mass	6	Lecture
	determination of molecular mass of polymers: number average molecular mass, weight average molecular mass	2	Problem solving session
	determination by viscosity, light scattering method, osmometry and ultra-centrifuging	3	ICT
UNIT II:	KINETICS AND MECHANISM OF POLYMERIZATION		
	Chain growth polymerization: cationic, anionic, free radical polymerization, stereo regular polymers: Ziegler Natta catalyst, molecular weight distribution, step growth polymers, degrees of polymerization polycondensation: non catalysed, acid catalyzed	11	Lecture
	stereo regular polymers: Ziegler Natta catalyst, molecular weight distribution	3	ICT
	polycondensation: non catalysed, acid catalyzed	1	Seminar /peer teaching

UNIT III: POLYMER REACTIONS AND DEGRADATION		
Introduction – hydrolysis, acidolysis, aminolysis, hydrogenation, addition and substitution reaction, Polymer degradation – types of degradation, oxidative degradation, antioxidants	8	Lecture
cyclisation reactions – crosslinking reactions, vulcanization and cure reactions	4	ICT
degradation by high energy radiation, ultrasonic waves	3	Seminar
UNIT IV: INDUSTRIAL POLYMERSRaw material, preparation, fiber forming polymers, elastomeric material.Thermoplastics:Polyethylene, Polypropylene, polystyrene, Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluoro ethylene, nylon and polyester.	7	Lecture
Thermosetting Plastics: Phenol formaldehyde and epoxide resin.Elastomers: Natural rubber and synthetic rubber - Buna - N, Buna-S and neoprene.	4	ICT
Conducting Polymers: poly sulphur nitriles, poly phenylene, poly pyrrole and poly acetylene.	2	Lecture followed by discussion
Poly methylmethacrylate, polyimides, polyamides, polyurethanes, polyureas, polyethylene and polypropylene glycols	2	Role play/ tutorial
UNIT V: POLYMER PROCESSING	-	
Polymer Additives: Fillers, Plasticizers antioxidants and thermal stabilizers fire retardants and colourants.	5	Lecture
Processing Techniques: Calendaring, Diecasting, Foaming, Spinning of fibers and Mercerization	5	Lecture followed by Seminar
Compression moulding, Injection moulding, Blow moulding, Extrusion moulding and Reinforcing	5	ICT

Course	Progra	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean
Outcomes	DO1	DO2	DO2	DO4	DO5	DSO1	DSO2	DSO3	DSO4	DSO5	scores
(COs)	PUI	PO2	P03	P04	POS	P301	P302	PS05	P304	PS05	of COs
							<u> </u>	2.5	2.5		2.6
CO1	4	3	4	4	2	4	4	3.5	3.5	4	3.6
CO2	4	3	3.5	4	2.5	4	4	3	3	4	3.5
CO3	4	3.5	3	4	2.5	4	3	3	4	4	3.5
CO4	4	3	3	4	3	4	4	3	3	4	3.5
CO5	4	3.5	3.5	4	2	4	4	3	3	4	3.5
Mean Overall Score									3.45		

Result: The Score for this Course is 3.45 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K1, K2	K1 / K3	K3 / K2
Π	K2, K3	K3 / K1	K3 / K1
III	K1, K3	K2 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K3	K3/K2	K2 / K3

Programme : B.Sc Chemistry Semester : V Sub. Code : U22GEC1

GENERIC ELECTIVE COURSE TITLE OF THE PAPER: INVENTIONS AND INNOVATIONS IN CHEMISTRY

Part IV: GEC I

Credits : 2

Hours : 2 / W, 30 / S

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving	Peer Teaching/Seminar/Discussion/Problem solving				
			session/Quiz/videos/Demonstration class/ICT					
	2	1	1					
PREAMBL	E: The c	bjective o	of the course is to make the students appreciate the his	tory of	modern			
chemistry an	d to know	w about Ir	ntellectual property rights, nanomedicines, smart materia	ls and	future of			
energy.								
COURSE O	UTCON	IE: At the	e end of the Semester, the Students will be able to	Unit	hrs. / S			
CO1: discuss	s the hist	ory of mo	dern chemistry.	1	6			
CO2: discuss	s the Inte	llectual pr	operty rights.	2	6			
CO3: explain	n the Indi	ian system	of medicine, nanomedicine Proteomics and genomics.	3	6			
CO4 : demonstrate piezoelectric material- Conducting polymers- Biopolymers- Shape 4 6								
memory polymers- chromoactive material- Sensors								
CO5: explain	CO5 : explain Solar cells and Fuel Cells and Energy efficiency ratio. 5 6							

UNIT I: HISTORY OF MODERN CHEMISTRY

Revolutionary Scientists of modern chemistry – Wohler- Marie Curie- Alexander Fleming-Haber -Bosch - Alfred Nobel. Honours and Awards- Royal Society of Chemistry- American Chemical Society- Society of Chemical Industry- Indian Chemical Society - Nobel prizes in chemistry (past 5 years)-Women and science – serendipity in science.

UNIT II: INTELLECTUAL PROPERTY RIGHTS (6 Hours)

Definition - Types- Difference between patent and copyright – Utility patent – Requirement for patent protection- Design patent – copyright- Registering a copyright- benefits of patent and copyright holders.

UNIT III: CHEMISTRY AND MEDICINE

Indian system of medicine- - Classification of drugs - Drug Development- target and lead molecule-Clinical study- Drug approval- Nanomedicine- Proteomics and genomics.

UNIT IV: SMART MATERIALS

Defnition- types- Piezoelectric material- Conducting polymers- Biopolymers- Shape memory polymers- chromoactive material- Sensors – trending Innovations that can change the world.

UNIT V: FUTURE OF ENERGY

Energy Crisis- Need for green energy- Solar cells- Fuel Cells-Definition - working, Type-Applications.Energy efficiency ratio, renewable energy industries.

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

References

UNIT 1

1. https://rucforsk.ruc.dk/ws/portalfiles/portal/57533464/The_Birth_of_Modern_Chemistry.pdf

2. http://www.columbia.edu/itc/chemistry/chem-c2507/navbar/chemhist.html

3. https://www.arvindguptatoys.com/arvindgupta/asimov-chemistry.pdf

4. <u>https://www.nobelprize.org/womenwhochangedscience/stories/marie-</u> curie#:~:text=Indefatigable%20despite%20a%20career%20of,changed%20our%20understandin g%20of%20radioactivity.&text=Curie%20was%20born%20Marya%20Sk%C5%82odowska%2 0in%201867%20in%20Warsaw.

5. https://www.worldcat.org/title/madame-curie-a-biography/oclc/609355556

6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520913/

7. https://www.pharmacytimes.com/view/alexander-fleming-and-the-discovery-of-penicillin

- 8. https://www.thoughtco.com/overview-of-the-haber-bosch-process-1434563
- 9. https://www.thoughtco.com/alfred-nobel-biography-4176433

10. https://en.wikipedia.org/wiki/List_of_chemistry_awards

11.https://newhumanist.org.uk/articles/4852/science-and-serendipity-famous-accidental-discoveries

Unit II

- 1. https://www.slideshare.net/prreeem/patent-ppt
- 2. https://swaritadvisors.com/learning/advantages-of-copyright-registration/

UNIT III

- 1. <u>https://www.fda.gov/patents/learn-about-drug-and-device-approvals/drug-development-process</u>
- 2. <u>https://www.technologynetworks.com/drug-discovery/articles/exploring-the-drug-development-process-331894</u>
- 3. <u>https://www.technologynetworks.com/drug-discovery/articles/exploring-the-drug-development-process-331894</u>
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816487/#:~:text=India%20has%20the %20unique%20distinction,and%20Yoga%2C%20Naturopathy%20and%20Homoeopath y.
- 5. https://byjus.com/chemistry/classification-drugs/
- 6. https://www.basu.org.in/wp-content/uploads/2020/11/Pharmacology-II.pdf
- 7. <u>https://www.slideshare.net/ibadali14/applications-of-genomics-and-proteomics-ppt</u>

UNIT IV

- 1. <u>https://en.wikipedia.org/wiki/Smart_material#:~:text=Smart%20materials%20have%20p</u> roperties%20that,can%20be%20repeated%20many%20times.
- 2. https://www.sciencedirect.com/science/article/pii/B9780081007419000036
- 3. https://archive.nptel.ac.in/courses/112/104/112104251/
- 4. https://www.degruyter.com/document/doi/10.1515/ci-2020-0402/html?lang=en

UNIT V

- 1. https://en.wikipedia.org/wiki/Energy_policy
- 2.
- 3. https://www.fujielectric.com/company/tech/pdf/r49-2/06.pdf
- 4. https://nptel.ac.in/courses/103107157
- 5. https://archive.nptel.ac.in/courses/121/106/121106014/
- 6. https://justenergy.com/blog/why-alternative-energy-sources-are-future/

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I	HISTORY OF MODERN CHEMISTRY	noeks	
	Revolutionary Scientists of modern chemistry.	1	Assignment
	Honours and Awards	2	Lecture
	Women and science	2	seminar
	serendipity in science	1	ICT/Group
			discussion
UNIT II	INTELLECTUAL PROPERTY RIGHTS		
	Definition - Types- Difference between patent and copyright – Utility patent – Requirement for patent protection- Design patent – copyright- Registering a copyright- benefits of patent and copyright holders.	6	Lecture
UNIT II	I CHEMISTRY AND MEDICINE		
	Indian system of medicine Classification of drugs - Drug Development- target and lead molecule-Clinical study- Drug approval- Proteomics and genomics	5	Lecture
	Nanomedicine	1	Assignment
UNIT IV	' SMART MATERIALS		
	Definition- types- Piezoelectric material- Conducting polymers- Biopolymers- Shape memory polymers-	4	Lecture
	chromoactive material- Sensors - trending Innovations that can change the world	2	ICT/Assignment

UNIT V FUTURE OF ENERGY								
Solar cell	s - Fuel Cells-Definition - working, Type-	2	ICT& Lecture					
Application	ns.							
Energy eff	iciency ratio, renewable energy industries.		Lecture and					
		4	Discussion					
Energy Cri	sis- Need for green energy		Seminar					

Course	Progra	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of
											COs
CO1	5	4	5	4	4	5	4	3	4	3	4.1
CO2	4	5	4	3	3	4	5	4	3	4	3.9
CO3	4	3	5	4	5	4	3	5	4	3	4.0
CO4	5	4	3	3	4	4	5	4	4	4	4.0
CO5	5	4	3	4	5	4	3	5	4	5	4.2
					Mea	n Overal	l Score				4.0

Result: The Score for this Course is 4.0 (High Relationship)

UNIT	Part A (10X1)	Part B (5 X 5 = 25)	PART C (5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K1, K2	K1 / K3	K3 / K2
П	K2, K3	K3 / K1	K3 / K1
III	K1, K3	K2 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K3	K3 / K2	K2 / K3

Programme : B.Sc Chemistry Semester : V Sub. Code : U22SEC2

Part IV: SEC II Hours : 2 /W, 30 /S Credits : 2

SKILL ENHANCEMENT COURSE II TITLE OF THE PAPER: SMALL SCALE INDUSTRIES

68

Pedagogy	Pedagogy Hours Lecture Peer Teaching/Seminar/Discussion/Problem solving								
			session/Quiz/videos/Demonstration class/ICT						
	2	1	1						
PREAMBL	E: The	objective	of the course is to inspire the students to engage then	nselves	in self-				
employment	schemes	s. To prov	ide adequate information about the foundation they nee	ed to d	evelop a				
business. To	provide	methods a	nd materials for the preparation of a few commodities wh	hich ar	e used in				
our everyday	v life.								
COURSE O	UTCON	AE: At the	e end of the Semester, the Students will be able to	Unit	hrs./S				
CO1: discus	ss the So	cope of si	mall-scale industries, industries that can be stated or	1	6				
developed lo	cation of	f industrie	s and describe the steps to be taken before constructing						
or establishin	ng a facto	ory, licens	es registration.						
CO2: discus	s the Indi	ian organi	zations assisting small scale industries.	2	6				
CO3: explain	n the pre	paration o	f Tooth powder, tooth paste, Talcum powder, shampoo,	3	6				
handkerchief	f perfum	ies, dry p	berfume sachets, soap powder, dishwashing powder,						
various soap	s& toilet	cleaning l	iquids.						
CO4: demo	nstrate t	he wax p	roducts, candles, boot polish, furniture polish paste.	4	6				
describe Ink	s, blue, i	red, blue	black, white board marker, printing inks and inks for						
stamp pad.	stamp pad.								
CO5 : explain safety matches, agarbathies -naphthalene balls, chalk crayons, 5 6									
insecticides	insecticides such as lice killer, mosquito repellant, cockroach terminator & moth								
repellant and	d discus	s simple	medicines: Pain balm, digestive tablets, disinfectant						
solutions.		-	-						

UNIT I:

(6 Hours)

Scope of small-scale industries- definition of small-scale industry, cottage industry, village industry- industries that can be stated or developed – location of industries – steps to be taken before constructing or establishing a factory – licenses – registration.

UNIT II:

Indian organizations assisting small scale industries, agencies promoting industries, such as IDBI, SISI, SIPCOT etc.

UNIT III:

Preparation of Tooth powder, toothpaste, Talcum powder, shampoo, Handkerchief perfumes, dry perfume sachets, soap powder, dishwashing powder, various soaps, toilet cleaning liquids.

UNIT IV:

Wax products – candles, boot polish, furniture polish paste.

Inks – blue, red, blue black, white board marker, printing inks, ink for stamp pad.

(6 Hours)

(6 Hours)

(6 Hours)

UNIT V:

(6 Hours)

Safety matches- agarbathies-naphthalene balls- chalk crayons

Insecticides such as lice killer, mosquito repellant, cockroach terminator, moth repellant.

Simple medicines: Pain balm, digestive tablets, disinfectant solutions.

Reference books:

- 1. Reference book and Directory for small industries Malik and Aggarwal, Small Industry Research Institute, New Delhi (1975-1976)
- 2. Siruthozhilhal sila --- oru arimugam, Vasan, New Century Book House Pvt.Ltd., Chennai, 1985.
- 3. Entreprenueral Development, Dr. L. Rangarajan, Sree Ranga Publications, Rajapalayam. <u>www.techno-preneur.net</u>
- 4. Small scale industries, B.S.Sekar, Jaime Publications, Bombay, 1975.
- 5. Neengalum Siruthozhil nadathalam, S. A.Soosai raja, New Century Book House Pvt. Ltd., Chennai, 1983.
- 6. Handbook of Soap Industries, Malik and Dhingra, Small Industry Research Institute, Delhi (1974-1975)

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT-I			
	Know about Scope of small-scale industries	2	Assignment
	Define small scale industry, cottage industry, village		
	industry, explain industries that can be stated or	3	Lecture
	developed location of industries, describe steps to be	1	ICT
	taken before constructing or establishing a factory,		
UNIT -II			·
	Know about the Indian organizations assisting small	3	ICT
	scale industries, describe agencies promoting industries,	3	Group
	such as IDBI, SISI, SIPCOT etc.		discussion&
UNIT-III			· · ·
	Explain Preparation of Tooth powder, toothpaste,	2	ICT
	Demonstrate Talcum powder, shampoo, Handkerchief	2	Lecture
	perfumes, dry perfume sachets,		
	Describe soap powder, dishwashing powder, various	2	Assignment
	soaps and toilet cleaning liquids.		
UNIT- IV		1	1
	Demonstrate wax products, candles, boot polish,	3	ICT
	furniture polish paste. Describe Inks, blue, red, blue		
	black, white board marker, printing inks, ink for stamp	3	Assignment
	pad.		

UNIT- V			
	Safety matches, agarbathies-naphthalene balls- chalk crayons, Insecticides such as lice killer, mosquito	2	ICT
	repellant, cockroach terminator, moth repellant. Simple medicines: Pain balm, digestive tablets, disinfectant	2	Lecture and Discussion
	solutions.	2	

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				Mean	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	scores of COs
CO1	5	4	5	4	4	5	4	3	4	3	4.1
CO2	4	5	4	3	3	4	5	4	3	4	3.9
CO3	4	3	5	4	5	4	3	5	4	5	4.2
CO4	5	4	3	3	4	4	5	4	4	4	4.0
CO5	5	4	3	4	5	4	3	5	4	5	4.2
					Me	ean Overa	all Score				4.08

Result: The Score for this Course is 4.08 (Very High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X $8 = 40$)
		Either or Pattern	Either or Pattern
Ι	K1, K3	K2 / K3	K3 / K2
Π	K2, K3	K3 / K1	K2 / K1
III	K1, K3	K1 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K2	K3 / K2	K3 / K3

Programme: B.Sc ChemistryPart III: Core paper 12Semester : VIHours : 4 /W, 60/SSub. Code : U22CC12Credits :4TITLE OF THE PAPER: INORGANIC CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/ /Discussion/Problem solving session/Quiz/videos/Demonstration class (Library session is conducted after the class hours).	ICT
	5	3	1	1

PREAMBLE: The objective of the course is to make the student understand the chemistry of important compounds in VIA, VII A, d & f block elements, basic concepts, theories &applications of coordination compounds and structure of carbonyls and nitrosyls.

COURSE OUTCOME: At the end of the Semester, the students will be able to	Unit	Hrs./S
CO1: discuss the oxygen family, ozone, H ₂ O ₂ , peracids and the extraction of Se and	1	12
CO2: discuss the halogen family and noble gases.	2	12
CO3 : discuss the d and f block elecments.	3	12
CO4: discuss the basic concepts of coordination compounds VBT theory involved in	4	12
coordination chemistry.		
CO5: demonstrate the CFT theory, structure of carbonyls and nitrosyls and discuss	5	12
the applications of coordination compounds.		

UNIT I OXYGEN FAMILY

Group Discussion –Oxides- Classification-

Hydrogen per oxide- Preparation-properties-structure-estimation-problems on its estimation

Ozone- Preparation – properties – structure

Peracid and persalts -sulphur, permono and perdi sulphuricacids- preparation and structure.

Potassium perdi sulphate- preparation and structure.

Ores- extraction -properties and uses of Selenium and Tellurium

UNIT – II: HALOGEN FAMILY AND NOBLE GASES

General characteristics of halogen with reference to electronegativity, electron affinity, oxidation states and oxidizing power – peculiarities of fluorine.

Chlorine: Oxides and oxyacids – bleaching powder – estimation of available chlorine, manufacture, properties and uses– basicity of iodine

Interhalogen compounds – polyhalides – psuedohalogens -preparation, properties and structure of interhalogen compounds.

Inert gases – position in the periodic table – General characteristics – Structure and shape of xenon compounds – XeF_2 , XeF_4 , XeF_6 , $XeOF_2$, $XeOF_4$ Uses of noble gases.

UNIT -III: d-BLOCK & f-BLOCK ELEMENTS

General characteristics of d block elements

Occurrence, extraction of the following metals: Iron, Nickel, Cobalt, chromium and zinc Preparation, properties and uses of the following compounds: potassium permanganate, potassium dichromate, ammonium molybdate, Vanadium pentoxide, chloroplatinic acid. General characteristics of f-block elements – comparative account of lanthanides and

(12 hours)

(12 Hours)

(12 Hours)

actinides – lanthanide series–lanthanide contraction–actinide series –oxidation states and general properties – Uranium –occurrence and metallurgy.

Applications of Interstitial compounds –Industrial uses of nitrides, carbides, hydrides, borides of Ti, V, Cr, W.

Important uses of transition metals (Fe, Cu, Ni, Ag, Ti, Cr and Zn) **Composition and uses of alloys:** Stainless steel, Brass, Rolled Gold, Delta metal, Bell metal.

UNIT – IV: COORDINATION CHEMISTRY I

Basic Concepts of Coordination Chemistry: Double salts and complexes, Classification of Ligands, chelation– applications. Coordination number and stereochemistry of complexes, IUPAC Nomenclature, Isomerism- structural and stereoisomerism,

Theories of coordination compounds - Werner's theory and its demerits, Sidgwick's EAN rule. Valence bond Theory -Formation of inner and outer orbital octahedral complexes, tetrahedral, square planar complexes on the basis of valence bond theory [VBT] Limitations of VBT.

UNIT – V: COORDINATION CHEMISTRY II

Crystal field theory of Coordination compounds– important features of crystal field theory [CFT] – crystal field splitting of d-orbital in octahedral, tetrahedral and square planar complexes – factors affecting the magnitude of Δo - spectrochemical series – high spin and low spin complexes, some applications of CFT. Magnetic properties of transition metal complexes (spin only moment) – application of coordination compounds. Distortion of octahedral complexes and Jahn-Teller theorem, crystal field stabilization energy. Stability of complexes -factors affecting the stability of complexes – General methods of preparations of carbonyls and nitrosyls.

Applications of coordination compounds: Estimation of nickel using DMG and aluminium using oxine – estimations of hardness of water using EDTA

Biologically important coordination compounds: Functions of chlorophyll, haemoglobin and vitamin B12.

TEXTBOOKS

1. Principles of Inorganic Chemistry, Puri & Sharma, Vishal Publishing Co.; 46th edition

2. Advanced Inorganic Chemistry by Tuli, Basu and Madan S.Chand publishing; 19th edition

3. Kanima Vethiyal by L. Anjana, S.K. Santha, R. Santhanalakshmi, R. Saraswathi

N. Vijayathara, Sudhasoundirapandian, D.SaralaThambavani, Published by Madurai Kamaraj University, Madurai, 1998.

References:

1. Selected Topics in Inorganic Chemistry by Wahid U. Malik, G.D. Tuli and R. D. Madan

S.Chand Publishing; revised edition (2010)

2. Concise Inorganic Chemistry, by J.D.Lee, Wiley India, 5th edition, 2009

3. Advanced Inorganic Chemistry by F.Albert Cotton, Geoffrey Wilkinson et al., Wiley India,6th edition 2012.

4. Principles, structure and reactivity by James E Huheey, Harper and Raw, 5th edition, 2012.

(12 Hours)

(12 Hours)
UNITS	TOPIC	LECTURE	MODE OF
UNIT -	I GROUP 16/VI A ELEMENTS	nooks	TEACHING
	Group Discussion –Oxides- Classification-	2	Seminar
	Hydrogen peroxide- Preparation- properties- structure-		
	estimation-problems on its estimation		
	Ozone- Preparation – properties – structure	8	Lecture
	Peracid and persaltssulphur,- permono and perdi sulphuricacids-		
	preparation and structure.		
	Potassium perdi sulphate- preparation and structure.	2	ICT
	Ores- extraction –properties and uses of Selenium and		
	Tellurium		
UNIT -	II: HALOGEN FAMILY AND NOBLE GASES		-
	General characteristics of halogen with reference to	3	Lecture
	electronegativity, electron affinity, oxidation states and		
	Oxidizing power – peculiarities of fluorine.	2	Crown discussion
	chiorine: Oxides and oxyacids – dieaching powder –	3	Group discussion
	uses basicity of iodine		
	Interhalogen compounds – polyhalides – psuedohalogens-	6	Lecture
	preparation properties and structure of interhalogen	Ū	Lecture
	compounds.		
	Inert gases – position in the periodic table – General		
	characteristics – Structure and shape of xenon compounds –		
	XeF ₂ , XeF ₄ , XeF ₆ , XeOF ₂ , XeOF ₄		
	Uses of noble gases.		
UNIT -	- III: d- block and f- block elements		
	General characteristics of d block elements	4	Lecture and
	Occurrence, extraction of the following metals: Iron,		Problem solving
	Nickel, Cobalt, chromium and zinc		
	preparation, properties and uses of the following		
	dichromate ammonium molybdate Vanadium		
	pentoxide chloroplatinic acid		
	pentoxide, entoropiumite deld.		
	General characteristics of f-block elements –	5	Lecture
	comparative account of lanthanides and actinides –		
	lanthanide series-lanthanide contraction-actinide		
	series –oxidation states and general properties –		
	Uranium –occurrence and metallurgy.		
	Applications of Interstitial compounds –Industrial	2	ICT
	uses of nitrides, carbides, hydrides, borides of Ti, V,		
	Cr, W. Important uses of transition metals (Fe,		
	Cu, N1, Ag, T1, Cr and Zn)	4	D
	Composition and uses of alloys: Stainless steel,		Discussion
	Diass, Kolleu Golu, Della metal, Bell Metal.		

UNIT I	NIT IV COORDINATION CHEMISTRY I						
	Basic Concepts of Coordination Chemistry: Double salts and	7	Lecture				
	applications Coordination number and stereochemistry of						
	complexes IIIPAC Nomenclature Isomerism- structural and						
	stereoisomerism						
	Theories of coordination compounds - Werner's theory and	5	ICT				
	its demerits, Sidgwick's EAN rule.						
	Valence bond Theory -Formation of inner and outer orbital						
	octahedral complexes, tetrahedral, square planar complexes						
	on the basis of valence bond theory [VBT] Limitations of						
	VBT.						
UNIT V:	COORDINATION CHEMISTRY II	Γ					
	Crystal field theory of Coordination compounds- important	5	Lecture				
	features of crystal field theory [CFT] – crystal field splitting						
	of d-orbital in octahedral, tetrahedral and square planar						
	complexes – factors affecting the magnitude of Δo -						
	spectrochemical series – high spin and low spin complexes,						
	some applications of CFT.	-					
	Magnetic properties of transition metal complexes (spin only	5	ICT				
	moment) – application of coordination compounds.						
	Distortion of octahedral complexes and Jahn-Teller theorem,						
	crystal field stabilization energy. Stability of complexes -						
	factors affecting the stability of complexes – General						
	methods of preparations of carbonyls and nitrosyls		1				
	Applications of coordination compounds: Estimation of		discussion				
	nickel using DMG and aluminium using oxine – estimations						
	of hardness of water using EDTA	1					
	Biologically important coordination compounds:		Discussion				
	Functions of chlorophyll, haemoglobin and vitamin B12						

Progra	mme Oı	itcomes	(POs)		Programme Specific Outcomes (PSOs)					Mean
PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
4	3	4	4	3	4	3	4	4	4	3.7
4	4	3	4	4	4	4	4	4	4	3.9
4	3	4	4	3	4	4	4	3	4	3.7
4	4	4	4	3	4	4	4	4	4	3.9
4	4	4	4	4	4	4	4	4	4	4.0
Mean Overall Score								3.84		
	Progra PO1 4 4 4 4 4 4	Programme Ou PO1 PO2 4 3 4 4 4 3 4 4 4 4 4 4	Programme Outcomes PO1 PO2 PO3 4 3 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	Programme Outcomes (POs) PO1 PO2 PO3 PO4 4 3 4 4 4 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Programme Outcomes (POs) PO1 PO2 PO3 PO4 PO5 4 3 4 4 3 4 4 3 4 4 4 3 4 4 3 4 4 3 4 4 4 3 4 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4	Programme Outcomes (POs) Programme PO1 PO2 PO3 PO4 PO5 PSO1 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Programme Outcomes (POs) Programme Special PO1 PO2 PO3 PO4 PO5 PS01 PS02 4 3 4 4 3 4 3 4 3 4 4 3 4 4 4 3 4 4 4 4 4 3 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Programme Outcomes (POs) Programme Specific Outco PO1 PO2 PO3 PO4 PO5 PS01 PSO2 PSO3 4 3 4 4 3 4 3 4 4 3 4 4 3 4 4 4 4 3 4 4 4 4 4 4 3 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 3 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Programme Outcomes (POs) Programme Specific Outcomes (PSO PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 4 3 4 4 3 4 4 3 4 4 4 3 4 4 3 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Programme Outcomes (POs) Programme Specific Outcomes (PSOs) PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 4 3 4 4 3 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Result: The Score for this Course is 3.84 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X $5 = 25m$)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K1, K3	K2 / K3	K3 / K2
II	K2, K3	K3 / K1	K2 / K1
III	K1, K3	K1 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K2	K3 / K2	K3 / K3

Programme : B.Sc Chemistry Semester : VI Sub. Code : U22CC13 Part III: Core paper 13 Hours : 4 /W, 60 /S Credits : 4

TITLE OF THE PAPER: ORGANIC CHEMISTRY - II

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/Problem solving
			session/Quiz/videos/Demonstration class/ICT
	4	3	1

PREAMBLE: The objective of the course is to make the student understand, learn and gain knowledge about the Molecular rearrangements with complete mechanisms, Chemistry of Heterocyclic compounds with one hetero atom, Chemistry of some Alkaloids and Terpenoids, Preparation and properties of Amino acids, structure of proteins, role of enzymes in chemical reactions and biological systems, study of Nucleic Acids, Chemistry of Tautomerism with emphasis on triad systems and Chemistry of Polymers.

COURSE OUTCOME: At the end of the Semester VI, the students will be able to	Unit	Hrs.
		/S
CO1: explain the rearrangement reactions.	1	12
CO2 : explain the chemistry of Heterocyclic compounds with one hetero atom.	2	12
CO3: discuss the chemistry of alkaloids –Coniine, Piperine and Nicotine& the chemistry	3	12
of Terpenoids – Citral, Menthol and preparation of α-Terpeniol, Dipentene, Limonene.		
CO4: describe the preparation and properties of some amino acids, properties, color	4	12
reactions and structure of proteins, role of enzymes in biological systems examples of a		
few reactions of various classes of enzymes and chemistry of nucleic acids with brief study		
of general structure of RNA and DNA.		
CO5: extend detailed explanation about the definition of Tautomerism, conditions of	5	12
tautomerism - prototropy and anionotropy, types of tautomerism their mechanism and		
uses. Also describe chemistry of Polymers, along with preparation and uses of some		
individual polymers.		

UNIT-I: REARRANGEMENTS

Rearrangement to electron-deficient carbon - 1,2 shift (Wagner- Meerwein rearrangement, pinacol rearrangement, benzil- benzilic acid rearrangement.

Aromatic rearrangements from oxygen to ring carbon – Fries, Claisen and benzidine rearrangement.

Rearrangement to electron-deficient nitrogen – Beckmann, Hofmann, Curtius rearrangement. Rearrangement to electron-deficient oxygen: Baeyer-Villiger oxidation, hydroperoxide rearrangement, cumene hydroperoxide- phenol rearrangement.

UNIT-II: HETEROCYCLIC COMPOUNDS

Molecular orbital picture and aromatic characteristics of pyrrole, furan, thiophene and pyridine - Comparison between basicity of pyridine, piperidine and pyrrole.Reactions of pyrrole, furan, thiophene -Mechanism of electrophilic substitution reactions of pyrrole, furan and thiophene. Synthesis of pyridine -mechanism of electrophilic substitution and nucleophilic reactions of pyridine - Preparation and reactions of indole, quinoline and isoquinoline with special reference to Fisher indole synthesis, Skraup synthesis and Bischler-Napieralski synthesis.

(12 Hours)

(12 Hours)

UNIT – III ALKALOIDS & TERPENOIDS (12 Hours)

Alkaloids: Definition – occurrence – extraction – general properties – classification – general methods of determining the structure – structure and synthesis of the following: coniine, piperine and nicotine.

Terpenoids: Classification – occurrence – isolation – general properties – isoprene rule – general methods of determining the structure – structure and synthesis of citral, menthol Preparation of α - terpeniol, dipentene, limonene.

Applications of α - terpeniol, dipentene, limonene.

UNIT – IV AMINO ACIDS, PROTEINS, ENZYMES AND NUCLEIC ACIDS (12 Hours)

Amino acids: Classification, preparation, properties of glycine, alanine and phenyl alanine – action of heat on α , β and γ – amino acids.

Proteins: Definition, classification, general properties – color reactions, primary and secondary (an elementary idea).

Enzymes: Definition –Chemical nature of enzymes - role of enzymes in biological systems. Nucleic acids: Nucleosides, nucleotides – RNA and DNA – general structure.

Unit –V TAUTOMERISM & POLYMERS

(12 Hours)

Tautomerism: Definition – conditions of tautomerism – prototropy and anionotropy, types of tautomerism - a) Keto – enol tautomerism b) Nitro – acinitro tautomerism c) Nitro – isonitroso tautomerism d) Lactam – lactim tautomerism e) Quinone monoxime – p-nitroso phenol.

Polymerization: Definition of polymer, monomer, repeating units, degree of polymerization. Types of polymers (classification on different basis) – polymerization reactions (addition, condensation) – mechanisms - differences between addition polymers and condensation polymers – preparation, and uses of some individual polymers - polyethylene (HDPE and LDPE), polypropylene, polystyrene, PVC, PMMA, nylon, polyesters (PET), epoxy resin.

Eco Friendly Plastics: Green synthesis of a compostable and widely applicable plastic Polylactic acid made from corn.

TEXTBOOKS

- 1. Text book of Organic chemistry by P.L.Soni- Sultan Chand & Sons; 29th edition (2012)
- 2. Advanced Organic Chemistry by B.S.Bahl and Arun Bahl ; S. Chand Publishing 2nd edition
- 3. Industrial Chemistry by B.K.Sharma Krishna prakashan (p) Ltd 2011
- 4. Sterochemistry by Kalsi, New Age International, 7th edition, 2010.
- 5. Arimurai Karima Vethiyal by R. Saraswathi, N. Subbulakshmi, R.Santhanalakshmi, N. Vijayathara, M.Thilagavathi, Published by Madurai Kamaraj University, Madurai, 1998

References:

- 1. Organic Chemistry by Morrison andBoyd; Pearson Education India; 7th edition (2010)
- 2. Organic Chemistry vol 1 by Finar; Pearson Education India; 6th edition (2002)
- 3. Stereochemistry of organic compounds by Eliel., Wiley Publisshers, 2008.
- 4. Organic chemistry by Morrison and Boyd., PHI, 6th edition, 2008.
- 5. Organic chemistry Concept and Application by Dr. Jagdamba Singh, 6th edition, Pragati Prakashan publisher, 2008.

UNITS	TOPICS	LECTURE HOURS	MODE OF TEACHING
UNIT-I:	REARRANGEMENTS		
	Rearrangements	8	Lecture
	Revision of rearrangements	4	Seminar/Assignment
UNIT-II	: HETEROCYCLIC COMPOUNDS		
	Heterocyclic compounds with one hetero atom	12	Lecture, ICT, Assignment, discussion.
UNIT II	I: ALKALOIDS AND TERPENOIDS		
	Definition, occurrence, extraction, types of Alkaloids and Terpenoids, isoprene rule and special isoprene rule-suitable examples.	2	ICT
	Structural elucidation of Coniine, Piperine, Nicotine and Citral, Menthol and preparation and applications of α -Terpeniol, Dipentene, Limonene.	8	Lecture
	Naming, drawing the structures and identifying the types of alkaloids and terpenoids.	2	Quiz/Seminar/Assig nment
UNIT – I	IV AMINO ACIDS, PROTEINS, ENZYMES AND NUCL	EIC ACII	DS
	Classification, synthesis, properties of glycine alanine and phenyl alanine and definition classification and properties of proteins	3	Lecture
	Colour reactions of proteins	1	Demonstration and lab session
	Primary and secondary structures of proteins	1	Video
	Action of heat on α , β , γ -amino acids, Zwitter ion, isoeloectric point, essential amino acids definition, sources and examples.	1	Seminar/assignment/ tutorial
	Definition, classification, role of enzymes in biological systems.	3	Lecture, seminar, quiz
	Nucleosides, nucleotides, RNA and DNA - general structure.	3	Lecture and assignment
UNIT V	TAUTOMERISM AND POLYMERS		
	Definition – conditions of tautomerism – prototropy and anionotropy, types of tautomerism: a) Keto – enol, b) Nitro – acinitro c) Nitro – isonitroso, d) Lactam – lactim e) Quinone monoxime – p-nitroso phenol.	6 	Lecture, ICT, Discussion and assignment.

Definition of monomer, polymer, repeating units, degree of	6	Lecture, Videos,
polymerization, types of polymers polymerization reactions		Demonstration class
(addition, condensation), mechanisms, differences		and seminar
betweenaddition polymers and condensation polymers,		
preparation, and uses of some individual polymers,		
polyethylene (HDPE and LDPE), polypropylene,		
polystyrene, PVC, PMMA, nylon, polyesters (PET), epoxy		
resin.		
Ecofriendly plastics.		

Course	Progra	mme Ou	utcomes	(POs)		Programme Specific Outcomes (PSOs)					Mean
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	3	4	3	4	4	3	3	3	3.5
CO2	4	4	3	3	4	4	4	4	3	3	3.6
CO3	4	4	3	4	3	4	3	4	3	4	3.6
CO4	4	4	3	3	4	4	4	3	3	4	3.6
CO5	4	4	4	3	4	4	4	3	3	3	3.6
Mean Overall Score									3.58		

Result: The Score for this Course is 3.58 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X $5 = 25m$)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K1, K3	K2 / K3	K3 / K2
II	K2, K3	K3 / K1	K2 / K1
III	K1, K3	K1 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K2	K3/K2	K3 / K3

Programme: B.Sc ChemistryPart III: (Core) Major paper 14Semester : VIHours : 4 /W, 60/SSub. Code : U22CC14Credits :4TITLE OF THE PAPER: PHYSICAL CHEMISTRY -II

Pedagogy Hours Lecture Peer Teaching/Seminar/Discussion/Problem solving	ICT						
session/Quiz/videos/Demonstration class (Library session is							
conducted after the class hours).							
4 2 1	1	[
PREAMBLE: The objective of the course is to make the student to understand the fund							
ofelectrochemistry, Ionic equilibria and basic ideas in photochemistry and principles of group	theory	•					
COURSE OUTCOME: At the end of the Semester, the students will be able to $\begin{bmatrix} \text{Unit} \\ /\text{S} \end{bmatrix}$							
CO1 describe conductance, significance of Ostwald's dilution law, Kohlrausch law and							
applications of conductivity measurements.							
CO2: explain the theories of acids and bases, concept of hydrolysis constant, principles	2	12					
of buffer action and applications of common ion effect and solubility product.							
CO3: explain the concept of electrode potential, electrochemical cells and	3	12					
applicationsemf measurements.							
CO4 : demonstrate the basic terminologies and laws of of photochemistry, Photochemical 4							
reactions and photo chemical processes							
CO5: demonstrate the basic ideas of symmetry operations, point group, matrix	5	12					
representations and construction of group multiplication tables.							

UNIT – I: ELECTROCHEMISTRY-I

(12Hours)

Conductance: Definition and determination – specific, equivalent and molecular conductance – variation of equivalent conductance with dilution and its limiting values.

Strong and weak electrolytes: theory of strong electrolytes – Debye-Huckel-Onsager equation (no derivation) Ostwald's dilution law and its applications

Kohlrausch's law of ionic mobilities and its applications. Absolute velocity of ions and its determination – Transport number of ions and their determination.

Applications of conductivity measurements – degree of dissociation – solubility of a sparingly soluble salt - degree of hydrolysis – basicity of acids – conductometric titrations.

UNIT – II: IONIC EQUILIBRIA

(12 Hours)

Acid Base Chemistry: Theories of acids and bases – Arrhenius, Bronsted-Lowry theory proton donor - acceptor system, Lewis-electron dot system and HSAB principle.

Common ion effect and solubility product – quantitative study and their applications.

Hydrolysis: definition – nature of solutions of salts undergoing hydrolysis – degree of hydrolysis (α) – hydrolysis constant (K_h) – their experimental determination and derivation of these values for different salt solutions – based on K_w , K_a and K_b calculation involving hydrolytic constants.

Buffer solution – definition –types – theory of buffer action and applications – Henderson – Hasselbalch equation.

UNIT- III: ELECTROCHEMISTRY – II

Electrode potentials - single electrode potential – oxidation and reduction potentials. Thermodynamics and electromotive force (emf) – relation between chemical and electrical energies – calculation of ΔG , ΔS and ΔH of cell reaction. Calculation of emf.Nernst equation – standard electrode potential and its characteristics – calculation of equilibrium constant.

Types of electrodes: metal – metal ion, amalgam electrodes, gas, metal – insoluble salts, redox, glass electrodes.

Electrochemical cells

Chemical and voltaic cells: Definition – cell reaction and representations of electrodes and cells – emf of cell – conventions regarding signs of emf – calculation of cell emf from single electrode potentials. Calculation of cell emf with the aid of Nernst equation. Experimental determination of emf of cells. Measurement of single electrode potentials –electrochemical series – liquid junction potential and salt bridge.

Concentration cells: Definition and calculation of emf - types of concentration cells – concentration cells with and without transference.

Commercial cells: Primary and secondary cells -lead storage cell, Ni-Cd cell, fuel cell.

Applications of emf measurements -Determination of solubility and solubility product of sparingly soluble salts.Determination of pH – using Hydrogen electrode, glass electrode, quinhydrone electrode.Determination of valency of ion.Potentiometric titrations – acid-base, redox, precipitation and complexometric titrations. Determination of transport number.

UNIT – IV: PHOTOCHEMISTRY

(12Hours)

(12 Hours)

Photochemical reactions – definition - comparative study of thermal and photochemical reactions – laws of photochemistry: Lambert and Beer's laws, Grotthus-Drapper law, Stark-Einstein law – quantum efficiency and its determination – consequences of light

Absorption by atoms and molecules – photophysical processes – fluorescence, phosphorescence and other deactivating processes.

Photochemical processes: Jablonski diagram - Kinetics of photochemical reactions.

i) Gaseous reactions: Hydrogen-chlorine reaction, decomposition of HI

ii) Reactions in liquid phase (solutions) – isomeric transformation of maleic to fumaric acid – polymerization of anthracene.

iii) Photochemical equilibrium – flash photolysis – photosensitization – chemiluminescence.

UNIT – V: GROUP THEORY

(12Hours)

Symmetry elements and symmetry operations – definition of a group, sub-group – relation between orders of a finite group and its sub-group – Similarity transformation, Point symmetry group, Schonflies symbols – representation of groups by matrices [statement and utility only, without proof]. Deduction group multiplication table: C2v, C3v example H_2O , NH_3

TEXTBOOKS

1.Principles of Physical Chemistry by Puri, Sharma and Pathania - Vishal Publishing Co.; 46thedition

2. Group theory by Gopinathan Vishal publishing Co 2nd (reprint) edition

3. Group theory and its application in chemistry by K.V.Raman., Tata Mc Graw Hill, 1990.

4. Thermodynamics by J.C.Kuriacose and Rajaram., Pearson Edn., 2013.

5. Arimurai IyarpuVethiyal by Sudha soundirapandian, & T.R. Visalakshi, Published by Madurai Kamaraj University, Madurai, 1998.

References:

- Physical chemistry by Peter Atkins., Oxford Univ Press., 2017.
 A textbook of physical chemistry by K. L.Kapoor, Vol 6, 2nd edition.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	ELECTROCHEMISTRY I		
	Debye Huckel Onsager equation, Ostwald's dilution law, Kohlrausch's law, Variation of conductance with dilution, Types of conductance, Strong and weak electrolyte	7	Lecture
	Calculating the conductance of weak electrolytes usingKohlrausch's law	2	Problem solving
	Transport number determination	1	ICT
	Applications of conductivity measurements	2	
UNIT II:	: IONIC EQUILIBRIA Theories of acids and bases. Common ion effect. Solubility	7	Lactura
	product, Hydrolysis	7	Lecture
	Applications of common ion effect, Applications of solubility product, Buffer action	3	Seminar, Demo
	Experimental determination of hydrolysis constant, Applications of buffer action	2	ICT
UNIT II	I: ELECTROCHEMISTRY-II		
	Single electrode potential, Oxidation and reduction potentials, Thermodynamics and electromotive force, Nernst equation, Types of electrodes, Chemical and voltaic cells	5	Lecture
	electrochemical series, Concentration cells with and without transference	3	Lecture and seminar
	Calculation of emf with the aid of Nernst equation, Measurement of single electrode potential	2	Problem solving
	Commercial cells, Applications of emf measurements	2	ICT
UNIT IV	7: PHOTOCHEMISTRY		Γ
	Comparative study of thermal and Laws of Photochemistry, Determination ofQuantum efficiency, Kinetics of photochemical reactions, Flash photolysis, Photosensitization, Chemiluminescence.	9	Lecture
	Photophysical processes-Fluorescence and Phosphorescence.	3	ICT
UNIT V:	GROUP THEORY		
	Types of groups, Point groups, Construction of multiplication tables, Similarity transformation, Representation of group by matrices.	7	Lecture
	Identifying Point groups	2	Peer Teaching
	Symmetry elements and operations	3	ICT

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean
Outcomes											
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	4	4	2	4	4	4	4	4	3.7
CO2	4	3	4	3	3	4	3	3	3	4	3.4
CO3	4	3	4	4	3	4	4	4	3	4	3.7
CO4	4	4	4	4	3	4	3	3	3	4	3.6
CO5	4	2	4	2	2	4	2	3	3	4	3
					Me	an Overa	all Score				3.48

Result: The Score for this Course is 3.48 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X $5 = 25m$)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K3,K1	K2/K3	K3/K2
П	K3,K1	K3/ K1	K1/K3
III	K3,K2	K3/ K2	K2/K3
IV	K3,K2	K3/ K3	K3/K1
V	K1,K2	K1/K3	K3/K3

Programme: B.Sc Chemistry Semester : VI Sub. Code : U22CC15P Part III: Core paper 15 Hours : 6/W, 90/S Credits : 5

TITLE OF THE PAPER: PRACTICALS -4, PHYSICAL CHEMISTRY EXPERIMENTS

Pedagogy	Hours	Lab session//Demonstration class/Viva voce					
	6	6					
PREAMBL	PREAMBLE: The objective of the course is to make the student to handle physical experiments.						
COURSE O	COURSE OUTCOME: At the end of the Semester, the students will be able to Unit hrs. /S						
CO2: demon	CO2 : demonstrate the physical experiments and handle instruments 1 90						

Unit – II Physical Chemistry:

- 1. Determination of K_f of a solute by Rast method (cryoscopy)
- 2. Determination of molecular weight of a solvent by Rast method
- 3. Simple eutectic phase diagram
- 4. Determination of transition temperature of a salt hydrate
- 5. Determination of molecular weight by transition temperature method
- 6. Determination of C.S.T. of phenol water system
- 7. Study of effect of impurities on C.S.T
- 8. Partition Coefficient: Determination of partition coefficient of iodine in CCl₄ and watersystem. (Demonstration)
- 9. Determination of equilibrium constant of $KI + I_2 \rightarrow KI_3$ system (Demonstration)
- 10. Determination of strength of potassium iodide (Demonstration)
- 11. Determination of rate constant of a first order reaction ester hydrolysis
- 12. Comparison of strengths of two acids by ester hydrolysis method
- 13. Electrochemistry: Conductivity titration between an acid and a base
- 14. Potentiometric titration between ferrous sulphate and potassium dichromate.

Internal - 40 marks

Attendance -10 marks Experiment and Results - 30 marks

Unit I (External - 60 marks)

Experiment – 25marks Result – 20 marks Record – 10 marks Viva voce – 5 marks

UNITS	TOPIC	LAB HOURS	MODE OF TEACHING
UNIT 1: Phy	sical Chemistry		
	Physical Chemistry experiments	70	Lab session
	Physical Chemistry experiments	10	Demonstration
	Physical Chemistry experiments	10	Viva-Voce

Course	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean		
Outcomes									scores		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	4	4	4	3	4	4	4	4	4	4.0
					Me	an Overa	all Score				4.0

Result: The Score for this Course is 4.0 (High Relationship)

Programme : B.Sc Chemistry Semester : VI Sub. Code : U22DSC2A

Part III: DSEC-II Hours : 4/W, 60/S Credits : 4

DISCIPLINE SPECIFIC ELECTIVE COURSE-III TITLE OF THE PAPER: APPLIED CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion/	ICT				
			/Quiz/Videos Demonstration class					
	4 2 1 1							
PREAMBLE:	The obj	jective of tl	he course is to understand the different typ	es of fue	els and its			
uses, fire prev	ention, p	preparation	of organic dyes, photographic process, Wat	er Techn	ology and			
to know abou	it insect	icides, fert	ilizers, construction chemistry and corrosi	on and	protective			
coatings.			· · ·		-			
COURSE OU	ГСОМЕ	: At the end	of the Semester, the Students will be able to	Unit	Hours			
CO1: demonstr	rate the k	nowledge at	oout fuels and fire prevention	1	12			
CO2: discuss	the prepa	ration and	uses of various dyes and process involved in	2	12			
photography.								
CO3: demonst	rate the o	clinical tests	for detection of sugar in serum & urine and	3	12			
cholesterol in b	blood, est	timation of	hemoglobin and the various chemotherapeutic					
drugs and their	uses.							
CO4: discuss t	he classif	ication of in	secticides, fungicides, pesticides and fertilizers	4	12			
and their appli	cations a	and explain	the chemistry behind setting of cements and					
paints and discu	paints and discuss about PVC, varnishes and refractories.							
CO5: discuss t	he manuf	acturing pro	ocess of soya bean oil, candles, soaps, shampoo	5	12			
and understand	the class	ification of	detergents.					

UNIT – I: FUELS & FIRE PREVENTION

(12 Hours)

Fuels: Definition - requirements of a good fuel – classification – characteristics of fuels – properties – ignition temperature – calorific value – units of heat – solid fuels (wood, coal) - liquid fuels – mining of petroleum and its fractional distillation – knocking, octane number, anti-knocking agents, unleaded petrol – kerosene, alcohol - merits and demerits of liquid fuels, gaseous fuels – advantages and disadvantages of gaseous fuels - (LPG, Gobar gas, producer gas, water gas)

Fire prevention and protection in homes: Major causes of fire in homes, types of fire protection and fire fighting in homes, methods of extinguishing fire, chemical fire extinguisher, their relative merits and demerits.

UNIT – II: ORGANIC DYES & PHOTOGRAPHY

(12 Hours)

Organic Dyes: Definition – theory of colour and constitution – classification of dyes according to structure and applications:

a) Azo dyes: Preparation of methyl orange, Congo red and Bismark brown.

- b) Triphenyl methane dyes: Preparation of malachite green, rosaniline and crystal violet.
- c) Phthalein dyes: phenolphthalein, fluorescein and eosin preparation and uses.
- d) Vat dyes: preparation and structure of indigo.
- e) Anthraquinone dye: preparation and structure of alizarin.

Photography: Photographic process – preparation of sensitive plates – exposure – developing – fixing – printing – toning – colour photography.

UNIT – III WATER TECHNOLOGY

(12 Hours)

Hardness definition-Types of Hardness – Estimation of temporary and permanent hardness of water by EDTA method- Water analysis: physical examination – Chemical examination - bacteriological examination – BOD, COD.

Boiler feed water - Boiler troubles: Priming, foaming, scales, sludges and caustic embrittlement - Methods of softening – boiling, lime soda process – Zeolite method–

Demineralization method – treatment of water for domestic use – sterilization – Dechlorination – Desalination of brackish water - electrodialysis method, reverse osmosis methods.

UNIT – IV INSECTICIDES, FUNGICIDES, PESTICIDES, FERTILIZERS, CEMENT AND REFRACTORY (12 Hours)

Insecticides, fungicides and pesticides: Definition – classification according to method of application and actions – Brief idea about DDT, BHC, Lead arsenate, Bordeaux mixture and dithiocarbamate.

Fertilizers: Definition – nutrients for plants – role of various elements in plant growth - natural and chemical fertilizers – classification of chemical fertilizers - urea – super phosphate and potassium nitrate – mixed fertilizers – fertilizer industry in India.

Cement and refractory: Cement: Composition- Chemistry of setting – Concrete – Reinforced concrete – (Manufactureof cement not necessary) Refractories – Definition –Requirements of good refractory - Chemical Classification – Fire Clay bricks, Properties and uses of Fire Clay bricks.

UNIT - V CORROSION AND PROTECTIVE COATINGS (12 Hours)

Introduction – types of corrosion – Factors influencing the rate of corrosion – Methods of prevention of corrosion - Surface coatings – Metal coatings – Electroplating, Galvanization and Tinning – Inorganic coating – Anodizing – Cathodic Protection – Sacrificial Anode Method and Impressed Voltage Method.

Protective coatings – Classification – paints – characteristics and constituents of paints - Varnish – Definition – Differences between Paint and Varnish – Special Paints – Luminescent Paints, Fire Retardant Paints, Water retardant Paints and Distemper.

TEXTBOOKS

1. Ancillary Chemistry for Home science students by Thankamma Jacob.

2. Textbook of Organic Chemistry by P.L. Soni- SultanChand & Sons; 29th edition (2012).

3. Engineering Chemistry by Jain and Jain, Dhanpat Rai Publishing Company.

References:

- 1. Industrial Chemistry by B.K.Sharma; Krishna Prakashan Media (P) Ltd. (2011)
- 2. Engineering Chemistry by S.S.Dara; S. Chand & Company

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT – I:	FUELS & FIRE PREVENTION	L	
	Various types of fuels and their Characteristics, merits and demerits.	9	Lecture
	Calorific value, ingnition temperature, Knocking, octane		
	number, Antiknocking agents, unleaded petrol, Composition		
	and uses of LPG, gobar gas, producer gas and water gas.		
	Fire prevention at home, methods of extinguishing fires	2	ICT
	Fire prevention at home, methods of extinguishing fires	1	Role play
UNIT – II	: ORGANIC DYES & PHOTOGRAPHY		
	Theory of colour and constituents, Preparation and uses of azo, triphenyl methane dyes	6	Lecture
	Classification of dyes	1	Seminar
	Preparation and uses of Phthalein, vat and anthraquinone	2	Lecture &
	dyes		Demonstration
	Photographic process	3	ICT
UNIT – II	I WATER TECHNOLOGY	1	1
	Types of Hardness – Water analysis: physical examination –	9	Lecture
	Chemical examination - bacteriological examination -		
	BOD, COD.Boiler feed water - Methods of softening -		
	boiling, addition of lime – addition of sodium carbonate –		
	Zeolite method Demineralization method - treatment of		
	water for domestic use – sterilization – Dechlorination –		
	Desalination of brackish water - electrodialysis method.		
	reverse osmosis methods.		
	Boiler feed water - Boiler troubles: Priming, foaming,	1	ICT
	scales, sludges and caustic embrittlement	1	&Discussion
	Zeolite method Demineralization method.	1	ICT & Lecture
	Estimation of temporary and permanent hardness of water	1	Demonstration
	by EDTA method.		
UNIT – IV REFRAC	V INSECTICIDES, FUNGICIDES, PESTICIDES, FERTIL TORY	IZERS CE	MENT AND
	Insecticides, fungicides and pesticides.	3	Seminar /
			Assignment

	Chemistry of setting of cement.	2	ICT	
	Fertilizers & Refractories	6	Lecture	
	Cement composition, concrete and reinforced concrete.	1	Lecture &	
			Discussion	
UNIT - V CORROSION AND PROTECTIVE COATINGS				
	Corrosion	6	ICT with	
			Lectureand	
			Discussion	
	Protective coatings	6	Peer teaching /	
			Assignment	

Course	Programme Outcomes (POs)Programme Specific Outcomes (PSOs)							Mean			
Outcomes		1	1	1	1		1	1	1	1	scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	4	5	4	4	5	4	3	4	3	4.1
CO2	4	5	4	3	3	4	5	4	3	4	3.9
CO3	4	3	5	4	5	4	3	5	4	3	4.0
CO4	5	4	3	3	4	4	5	4	4	4	4.0
CO5	5	4	3	4	5	4	3	5	4	5	4.2
					Me	ean Overa	all Score				4.04

Result: The Score for this Course is 4.04 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X 5 = 25m)	PART C(5 X 8 = 40m)
		Either or Pattern	Either or Pattern
Ι	K1, K3	K2 / K3	K3 / K2
II	K2, K3	K3 / K1	K2 / K1
III	K1, K3	K1 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K2	K3 / K2	K3 / K3

Programme : B.Sc Chemistry Semester : VI Sub. Code : U22DSC2B

Part III: DSEC-II Hours : 4 / W, 60 / S Credits : 4

DISCIPLINE SPECIFIC ELECTIVE COURSE-II TITLE OF THE PAPER: BIOCHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/Discussion//Problem solving session/Quiz/videos/Demonstration class /ICT				
4 3 1							
PREAMB	LE: The	objective	of the course is to make the concepts of carbohydrates,	amino) acids		
and protei	ns, lipid	s, nucleic	acids and enzymes.				
COURSE	OUTCC	ME: At t	he end of the Semester, the students will be able to	Unit	Hrs. / S		
CO1: CA	RBOHY	DRATES		1	12		
explain the	e basic c	oncepts of	f carbohydrates and Glycolysis, TCA cycle, energy yield,				
HMP pathy	vay.						
CO2: AM	INO AC	IDS AND	PROTEINS	2	12		
demonstrat	e the bas	ic concept	s of amino acids, catabolism of amino acids and urea cycle.				
CO3: LII	PIDS			3	12		
describe th	e basic c	oncepts, ir	nportance of fatty acids and their functions.				
CO4: NUC	CLEIC A	CIDS		4	12		
explain N	lucleosid	les and	nucleotides, Watson and Crick model, Replication,				
Transcripti	on, Mu	tations an	d mutants, DNA repair, DNA sequencing and PCR,				
Recombina	int DNA	technolog	у.				
CO5: ENZYMES							
demonstrat	e the pro	perties and	d action of enzymes				

UNIT I: CARBOHYDRATES

Classification – reducing and non-reducing sugars, Occurrence, structure and biological importance of mono, di and polysaccharide (esp. starch, glycogen and cellulose). An introduction to mucopolysaccharide (proteoglycon). Reaction of Carbohydrates due to the presence of hydroxyl, aldehyde and ketone groups. Glycolysis, TCA cycle, energy yield, HMP pathway.

UNIT II: AMINO ACIDS AND PROTEINS

Classification and structure of amino acids based on structure - Essential amino acids - structure of standard amino acid as zwitter ion in aqueous solution - Chemical synthesis of poly peptide chain and solid phase polypeptide synthesis. Biologically important peptides-structure and functions (esp. insulin, glutathione, vasopressin) – Classification – Properties, 3D structure – determination of amino acid sequence, denaturation, renaturation of protein molecules. Separation and purification of proteins – dialysis – Gel filtration – electrophoresis – Catabolism of amino acids: Transamination, oxidative deamination, decarboxylation – Urea cycle.

UNIT III LIPIDS

Introduction, definition of fatty acids, Classification, saturated fatty acids, unsaturated fatty acids, EFA, structures, properties of fatty acids – Hydrolysis - acid number and saponification

(12 Hours)

(12 Hours)

(12 Hours)

number, auto-oxidation (Rancidity) –Addition reactions – iodine number, Polenske number Reichert – Meissl number, acetyl number Structure and function of prostaglandins, tri-acyl glycerol. Structure and functions of phospholipids (esp.lecithin cephalin, phospotidyl inositol and phospotidyl serine) spingomyelin, plasmologens. Structure and function of glycolipids, cholesterol.

UNIT IV NUCLEIC ACIDS

Nucleosides and nucleotides – purine and pyrimidine bases. Nucleic acids – DNA and RNA, **Watson** and Crick model, Replication, Transcription, Mutations and mutants, DNA repair, DNA sequencing and PCR, Recombinant DNA technology.

UNIT V ENZYMES

Classification and properties- specificity, factors influencing enzyme action, Mechanism of enzyme action, Lock and key model and induced fit models. Coenzymes- Cofactors – Prosthetic groups and importance of them (TPP, NAD, NADP, FAD, ATP) Mechanism of inhibition (Competitive, non & uncompetitive and allosteric), Immobilization of enzymes, isoenzymes.

TEXTBOOKS

1. Biochemistry, Dr. Ambika Shanmugam, Published by Auth.

2. Essentials of Biochemistry, U.Sathyanarayana and U. Chakrapani, Books and Allied(P) Ltd., 2nd ed.,

REFERENCES

- 1. Fundamentals of Biochemistry, J.L.Jain 4th revised Edition, S. Chand & Company Ltd.,
- 2. Advances in Bio Chemistry, S.N.Sriharsha Sonali Publications, New Delhi.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1 CA	ARBOHYDRATES		
	Classification, reducing and non-reducing sugars, Occurrence structure. An introduction to mucopolysaccharide (proteoglycon). Reaction of Carbohydrates due to the presence of hydroxyl, aldehyde and ketone groups. Glycolysis, TCA cycle, energy yield, HMP pathway.	8	Lecture
	Biological importance of mono, di and polysaccharide (esp starch, glycogen and cellulose).	. 2	Discussion
	Glycolysis, TCA cycle, energy yield, HMP pathway.	2	ICT
UNIT 11	AMINO ACIDS AND PROTEINS		
	Classification and structure of amino acids based on structure Essential amino acids, structure of standard amino acid as zwitter ion, Chemical synthesis of poly peptide chain and solid phase polypeptide synthesis. Biologically important peptides structure and functions (esp. insulin, glutathione, vasopressin) Classification, Properties, determination of amino acid sequence denaturation, renaturation of protein molecules. Separation and purification of proteins, Catabolism of amino acids, Urea cycle. Essential amino acids, biologically important peptides.	8 8 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Lecture Seminar
	3D structure of proteins	2	ICT

(12 Hours)

(12 Hours)

UNIT III: LIPIDS		
Introduction, definition of fatty acids. Classification	, 8	Lecture
saturatedfatty acids, unsaturated fatty acids, EFA, structures	,	
properties of fatty acids, Structure and function of	f	
prostaglandins, tri-acyl glycerol. Structure and functions of	f	
phospholipids, spingo myelin, plasmologens. Structure and	1	
function of glycolipids, cholesterol.		
Importance of EFA	1	Discussion
saturated fatty acids, unsaturated fatty acids (examples)	, 3	ICT
structure and function of glycolipids, cholesterol.		
UNIT IV NUCLEIC ACIDS		
Nucleosides and nucleotides – purine and pyrimidine bases.	6	Lecture
Nucleic acids, DNA and RNA, Watson and Crick model,		
Replication, Transcription, Mutations and mutants, DNA		
repair, DNA sequencing and PCR, Recombinant DNA		
technology.		
Mutations and mutants	1	Seminar
Watson and Crick model, Replication, Transcription,	5	ICT
Mutations and mutants, DNA repair, DNA sequencing and		
PCR, Recombinant DNA technology.		
UNIT V ENZYMES		-
Classification and properties- specificity, factors influencing	8	Lecture
enzyme action, Mechanism of enzyme action, Lock and key		
model and induced fit models. Coenzymes, Cofactors,		
Prosthetic groups and importance of them, Mechanism of		
inhibition (Immobilization of enzymes, isoenzymes.		
Mechanism of enzyme action, Lock and key model and	4	ICT
induced fit models. Coenzymes, Mechanism of inhibition		
(Competitive, non & uncompetitive and allosteric),		

Course	Progra	mme Ou	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes									scores		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
~ /											
CO1	4	3	3	4	3	4	3	3	3	4	3.4
CO2	4	4	3	3	4	4	4	3	3	4	3.6
CO3	4	4	4	3	4	4	4	4	3	3	3.7
CO4	4	4	4	3	4	4	4	4	3	4	3.8
CO5	4	4	3	3	4	4	4	3	3	3	3.5
Mean Overall Score										3.6	

Result: The Score for this Course is 3.6 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X 5 = $25m$)	PART C(5 X 8 = 40m)
		· · · · · · · · · · · · · · · · · · ·	· · · · · ·
		Either or Pattern	Either or Pattern
T	K1 K3	K2 / K3	K3/K2
-	111, 115	1127 113	1137112
П	K3 K3	K3/K1	K2/K1
11	K2, K3	$\mathbf{K}\mathbf{J}$ / $\mathbf{K}\mathbf{I}$	KZ / KI
ш	V1 V2	V1/V2	V2 / V2
111	K 1, K 3	K1 / K3	K3 / K3
TV.	V2 V2	V2/V2	V1/V2
1 V	K2, K3	K3 / K3	K1 / K3
V	K1 K2	K3 / K7	K3 / K3
v	K 1, K 2	$\mathbf{K}\mathbf{J} \neq \mathbf{K}\mathbf{Z}$	KJ/KJ

Programme : B.Sc., Chemistry Semester : VI Sub. Code : U22DSC3A

Part III: DSEC-III Hours : 4/W,60/S Credits: 4

DISCIPLINE SPECIFIC ELECTIVE COURSE-III TITLE OF THE PAPER: PHARMACEUTICAL CHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/ Discussion/ Problem solving session/Quiz/videos/Demonstration class /ICT
	4	3	1

PREAMBLE: The objective of the course is to know about terminologies involved in Pharma Chemistry, different drugs and their action, functions of vitamins, hormones

COURSE OUTCOME: At the end of the Semester, the Students will be able to	Unit	Hrs./S
CO1: discuss the terminologies in Pharma Chemistry, different drugs anemia,	1	12
jaundice, cholera, malaria and filarial and Indian Medicinal plants and uses.		
CO2: explain Sulpha drugs, Antibiotics and their classifications, Antiseptics and	2	12
Disinfectants.		
CO3: discuss the basic information about Analgesics, Anti pyretic drugs, and the	3	12
drugs affecting CNS; and its examples.		
CO4: describe Anesthetics and its significance, and the importance of the drugs for	4	12
cancer, Diabetes, AIDS and Blood related diseases.		
CO5: explain the Vitamins and its classifications; Hormones and their physiological	5	12
functions.		

UNIT I : BASIC PHARMACEUTICAL CHEMISTRY

(12 Hours)

(12 Hours)

(12 Hours)

Definition of the following terms: drug, pharmachophore, pharmacology, Pharmacopeia, bacteria, virus and vaccine. Causes, symptoms and drugs for anemia, jaundice, cholera, malaria and filarial.

Indian Medicinal plants and uses – Thulasi, Neem, Keezhaanelli, Mango, Semparuthi, Adadhodai and Thoothuvalai.

UNIT II: ANTIBACTERIALS

Sulpha drugs-examples and actions-prontosil, sulphathiazole, sulphafurazole. Antibioticsdefinition and action of penicillin, streptomycin, chloramphenicol, erythromycin-tetracycline – SAR of chloramphenicol only. Antiseptics and disinfectant – definition and distinction – phenolic compounds, chloro compounds and cationic surfactant.

UNIT III: ANALGESICS AND CNS STIMULANTS

Analgesics: Definition and Actions – narcotic and non-narcotic – morphine and its derivatives, pethidine and methadone – disadvantages and uses. Antipyretic analgesics - salicylic derivative, paracetamol, ibuprofen. Drugs affecting CNS – Definition, distinction and examples for tranquilizers, sedatives, hypnotics, psychedelic drugs – LSD, Hashish – their effects.

UNIT IV: ANAESTHETICS AND DRUGS FOR CHRONIC DISEASES (12 Hours)

Anaesthetics - definition – local and general – volatile nitrous oxide, ether, Chloroform, cyclopropane – uses and disadvantages – non – volatile intravenous – thiopental sodium, methohexitone, propanidid.

Causes of cancer - medicines and their mode of action for the treatment of cancer – antineoplastics. Diabetes, Types – hypoglycemic agents.

AIDS (brief idea) – Drugs AZT (azidothymidine or Zidovudine), DDC (Zalcitabine).

Blood: Grouping, composition, Rh factor, blood pressure, hypertension and hypotension.

UNIT V: VITAMINS, HORMONES AND ENZYMES

(12 Hours)

Vitamins – water soluble and fat-soluble vitamins – (i) vitamin A; (ii) vitamin D; (iii) vitamin B complex; (iv) vitamin C; (V) vitamin E; (vi) vitamin K; (vii) vitamin P.

Hormones – Introduction, properties and function of hormones, chemical nature of hormones. Physiological function of some hormones: Adrenaline, thyroxin, oxytocin, insulin, the sex hormones.

Enzymes –classification of enzymes, properties of enzymes, mechanism of enzyme action. Action of Co-enzymes.

TEXTBOOKS

- 1. Pharmaceutical chemistry by Dr. S. Lakshmi
- 2. Industrial Chemistry by B.K.Sharma; Krishna Prakashan Media(p) Ltd 2011.
- 3. Jayashree Ghosh, A Text Book of Pharmaceutical Chemistry, 3rd Edition, S.Chand& Company Ltd., New Delhi, 2003.

References:

1. Text Book of biochemistry for medical students by D.M. Vasudeva and S. Sreekumari; Jaypee Brothers Medical Publishers; 8th edition

2. The essentials of Forensic Medicine and toxicology by Dr. K. S. Narayan Reddy; Jaypee Brothers Medical Publishers; 3rd edition

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING					
UNIT 1	BASIC PHARMACEUTICAL CHEMISTRY							
	Terminologies in Pharma chemistry	4	Lecture					
	Causes, symptoms and drugs for anemia, jaundice,	5	Lecture					
	cholera, malaria and filarial.	3	ICT and group					
	Indian Medicinal Plants		discussion/					
			Assignment					
UNIT II ANTIBACTERIALS								
	Sulpha drugs-examples and actions-prontosil,	9	Lecture					
	sulphathiazole, sulphafurazole. Antibiotics- definition							
	and action of penicillin, streptomycin, chloramphenicol,							
	erythromycin-tetracycline - SAR of chloramphenicol							
	Antiseptics and disinfectant	3	ICT, Seminar.					
UNIT II	I: ANALGESICS AND CNS STIMULANTS							
	Analgesics	4	Lecture					
	Antipyretic analgesic	4	Lecture					
	Drugs affecting CNS	4	Group					
			discussion/Seminar					

UNIT IV	UNIT IV: ANAESTHETICS AND DRUGS FOR CHRONIC DISEASES							
	Anaesthetics	2	Lecture					
	Diabetes, Types. Causes of cancer.	2	Group discussion					
	Diabetes, Types - Hypoglycemic agents. Causes of	4	Lecture					
	cancer - medicines and their mode of action for the							
	treatment of cancer – antineoplastics.							
	AIDS – drugs.							
	blood pressure, hypertension and hypotension	2	Lecture					
	Blood: Grouping, composition, Rh factor.	2	Seminar/Group					
			discussion					
UNIT V	VITAMINS, HORMONES AND ENZYMES							
	Vitamins	4	Lecture and					
			Assignment					
	Hormones	3	Lecture					
	Enzymes	3	Lecture					
	mechanism of enzyme action	2	ICT					

Course	Progra	mme Ou	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes									scores		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	4	4	4	4	4	3	4	4	3.9
CO2	4	3	4	3	4	4	4	4	4	4	3.8
CO3	4	3	3	3	4	4	4	4	4	4	3.7
CO4	4	4	3	3	4	4	4	4	4	4	3.8
CO5	4	4	3	3	4	4	4	4	4	4	3.8
Mean Overall Score									3.8		

Result: The Score for this Course is 3.8 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X $5 = 25m$)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K1, K2	K1/K3	K3 /K2
II	K2, K3	K2/K1	K3/K3
III	K1, K3	K3/K3	K3 /K2
IV	K1, K3	K3/K2	K2/K1
V	K3, K2	K3 /K3	K1/K3

Programme: B.Sc., Chemistry Semester: VI Code : U22DSC3B Part III: DSEC-III Hours : 4 / W, 60 / S Credits: 4

DISCIPLINE SPECIFIC ELECTIVE COURSE-III TITLE OF THE PAPER: AGRICULTURAL CHEMISTRY

Pedagogy	Hours	urs Lecture Peer Teaching/Seminar/Role play/Discussion/Tutorial/Problem solving							
			session/Quiz/videos/Demonstration class /ICT						
	4	3	1						
PREAMB	LE: The	e objective	e of the course is to make the student understand the	proper	ties and				
componen	ts of so	oil, princ	ples and types of organic manures, inculcate the	chem	istry of				
fertilizers,	pesticid	es and va	rious soil sampling and methods of analysis.						
COURSE	OUTCO	ME: At t	he end of the Semester, the Students will be able to	Unit	hrs. /S				
CO1: dem	1	12							
non-agricu	ltural us	es by me	eans of understanding various physical, chemical and						
biological p	propertie	s and their	impact on plant growth.						
CO2: expl	ore the	types of	manures and analyze the importance of using various	2	12				
ecological	farming	techniques	to preserve soil's natural composition						
CO3: asses	ss the ne	ed and eff	ects of using artificial fertilizers, describe the preparation	3	12				
and propert	ties of so	me indust	rially important artificial fertilizers						
CO4 : describe various chemical materials developed to assist in the production of food 4 12									
such as insecticides, fungicides and herbicides									
CO5: appl	y analyti	cal proced	lures and methods in the analysis of soil and plants and	5	12				
recommend soil remediation based on the analysis.									

Unit –I SOIL CHEMISTRY

Components of soil – physical and chemical properties of soil – factors controlling soil pH and influence of soil reaction on availability of nutrients – soil colloids – soil organic matter – soil air – soil water – retention, soil moisture constant – macro and micro plant nutrients

Unit – II ORGANIC MANURES AND ORGANIC FARMING (12Hours)

General principles of manuring – special and general manures– action of manures on chemical and physical properties of soil – advantages of using manures in farming – Natural manures – Farmyard and liquid manures – composition and application – properties and composition of vegetable and animal manures with examples –ecological farming – biofertilizers, vermicompost – organic farming – advantages of organic farming.

Unit –III FERTILIZERS

Need for fertilizers – essential requirements –classification of fertilizers – preparation and importance of artificial fertilizers – urea, ammonium nitrate, calcium cyanamide, phosphate rock, superphosphate, triple superphosphate – potassium fertilizers – NPK fertilizers – mixed fertilizers – compound fertilizers – effects of fertilizers

Unit -IV **PESTICIDES**

Insecticides – natural insecticides – organic insecticides – DDT, Alderin & dieldrin, endrin and p – DCB – fumigants –rodenticides

Fungicides – inorganic (Bordeaux mixture) organic (dithiocarbamate) – industrial fungicides Herbicides and weedicides – 2,4-D and 2,4,5 –T (structure and function), treflan

(12Hours)

(12Hours)

(12Hours)

Unit – V SOIL TESTING

(12Hours)

Soil sample collection and preparation – dry and moist soil – soil pH determination – lime requirement determination – procedure for determining nitrogen – PPNT and PSNT test – phosphorus – potassium – micronutrients – measuring cation exchange capacity of soil – soil chloride analysis

TEXTBOOKS

1.Elements of agriculture chemistry – Thomas Anderson, Andesite press (2015) 2.Industrial chemistry – B.K.Sharma, Krishna prakashan Media(P) Ltd(2014) 18thedn

Reference books

1. Agricultural chemistry – B.A. Yagodin, Mir publishers (Moscow) 1976.

2. Soil sampling and methods of analysis – M.R.Cartar, Gregorich (2ndedn, 2008) CRC press.

3. Soil physical analysis – R.A.Singh, kalyani publishers, 1980.

4. Environmental chemistry – B.K.Sharma, Krishna prakashan Media(P) Ltd, (2014) 14thedn.

5. Principles of inorganic chemistry, Puri, Sharma, Kalia, Shoban Lal Naginchand & co., 24thedn, 1990.

UNITS	TOPIC	LECTURE HOURS	MODE OF
UNIT I:	SOIL CHEMISTRY		TEACHING
	Components of soil, physical and chemical properties of soil	4	Lecture
	factors controlling soil pH and influence of soil reaction on	3	Discussion /
	availability of nutrients		peer teaching
	soil colloids, soil organic matter, soil air, soil water, retention,	2	ICT
	soil moisture constant		
	macro and micro plant nutrients	3	Seminar /
			assignment
UNIT II	: ORGANIC MANURES AND ORGANIC FARMING	1	1
	General principles of manuring, special and general manures,	3	Discussion/
	action of manures on chemical and physical properties of soil,		seminar/ peer
	advantages of using manures in farming		teaching
	Natural manures, Farmyard and liquid manures, composition	4	Lecture
	and application		
	properties and composition of vegetable and animal manures	2	Library session
	with examples		followed by
			discussion/
			quiz
	ecological farming – biofertilizers, vermicompost, organic	3	ICT
	farming		
UNIT II	I: FERTILIZERS		
	Need for fertilizers – essential requirements – classification of	4	Lecture
	fertilizers		
	preparation and importance of artificial fertilizers – urea,	3	Seminar
	ammonium nitrate, calcium cyanamide		/assignment
	phosphate rock, superphosphate, triple superphosphate	3	ICT
	potassium fertilizers – NPK fertilizers – mixed fertilizers –	2	Discussion/

	compound fertilizers – effects of fertilizers		quiz					
UNIT IV	UNIT IV: PESTICIDES							
	Insecticides, natural insecticides, fumigants, rodenticides	4	Lecture					
	organic insecticides – DDT, Alderin&dieldrin, endrin and p –	3	ICT					
	DCB							
	Fungicides – inorganic (Bordeaux mixture) organic	2	Peer teaching/					
	(dithiocarbamate) – industrial fungicides		assignment					
	Herbicides and weedicides – 2,4-D and 2,4,5 –T (structure and	3	Library					
	function), treflan		session/ quiz					
UNIT V	: SOIL TESTING							
	Soil sample collection and preparation for dry and moist soil	4	Peer teaching/					
			seminar					
	soil pH determination, lime requirement determination	4	Lecture					
	procedure for determining nitrogen – PPNT and PSNT test,	2	ICT					
	phosphorus, potassium, micronutrients							
	measuring cation exchange capacity of soil – soil chloride	2	Discussion					
	analysis							

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	scores
(COs)	101	102	105	101	100	1501	1502	1505	1501	1000	or COs
CO1	4	4	4	4	4	4	4	4	3	4	3.9
CO2	4	4	3	4	3	4	4	4	3	4	3.7
CO3	4	4	3	3	4	4	4	4	3	3	3.6
CO4	4	4	4	3	3	4	4	4	3	4	3.7
CO5	4	4	4	3	3	4	4	4	3	4	3.7
Mean Overall Score											3.7

Result: The Score for this Course is 3.7 (High Relationship)

		-	-
UNIT	Part A(10X1m)	Part B (5 X 5 = 25m)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K1, K2	K1	К3
II	K2, K3	K2	К3
III	K1, K3	К3	K3
IV	K1, K3	К3	K2
V	K3, K2	К3	K1

Programme : B.Sc Chemistry Semester : VI Sub. Code : U22SEC3P

2

1

Pedagogy

Part IV: SECIII Hours : 2 /W, 30 /S Credits : 2

SKILL ENHANCEMENT COURSE III TITLE OF THE PAPER: APPLIED CHEMISTRY PRACTICAL

Hours Laboratory class /Demonstration

PREAM commerc	BLE: M cially us	lake th eful pro	e stude oducts	nts to d like ph	do expe enoyl a	erime nd d	ents eter	related gents.	to app	lied chem	istry a	nd to	prepare
COURS	E OUTO	COME:	At the	end of	the Sem	nestei	r, th	e Student	s will t	be able to		Unit	Hrs./S
CO 1: do	experin	nents re	lated to	applied	d chemi	stry,	pre	oare pher	oyl and	d detergent	ts.	1	30
1. D	etermina	ation of	percent	by wei	ight of a	acetic	c aci	d in vine	gar.				
2. D	etermina	ation of	Total h	ardness	in wate	er for	r a g	iven unk	nown v	vater samp	le by E	DTA	
m	ethod.												
3. D	etermina	ation of	Calciu	n in co	mmerci	al Mi	ilk p	owder by	y EDTA	A method.			
4. D	Determination the amount of fat and casein in different types of milk.												
5. V	5. Verification of Beer Lamberts Law for KMnO4 using photo colorimeter.												
6. D	6. Detection of common adulterants in commercially available milk samples.												
7. Es	7. Estimation of free fatty acids present in given oil samples.												
8. D	etermina	ation of	availab	le orga	nic Carl	bon i	n so	il.					
9. D	etermina	ation of	pH of c	lifferen	t brands	s of n	nilk	(Group	experir	nent)			
10. M	aking so	bap usin	ig sapor	nificatio	on reacti	ion (1	Den	nonstratic	on only)			
11. Es	stimatio	n of asp	irin in c	commer	cially a	vaila	ble	tablets (I	Demons	tration onl	v)		
12. Pt	eparatic	on of ph	enovl. d	leterger	nt (Grou	ın Ex	per	iment).			<i>.............</i>		
	-1	F	j-, -			·r	-r						
Internal - Attendan	40 marl ce – 10 1	ks marks. H	Experin	nent and	l Result	ts-3	0 m	arks.					
Unit I (E	xternal	- 60 ma	arks)										
Experime	ent – 25	marks.	Result	– 20 ma	arks								
Record -	10 mark	KS											
Viva voc	e – 5 ma	ırks					1		T				
UNITS			TOP	[C			LA	AB HOU	RS	MODE C	OF TEA	CHI	NG
	Applie	d Chem	istry ex	perime	nts			30		Lab sessio	on		
Cauraa	Dua any			$(\mathbf{DO}_{\mathbf{z}})$		Dree	~	Creation Creation	fie Out				
Outcomes	Progra	amme O	utcomes	(POS)		Pro	gran	nine spec		comes (PSC	JS)	IVI 0.0	ean
$(CO_{\rm S})$	PO1	PO2	PO3	PO4	PO5	PSC	D1	PSO2	PSO3	PSO4	PSO5		
(COS)												01	005
CO1	5	4	5	5	5	5		5	5	4	5	4.	8
		1	1	I	Me	ean C	Over	all Score	1	I	1	4.	8
		Result:	The Sc	ore for	this Co	urse i	is 4	.8 (Ve	ery Hig	h Relation	ship)		

Programme : B.Sc (Physics/Zoology/HomeScience /Botany) Part III: Allied Semester : III Code : ACT1

Hours : 4 /W, 60/S Credits :3

TITLE OF THE PAPER: ALLIED CHEMISTRY – I

		_								
Pedagogy	Hours	Lecture	Peer Teaching/Seminar/ Discussion/Problem solving	em solving ICT						
			session/Quiz/videos/Demonstration class							
	4	2	1	1						
PREAMB	LE: Th	e objectiv	e of the course is to make the student understand	the p	rinciples					
behind basic laboratory techniques involved in organic analysis, titrations and clinical chemistry,										
also gains an idea on metallurgy, adsorption, catalyst and photochemistry.										
COURS	COURSE OUTCOME: At the end of the Semester, the Students will be able to Unit hrs. /S									
CO1: ga	1	12								
chemical reactions involved in organic analysis										
CO2: iden	2	12								
from their	ores pre	paration,	properties and uses of industrially important inorganic							
compounds	5									
CO3: defi	ne the	concept a	nd applications of adsorption, explain the types and	3	12					
functions of	of cataly	st and dev	velop a knowledge on broad variety of photo chemical							
systems										
CO4: disc	uss the	proper pr	ocedure and regulation for safe handling and use of	4	12					
chemicals,	explain	the theore	etical principles and perform calculations of analytical							
methods w	ithin titra	ation								
CO5: exh	ibit kno	wledge of	f body chemistry levels under healthy or abnormal	5	12					
conditions	and cher	nistry behi	nd various tests performed in clinical chemistry.							

UNIT – I: ORGANIC CHEMISTRY

(12 Hours)

Purification of organic compounds: crystallization, fractional crystallization, sublimation, distillation, fractional distillation, distillation under reduced pressure, steam distillation, chromatography, zone refining and chemical methods.

Principles of reactions involved in organic analysis: Reactions of acids, phenols, aldehydes, amines, amides, aliphatic diamide and monosaccharide.

UNIT – II: INORGANIC CHEMISTRY

(12 Hours)

Oxides: Classification with examples.

Metallurgy: Ore, gangue, flux and slag – definition. Principle and general methods of extraction of metals. **Extraction** of cobalt and nickel.

Preparation, properties and uses of the following compounds: a) verdigris, b) blue vitriol, c) Bordeaux mixture, d) Epsom salt, e) gypsum, f) Plaster of Paris, g) Green Vitriol, h) Potassium ferrocyanide, i) Potassium ferricyanide, j) sodium nitroprusside, k) White vitriol, l) Sodium borohydride, m) Lithium aluminium hydride.

102

UNIT – III: PHYSICAL CHEMISTRY

Adsorption: Definition of various terms. Adsorption of gases on solids – characteristics of adsorption of gases on solids – physical adsorption and chemisorption- factors influencing adsorption – application of adsorption – adsorption indicators.

Catalysis: Definition – characteristics – theories of catalysis – promoters and poisons –enzyme catalysis – acid-base catalysis – auto catalysis (definitions with suitable examples)

Photochemistry: Definition of Photochemical reactions- Grotthus Draper Law and Einstein's law – quantum efficiency (high and low) – comparison between thermal and photochemical reactions – chemiluminescence, fluorescence, phosphorescence- photosensitization – flash photolysis (elementary treatment)

UNIT – IV: ANALYTICAL CHEMISTRY

Laboratory hygiene and safety: Storage and handling of chemicals – toxic chemicals - waste and fume disposal – Precautions for avoiding accidents – First aid techniques

Principles of volumetric analysis: Expressions of concentrations – equivalent weightsprinciple of volumetric analysis – primary and secondary standards – classification according to reactions – various types of indicators.

UNIT- V: APPLIED CHEMISTRY

Clinical Chemistry:

Qualitative and quantitative analysis of cholesterol in serum – standard value of cholesterol – heart attack

Qualitative and quantitative analysis of sugar in serum and urine – standard value of sugar - glucose tolerance test – Benedict's test – hypoglycemia and diabetes (symptoms)

Estimation of hemoglobin - standard value of Hb - anemia.

Diagnostic test for albumin in serum and urine - reasons for albuminuria.

Formation and Analysis of Kidney Stones

References

Course material supplied by the department

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I	: ORGANIC CHEMISTRY		
	crystallization, fractional crystallization, sublimation, chromatography, zone refining and chemical methods	5	Lecture
	distillation, fractional distillation, distillation under reduced pressure, steam distillation	3	ICT
	Reactions involved in qualitative organic analysis of acids, phenols, aldehydes, amines, amides, aliphatic diamide and monosaccharide.	4	Lecture, lab session & Demonstration
UNIT I	I: INORGANIC CHEMISTRY		
	Classification of oxides with examples	2	Lecture
	Principle and general methods of extraction of metals. Extractionof nickel	3	ICT
	Extraction of cobalt.	1	Peer teaching / tutorial

(12 Hours)

(12 Hours)

(12 Hours)

P n v	Preparation, properties and uses of verdigris, blue vitriol, Bordeaux nixture, Epsom salt, gypsum, Plaster of Paris, Green Vitriol, White ritriol,	3	Lecture, Assignment& Quiz						
P fe a	Preparation, properties and uses of Potassium ferrocyanide, Potassium erricyanide, sodium nitroprusside Sodium borohydride, Lithium luminium hydride.	3	Lecture						
UNIT III:	PHYSICAL CHEMISTRY								
	Definition of various terms in Adsorption, characteristics of adsorption of gases on solids, physical adsorption and chemisorption, catalysts, promotors and poisons theories of catalysts Definition of Photochemical eactions- Grotthus Draper Law and Einstein's law – quantum efficiency high and low) – comparison between thermal and photochemical eactions	8	Lecture						
F	Factors influencing adsorption, application of adsorption, adsorption ndicators.	2	Lecture, Assignment& quiz						
-	Chemi-luminescence, fluorescence, phosphorescence- photosensitization - flash photolysis	2	ÎCT						
UNIT IV: ANALYTICAL CHEMISTRY									
S	storage and handling of chemicals, toxic chemicals, waste and fume lisposal,	3	Lecture						
P	Precautions for avoiding accidents, First aid techniques	2	videos						
Pe	Principles of volumetric analysis: Expressions of concentrations, equivalent weights- principle of volumetric analysis	4	Lecture with problem solving and discussion						
P v	Primary and secondary standards, classification according to reactions, various types of indicators.	3	Lecture &peer teaching						
UNIT V: A	APPLIED CHEMISTRY								
	Qualitative and quantitative analysis of cholesterol in serum, standard value of cholesterol, heart attack	3	Lecture						
C s h	Qualitative and quantitative analysis of sugar in serum and urine, tandard value of sugar, glucose tolerance test, Benedict's test, hypoglycemia and diabetes (symptoms)	3	ICT						
E	Estimation of hemoglobin – standard value of Hb – anemia	2	peer teaching/ seminar/ assignment						
L F	Diagnostic test for albumin in serum and urine, reasons for albuminuria, Formation and analysis of kidney stones	4	Discussion / library session						

Course	Progra	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	4	3	3	4	4	4	4	4	4	3.8
CO2	4	4	3	3	4	4	4	5	4	4	3.9
CO3	4	4	4	3	4.5	5	4	3	4	4	3.95
CO4	4	4	4	3	4.5	4.5	4	3	4	4	3.6
CO5	4	4	5	3	4	4	4	4	4	4	3.6
				all Score				3.8			

Result: The Score for this Course is 3.8 (High Relationship)

UNIT	Part A(10X1m)	Part B (5 X 5 = 25m)	PART C(5 X $8 = 40m$)
		Either or Pattern	Either or Pattern
Ι	K1, K3	K2 / K3	K3 / K2
II	K2, K3	K3 / K1	K2 / K1
III	K1, K3	K1 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K2	K3 / K2	K3 / K3

Programme : B.Sc (Physics/Zoology/Home Science /Botany)Part III: AlliedSemester : IVHours : 4 /W, 60 /SCode : ACT2Credits :4

TITLE OF THE PAPER: ALLIED CHEMISTRY II

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/ Discussion/ Problem solving	ICT						
reaugogy	mours	Lecture	session/Quiz/videos/Demonstration class	101						
	4	2		1						
	4	2		I						
PREAME	BLE: Th	e objecti	ve of the course is to make the student understandthe f	undam	iental					
concept o	f nature	and bor	iding in organic compounds, chemistry behind hydrogen	peroxi	ide &					
ozone, cr	ozone, create awareness on ways of using nuclear energy, principle behind chromatography									
and provi	ide knov	vledge on	industrial preparation of day-to-day products in our life.							
COURSE OUTCOME: At the end of the Semester, the Students will be able to										
			, ,		/S					
CO1 : recognize the concept of hybridization and gain knowledge about reaction types										
and stabili	ty of rea	ction inte	rmediates.							
CO2: des	cribe the	e chemist	ry of preparation, properties, structure and application of	2	12					
hydrogen	peroxide	and ozor	ne.							
CO3: disc	uss artifi	icial radic	activity, nuclear fission and fusion.	3	12					
CO4: exp	lain the p	orinciples	of chromatography.	4	12					
CO5: app	raise the	e importa	nce of chemical industry such as cement, glass, ceramics,	5	12					
petrochem	nicals, pa	aper and	recognize the method of converting raw materials into							
desired pr	oducts.									

UNIT-I: ORGANIC CHEMISTRY

(12 Hours)

(12 Hours)

Fundamental Concepts:

Tetrahedral arrangement of valencies of carbon atom, Concept of hybridization in organic molecules.

Cleavage of bonds: Homolytic and heterolytic cleavage of carbon bond

Reaction intermediates: Free radicals, carbones, carbonium ion and carbanion – their generation and stability. Nucleophilic and electrophilic reagents.

Types of reactions: Substitution, addition, elimination, rearrangement and polymerisation with suitable examples [no mechanism needed]. Isomerism – geometric and stereoisomerism.

UNIT – II : INORGANIC CHEMISTRY

Hydrogen peroxide: Preparation, manufacture, purification, properties and uses. Structure – estimation by permanganometric and iodometric methods. Methods of expressing the strengths of hydrogen peroxide and their interconversion.

Ozone: Preparation, manufacture, properties, composition, structure and uses. Estimation by iodometric method. Distinction between hydrogen peroxide and ozone.

UNIT – III: PHYSICAL CHEMISTRY

Artificial radioactivity: Definition – projectiles – examples – radioactive transformations **Nuclear fission:** Definition – chain reaction – energy released during fission – principle of atom bomb and nuclear reactors.

Nuclear fusion – Definition – energy released during fusion – stellar energy – hydrogen bomb – comparison of nuclear fission and fusion

Isotopes and isobars: Definitions and consequences of isotopy

Applications of radioactivity – radioactive isotopes as tracer elements in medicine, agriculture and industry, in the elucidation of structure and in the investigation of reaction mechanism – carbon dating.

UNIT – IV: ANALYTICAL CHEMISTRY

Chromatography – Definition of chromatography, mobile phase and stationary phase, Classification of chromatography, Principles of adsorption and partition chromatography.

Paper and Column Chromatography, Thin Layer chromatography, Rf value, general applications of chromatography.

Gas chromatography – Principles, instrumentation (brief description) – applications

UNIT – V APPLIED CHEMISTRY

Silicate industry: Cement, glass and ceramics, raw materials and manufacture of cement, glass and ceramics.

Petrochemicals: An elementary study, Definition – origin – composition – chemicals from natural gas, petroleum, light naphtha and kerosene – synthetic gasoline.

Paper industry: Raw materials and manufacture- types of papers.

References

Course material supplied by the department

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I	: ORGANIC CHEMISTRY		
	Tetrahedral arrangement of valencies of carbon atom, Concept of	3	ICT, discussion
	hybridization in organic molecules.		
	Cleavage of bonds: Homolytic and heterolytic cleavage of carbon bond. Reaction intermediates: Free radicals, carbenes, carbonium ion and carbanion, their generation and stability, Nucleophilic and electrophilic reagents.	3	Lecture
	Types of reactions: Substitution, addition, elimination, rearrangement and polymerization with suitable examples	3	Lecture & assignment
	Isomerism–stereoisomerism, definition, classification with suitable examples	3	ICT

S

(12 Hours)

(12 Hours)

(12 Hours)

UNIT II: INORGANIC CHEMISTRY		
Preparation, manufacture, purification, properties and uses of	5	Lecture
nydrogen peroxide and ozone.	~	X
Estimation of H_2O_2 by permanganometric and iodometric	5	Lecture with problem
methods. Methods of expressing the strengths of hydrogen		solving session
peroxide. Estimation of ozone by iodometric method		
Structure of ozone and hydrogen peroxide, Distinction between	2	ICT& Quiz
hydrogen peroxide and ozone.		
UNIT III: PHYSICAL CHEMISTRY		
Artificial radioactivity: Definition – projectiles, examples,	6	Lecture
radioactive transformations, Definition, energy released during		
nuclear fission and fusion, comparison of nuclear fission and		
fusion. Determination of age through carbon dating.		
Principle of atom bomb, nuclear reactors, hydrogen bomb, stellar	3	ICT
energy		
Isotopes and isobars : Definitions and consequences of isotopy	1	Peer teaching
Applications of radioactivity – radioactive isotopes as tracer	2	Seminar, discussion&
elements in medicine, agriculture and industry, in the elucidation		assignment
of structure and in the investigation of reaction mechanism		
UNIT IV: ANALYTICAL CHEMISTRY		·
Chromatography	7	Lecture
Applications of chromatography	3	seminar& assignment
Column chromatography and thin layer chromatography, Gas	2	ICT
chromatography –principles and applications		
UNIT V: APPLIED CHEMISTRY		•
Raw materials and manufacture of cement and ceramics	4	Lecture
Raw materials and manufacture of glass and paper, types of	4	Discussion / peer
paper	-	teaching/seminar/quiz
Petrochemicals: Definition origin composition chemicals from		
natural gas netroleum light nanhtha and kerosene – synthetic	4	ICT
gasoline	т	101
Subornio.		

Course	Progra	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	3	4	3	4	3	3	3	4	3.4
CO2	4	4	3	3	4	4	4	3	3	4	3.6
CO3	4	4	4	3	4	4	4	4	3	3	3.7
CO4	4	4	4	3	4	4	4	4	3	4	3.8
CO5	4	4	3	3	4	4	4	3	3	3	3.5
					Me	ean Overa	an Overall Score				3.6

Result: The Score for this Course is 3.6 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X 8 = 40)
		Either or Pattern	Either or Pattern
Ι	K1, K2	K1 / K3	K3 / K2
II	K2, K3	K3 / K1	K3 / K1
III	K1, K3	K2 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K3	K3 / K2	K2 / K3
Programme : B.Sc Chemistry Semester : III & IV Sub. Code : ACP Part III: Allied Hours : 3/W, 45 /S Credits : 3

TITLE OF THE PAPER: ALLIED CHEMISTRY - PRACTICAL

Pedagogy	Hours	Lab session//Demonstration class					
	3	3					
PREAMBLI	PREAMBLE: The objective of the course is to make the student to estimate the solution of						
unknown sti	rength a	nd analyze the given organic compound.					
COURSE O	UTCON	IE: At the end of the Semester, the Students will be able to	Unit	hrs. / S			
CO1: analyz	e and fi	nd out the given organic compound and report the functional	1	45			
group presen	group present in it.						
CO2: find ou	it the stre	ength of given solution and the weight.	2	45			

Unit I: QUALITATIVE ANALYSIS

Qualitative analysis of an organic compound containing one or two functional groups and confirmation by the preparation of a solid derivative / colour reactions – acids, phenols, aldehydes, primary amines, amides, aliphatic diamide and monosaccharide.

Scheme of valuation: Internal: Organic Analysis = 20 marks

Unit – II VOLUMETRIC ANALYSIS

A double titration involving making up of the solution to be estimated.

I. Acidimetry and alkalimetry:

- a) Titration between a strong acid against NaOH
- b) Titration between a strong acid against Na₂CO₃
- c) Titration between sodium hydroxide against oxalic acid.

II.Permanganometry:

- a) Titrations between KMnO₄ against oxalic acid
- b) Titrations between KMnO₄ against ferrous sulphate
- c) Titrations between KMnO₄ against Mohr's salt (Ferrous ammonium sulphate)

III. Iodometry:

- a) Titrations between sodium thiosulphate and potassium permanganate
- b) Titrations between sodium thiosulphate and potassium dichromate
- c) Titrations between sodium thiosulphate and copper sulphate

Internal: Volumetric Analysis 20

Total internal = 40 marks **External**: 60 marks

Record -5 Marks

Organic analysis -25 (Preliminary reactions with correct procedure -10 marks, aromatic/aliphatic -5 marks, saturated/unsaturated -5 marks, functional group -5 marks,)

Volumetric analysis – 30 (Procedure – 10 marks, upto 2% - 20 marks, 3% -15 marks, 4% and above 10 marks)

UNITS	TOPIC	LECTURE	MODE OF TEACHING
		HOURS	
UNIT 1: Qua	alitative analysis		
	Analysis of organic compound	40	Lab session
	Analysis of organic compound	5	Demonstration
UNIT II: Vol	umetric analysis		
	Volumetric analysis	40	Lab session
	Volumetric analysis	5	Demonstration

Course	Progra	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	4	4	4	4	5	4	5	4	4	4.3
CO2	5	4	5	4	4	5	4	4	4	4	4.2
					Me	an Overa	all Score				4.25

Result: The Score for this Course is 4.25 (Very High Relationship)

Programme: BSc/BCom/BA/BBA/BCA Semester: III Code: U22NMC1

TITLE OF THE PAPER- CHEMISTRY IN LIFE

Pedagogy	Hours	Lecture	Peer Teaching/Seminar/ /Discussion/Problem	ICT			
			solving session/Quiz/videos/Demonstration class				
			(Library session is conducted after the class hours).				
	2	1	1 hr. (if needed)	1			
PREAMBL	E: The	objective o	of the course is to make the student understand t	hechen	nistry of		
fuels, know	the co	mmodity	values of oils, fats and waxes, importance of t	food a	dditives,		
preservative	preservatives, adulterants, manures & compost and gain knowledge on toxicology.						
COURSE O	UTCON	IE: At the	end of the Semester, the Students will be able to	Unit	hrs./S		
CO1: acquir	e knowle	edge on cha	aracteristics of fuels.	1	6		
CO2: identit	fy the dif	ferences be	etween oils, fats and waxes and their classifications.	2	6		
CO3: discuss	s on vari	ous food ad	lditives, preservatives and adulterants and	3	6		
demonstrate various tests to find adulteration.							
CO4: analyti	cal meth	ods used ir	r crime investigation, poisons, toxins and antidotes.	4	6		
CO5: apprec	iate the v	alue of ma	nures and compost.	5	6		

UNIT – I: FUELS

Fuels: Definition, requirements of a good fuel, classification, ignition temperature, calorific value, units of heat, liquid fuels (petrol, kerosene), gaseous fuels (LPG, Gobar gas, CNG)

UNIT - II: OILS, FATS AND WAXES

Oils, fats and waxes: Definition, distinction between oils and fats, properties, classification, vegetable oils, hydrogenation of oil, manufacture of aroma candle.

UNIT –III: FOOD CHEMISTRY

Food chemistry: Flavour and aroma of food, food additives, flavorings, food preservatives, food adulterants, some simple tests to find adulteration.

UNIT -IV: INDIAN MEDICINAL PLANTS AND USES

Indian Medicinal plants and uses - Thulasi, Neem, Kizhaanelli, Mango, Semparuthi, Adadhodai and Thoothuvalai.

UNIT - V FORENSIC CHEMISTRY AND TOXICOLOGY (6 Hours)

Introduction - Significance - Chemicals used in forensic science - Analytical methods used in crime investigation - Toxicology - Poisons and toxins - Antidotes.

(6 Hours)

(6 Hours)

(6Hours)

Part IV: Non- Major Elective

Hours -2 / W, 30 /S

Credit: 2

References

Course material supplied by the department

UNITS	ТОРІС	LECTURE	MODE OF
		nouks	TEACHING
UNIT I:	FUELS		
	Definition, requirements of a good fuel, classification of	4	Lecture
	fuels-ignition temperature, calorific value, units of heat.		
	Liquid fuels and gaseous fuels	2	ICT &Seminar
UNIT II	: OILS, FATS AND WAXES:		
	Definition, distinction between oils and fats, properties, classification,	3	Lecture
	vegetable oils, hydrogenation of oil,	2	Group discussion
	Manufacture of aroma candle.	1	ICT
UNIT II	I: FOOD CHEMISTRY:	•	·
	Flavour and aroma of food, food additives, flavourings,	3	Lecture
	food preservatives, food adulterants.		
	food preservatives, food adulterants	1	assignment
	some simple tests to find adulteration.	2	ICT
UNIT –	V: INDIAN MEDICINAL PLANTS AND USES	•	·
	Indian Medicinal plants and uses – Tulasi, Neem,	6	Lecture, ICT ans
	Kizhanelli, Mango, Semparuthi, Adadodai and		group discussion.
	Thoothvelai.		
UNIT –	V FORENSIC CHEMISTRY AND TOXICOLOGY		
	Introduction – Significance – Chemicals used in forensic		
	science – Analytical methods used in crime investigation		
	– Toxicology – Poisons and toxins – Antidotes.		

Course	Progra	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs))s)	Mean
Outcomes											scores
(COs)											of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	4	3.5	3	3.5	3	4	3	3	4	4	3.5
CO2	4	3	3	3.5	3	4	4	3	3	4	3.0
CO3	4	3	4	4	2	4	4	3.5	3.5	4	3.6
CO4	4	3	3.5	4	2.5	4	4	3	3	4	3.5
CO5	4	3	3.5	4	4	4	3	5	4	3.5	3.8
					Me	ean Over	all Score				3.5

Result: The Score for this Course is 3.5 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X $8 = 40$)
		Either or Pattern	Either or Pattern
Ι	K3,K1	K1/K3	K3/ K3
II	K3,K2	K3/ K3	K2/ K1
III	K3,K1	K3/ K2	K1/K3
IV	K3,K1	K2/ K3	K3/ K2
V	K3,K2	K3/ K1	K3/ K3

Programme : BSc/BCom/BA/BBA/BCA Semester: IV Code: U22NMC2 Offered for all arts and science students

Part IV: Non Major Elective Hours -2 / W, 30 /S Credit: 2

TITLE OF THE PAPER: DAY TO DAY CHEMISTRY

Pedagogy	Hours	Lecture	Seminar/Discussion/Tutorial/Problem solving					
redagogy	Tiours	Lecture	Original Discussion Futorial Frontient Solving					
			Quiz/videos/Demonstration class /ICT					
	2	1	-	1				
PREAMBL	E: The o	objective o	f the course is to make the student understand. So	aps, de	tergents,			
shampoo, da	airy prod	ducts, ener	gy storage devices, chemical industries and water tr	eatmer	ıt.			
COURSE O	UTCON	IE: At the	end of the Semester, the students will be able to	Unit	hrs./S			
CO1: describ	1	6						
CO2: describ	be the nu	tritive valu	e of milk, Pasteurization, Homogenization and	2	6			
different mill	k produc	ts.						
CO3: describ	be the im	portance of	f water management and impart ideas on various	3	6			
water treatme	ent meth	ods.						
CO4: explain	4	6						
CO5: explain	n differei	nt chemical	industries.	5	6			
-								

UNIT - I: SOAPS, DETERGENTS AND SHAMPOO

Soaps – Manufacture of soaps- Detergents – Advantages of detergents over soap- Ingredients used in toilet soaps –Brief idea of shaving soaps and creams and Shampoo.

UNIT –II: DAIRY PRODUCTS

Nutritive value of milk - Pasteurization of Milk – Advantages of pasteurized milk-Homogenization-Homogenized milk- Cream-Butter – Milk Powder - Ice cream -Khoa – Toned milk- Sterilized milk.

UNIT – III: DRINKING WATER

Sources - Bore water- rainwater - rainwater harvesting, potable water quality, water treatment (methods of softening) – boiling, addition of lime, addition of sodium carbonate, ion exchange method, desalination of sea water- reverse osmosis.

UNIT – IV: ENERGY STORAGE DEVICES

Energy – sources of energy – Classification – Methods of energy storage – Grid energy storage – Batteries – fuel cells - energy storage applications.

UNIT – V: CHEMICAL INDUSTRIES

Introduction – Categories of chemical industries – Agrochemical Industry – Ceramic products and raw material used – composition and uses of glass, cement and paint.

(**6 Hours**) an- Ingredi

(6 Hours)

(6 Hours)

(6 Hours) nergy stora

(6 Hours)

References

Course material supplied by the department

UNITS	ΤΟΡΙΟ	LECTURE HOURS	MODE OF TEACHING
UNIT - I	SOAPS, DETERGENTS AND SHAMPOO		
	Soaps – Manufacture of soaps- Detergents – Advantages of	6	Lecture&
	detergents over soap- Ingredients used in toilet soaps -Brief		Discussion
	idea of shaving soaps and creams and Shampoo.		
UNIT –I	I: DAIRY PRODUCTS		
	Nutritive value of milk - Pasteurization of Milk	2	Lecture
	Homogenization- Homogenized milk	2	ICT
	Advantages of pasteurized milk- Cream- Butter – Milk	1	Interactive
	Powder - Ice cream -Khoa – Toned milk- Sterilized milk.		discussion
UNIT – I	III: DRINKING WATER		
	Availability and portability, sources-artificial rain, rainwater	4	Lecture
	harvesting, potable water quality.		
	water treatment (methods of softening), ion exchange	2	ICT
UNIT – I	IV: ENERGY STORAGE DEVICES		
	Energy – sources of energy – Classification – Methods of		Lecture
	energy storage – Grid energy storage – Batteries – fuel cells	3	
	- energy storage applications.		
	Energy – sources of energy	1	Discussion
UNIT – Y	V: CHEMICAL INDUSTRIES		
	Introduction – Categories of chemical industries –	4	Lecture
	Agrochemical Industry – Ceramic products and raw material		
	used – composition.		
	uses of glass, cement and paint.	2	Assignment

Course	Progra	imme Oi	utcomes	(POs)		Program	nme Speci	fic Outco	mes (PSC	s)	Mean
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	scores of COs
CO1	4	3	2	3	2	4	3	3	2	3	2.9
CO2	4	2	3	4	4	4	4	4	2	3	3.4
CO3	4	4	4	3	3	4	4	3	3	4	3.6
CO4	4	3	4	3	3	4	4	3	3	4	3.5
CO5	4	3	3	4	3	4	3	3	3	4	3.4
Mean Overall Score									3.4		

Result: The Score for this Course is 3.4 (High Relationship)

UNIT	Part A(10X1)	Part B (5 X 5 = 25)	PART C(5 X $8 = 40$)
		Either or Pattern	Either or Pattern
Ι	K1, K2	K1 / K3	K3 / K2
II	K2, K3	K3 / K1	K3 / K1
III	K1, K3	K2 / K3	K3 / K3
IV	K2, K3	K3 / K3	K1 / K3
V	K1, K3	K3 / K2	K2 / K3

VALUE ADDED COURSE

Programme : B.Sc Chemistry

TITLE OF THE PAPER: CHEMISTRY OF HEALTH AND HERBS

PREAMBLE: The objective of the course is to help the students to get exposed to natural product drug discovery and to make the students understand the chemistry of important Phytoconstituents of different categories.

COURSE OUTCOME: At the end of the Course, the students will be able to	Unit	hrs./S
CO1: describe the important phytochemicals in our day today life and the role of	1	6
phytochemical in modern medicine.		
CO2: explain the Soxhlet extraction and isolation by GC and HPLC.	2	6
CO3 : describe the chemical tests for various secondary metabolites.	3	6
CO4: describe the medicinal properties of alkaloids such as Caffeine, Quinine and	4	6
Resperine.		
CO5: discuss the chemical structure and medicinal properties of flavonoids Luteolin,	5	6
Quercetin and kaempferol		

UNIT – I : DRUG DISCOVERY AND DEVELOPMENT

Code:

History of Herbs as source of medicine - Phytochemicals - primary and secondary metabolites -Important phytochemicals in our day today life - Structure activity relationship - Role of phytochemical in modern medicine - Standardisation of herbal drugs.

UNIT – II: EXTRACTION AND ISOLATION OF ACTIVE PRINCIPLE (6 Hours)

Collection of plant material – Drying and Grinding – Extraction of active principles– Soxhlet extraction and recent advancements - Selection of solvents for extraction - Detection of active principle using TLC - Isolation of it by column and GC, HPLC.

UNIT – III: DETECTION OF SECONDARY METABOLITES (6 Hours)

Chemical test for various secondary metabolites such as Alkaloids, Poly phenolics-Flavonoids, Anthocyanins- Terpenoids- Steroids - General Structure elucidation by spectroscopic Techniques like UV, IR, NMR (1H, 13C).

UNIT – IV: MEDICINAL PROPERTIES OF ALKALODS (6 Hours)

General structure of alkaloids - Sources, chemical structure and medicinal properties of following alkaloids- Caffeine-Quinine- Reserpine

UNIT V: FLAVONOIDS AS MEDICINE

Sources, chemical structure and medicinal properties of following Flavonoids -Luteolin -Quercetin and kaempferol

(6 Hours)

Hours: 30 Hours (6 weeks)

(6 Hours)

ТЕХТВООК

1. Medicinal Chemistry, G.R. Chatwal, Himalya Publishing House.

REFERENCE BOOKS

- 1. Phytochemical methods of chemical analysis by Harbone
- 2. Chemistry of natural products by Atur Rahman
- 3. Medicinal Chemistry Drug Discovery by Donald J, Abraham,
- 4. Plant drug analysis by Wagner
- 5. Clarke's isolation & identification of drugs by AC Mottal

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT 1:	DRUG DISCOVERY AND DEVELOPMENT	L	
	Phytochemicals - primary and secondary metabolites - Structure activity relationship - Role of phytochemical in modern medicine - Standardisation of herbal drugs.	4	Lecture
	History of Herbs as source of medicine	1	
	Important phytochemicals in our day today life	1	Discussion
UNIT II F	EXTRACTION AND ISOLATION OF ACTIVE PRINCIPL	E	
	Extraction of active principles– Soxhlet extraction and recent advancements – Selection of solvents for extraction – Detection of active principle using TLC - Isolation of it by column and GC, HPLC.	4	
	Isolation of it by column and GC, HPLC	1	ICT
	Collection of plant material	1	Assignment work
UNIT III	DETECTION OF SECONDARY METABOLITES		
	Chemical test for various secondary metabolites such as Alkaloids, Poly phenolics-Flavonoids, Anthocyanins- Terpinods- Steroids – General Structure elucidation by spectroscopic Techniques like UV, IR, NMR (1H, 13C).	4	Lecture
	Chemical test	1	Assignment
	Structure elucidation by spectroscopic Techniques like UV, IR, NMR (1H, 13C).	1	ICT
UNIT IV	MEDICINAL PROPERTIES OF ALKALODS		
	General structure of alkaloids - Sources, chemical structure and medicinal properties of following alkaloids- Caffeine-Quinine-Resperine.	4	Lecture
	medicinal properties of following alkaloids- Caffeine-Quinine-Resperine.	2	Discussion
UNIT V:	FLAVONOIDS AS MEDICINE		
	Sources, chemical structure and medicinal properties of following Flavonoids -Luteolin - Quercetin and kaempferol.	5	Lecture
	medicinal properties of following Flavonoids -Luteolin - Quercetin and kaempferol.	1	discussion

Course	Progra	mme Ou	utcomes	(POs)		Programme Specific Outcomes (PSOs)					Mean
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	4	3	3	3	4	4	4	4	4	4	3.7
CO2	4	4	3	3	4	4	4	4	4	4	3.8
CO3	4	4	3	3	4	4	4	4	4	4	3.8
CO4	4	4	4	4	4	4	4	3	4	4	3.9
CO5	4	3	4	3	4	4	4	4	4	4	3.8
Mean Overall Score											3.8

Result: The Score for this Course is 3.8 (High Relationship)

VALUE ADDED COURSE

Programme: B.Sc Chemistry Code:

Hours: 30 Hours (6 weeks)

TITLE OF THE PAPER: INDUSTRIAL CHEMISTRY

PREAMBLE: The objective of the course is to make the student to have a good knowledge about industrial chemistry and to get placement in reputed industries and to engage themselves in self-employment schemes

COURSE OUTCOME	Unit	hrs. / S
At the end of the Semester, the Students will be able to		
CO1 : demonstrate the basic concepts in industrial chemistry such as structure of the	1	6
global chemical industry, raw materials, chemical processes and flow diagrams		
CO2 : describe the unit operations like size reduction, size enlargement and separation	2	6
of materials		
CO3: discuss the unit processes like polymerization, alkylation and other unit	3	6
processes		
CO4: explain the processes in various chemical industries like organic chemicals,	4	6
fermentation and pharmaceutical industries and manufacturing units of organic,		
pharmaceutical and fermentation chemicals.		
CO5 : implement the usage of analytical tools, chromatography and perform various	5	6
chromatographic techniques.		

UNIT I: BASIC CONCEPTS IN INDUSTRIAL CHEMISTRY

(6 Hours)

- Introduction- Classification of Industries- Classification of Manufacturing industries Manufacturing sub- sectors
- The structure of the global chemical industry Commodity chemicals Special chemicals and fine chemicals
- Raw material for the Chemical Industry
- Chemical Processes- Unit processes, unit operations
- Flow diagrams- Block diagrams, process flow diagram / flow sheet

UNIT II: UNIT OPERATIONS

- Size Reduction Purpose Jaw crusher, Ball mill
- Size enlargement Purposes, Pellet mills, Tumbling agglomerators (two types)
- Separation of Materials Magnetic separation, froth floatation
- Other Unit operations (Purpose and application only) Electrostatic separation, Sedimentation, Crystallization, Leaching, Spray drying, solvent extraction, Absorption.

120

(6 Hours)

UNIT III: UNIT PROCESSES

(6 Hours)

- Polymerization Addition Polymerization, condensation Polymerization, free radical Polymerization
- Alkylation, Hydrolysis
- Other Unit processes- (Definition and application only) Sulphonation, Esterification, Hydrogenation, Halogenation and Nitration

UNIT IV: ORGANIC CHEMICALS, FERMENTATION AND PHARMACEUTICAL INDUSTRIES (6 Hours)

- Organic Chemical Industries- Manufacture of Phthalic acid, Adipic acid and styrenebutadiene rubber
- Fermentation Industries Manufacture of ethanol
- Pharmaceutical Industries Manufacture of Penicillic and Acetyl salicylic acid

UNIT V: INDUSTRIAL APPLICATIONS OF CHROMATOGRAPHY (6 Hours)

Definition- Types- Classification- R_f value - Column chromatography - Simulated

moving bed Chromatography- HPLC – Applications of Chromatography in various industries.

REFERENCES

1. Industrial Chemistry, Dr. B. K. Sharma, 17th edition, 2013, Goel Publishing house, Meerut

2. Industrial Chemistry, Loufty Madkour, Helen Njenga

3. Instrumental methods of Chemical analysis, Chatwal & Sam K Anand, 2019, Himalayan PublishingHouse, New Delhi.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING		
UNIT I: BA	ASIC CONCEPTS IN INDUSTRIAL CHEMISTRY				
	Introduction- Classification of Industries- Classification of Manufacturing industries – Manufacturing sub- sectors, The structure of the global chemical industry – Commodity chemicals - Speciality chemicals and fine chemicals, Raw material for the Chemical Industry	4	Lecture		
	Chemical Processes- Unit processes, unit operations Flow diagrams-	1	ICT		
	Block diagrams, process flow diagram / flow sheet	1	Assignment/ Seminar		

UNIT II: U	NIT OPERATIONS		
	Size Reduction – Purpose Jaw crusher, Ball mill Size enlargement – Purposes, Pellet mills, Tumbling agglomerators (two types)	4	Lecture
	Separation of Materials – Magnetic separation, froth floatation	1	ICT
	Other Unit operations – (Purpose and application only) Electrostatic separation, Sedimentation, Crystallization, Leaching, Spray drying, solvent extraction, Absorption.	1	Assignment / Seminar
UNIT III: U	UNIT PROCESSES		
	Polymerization – Addition Polymerization, condensation Polymerization, free radical Polymerization	4	Lecture
	Alkylation, Hydrolysis	1	ICT
	Other Unit processes- (Definition and application only) Sulphonation, Esterification, Hydrogenation, Halogenation and Nitration	1	Assignment / Seminar
UNIT IV: O	DRGANIC CHEMICALS, FERMENTATION AND PHA IES	ARMACEU	TICAL
	Organic Chemical Industries- Manufacture of Phthalic acid, Adipic acid and styrene-butadiene rubber	4	Lecture
	Fermentation Industries – Manufacture of ethanol	1	ICT
	Pharmaceutical Industries – Manufacture of Penicillic and Acetyl salicylic acid	1	Assignment / Seminar
UNIT V: IN	NDUSTRIAL APPLICATIONS OF CHROMATOGRAP	HY	
	Definition- Types- Classification- R _f value	3	Lecture
	Column chromatography – Simulated moving bed Chromatography- HPLC.	2	ICT
	Applications of Chromatography in various industries	1	Assignment/ Seminar

Course	Progra	mme Ou	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	4	5	4	4	5	4	3	4	3	4.1
CO2	4	5	4	3	4	4	5	4	3	4	4.0
CO3	4	3	5	4	5	4	3	5	4	5	4.2
CO4	5	4	3	3	4	4	5	4	4	4	4.0
CO5	5	4	3	4	5	4	3	5	4	5	4.2
Mean Overall Score											4.1

Result: The Score for this Course is 4.1 (Very High Relationship)

VALUE ADDED COURSE

Programme: Common for B.Sc /B.A/B.B.A/B.Com/B.C.A

Code:

TITLE OF THE PAPER: INTRODUCTION TO CHEMICAL PRODUCTS AROUND US

PREAMBLE: The objective of the course is to make the student understand the basic concepts of everyday usage products, food adulteration and medicinal importance of herbal plants.

COURSE OUTCOME: At the end of the Course, the students will be able to	Unit	hrs. / S
CO1 : describe the key ingredients of cosmetic items and the preparation of some	1	6
cosmetic items.		
CO2 : explain the properties of milk and describe milk products	2	6
CO3 : describe the medicinal value of herbal plants	3	6
CO4 : identify the natural toxins and adulterants in the food items.	4	6
CO5 : demonstrate the polymer products in home and their uses.	5	6

UNIT I: EVERYDAY CONSUMER ITEMS

Cosmetics – Key ingredients -Brief idea about Emulsifier, Preservatives, Moisturisers, Colours, Fragrances.

Benefits of Herbal extracts in cosmetics.

Formulation of Hand-made soaps, Shampoo, Hand sanitiser, Hair oils, Hair dye, After shave and Toothpaste.

UNIT II: MILK AND MILK PRODUCTS

Composition of Milk- Flavour and aroma of Milk - Effect of heat on milk; Pasteurisation; Homogenisation - Some Milk products: Cheese, Paneer, Cream, Butter, Ice Cream, Milk powder, Curd and butter milk.

UNIT III: MEDICIANL PLANTS AND HERBS IN THE KITCHEN (6 Hours)

Medicinal properties of some Indian medicinal plants- Hibiscus Rosa-sinensis - Ocimum Sanctum (Tulsi) – Azadirachta indica (Neem) – Phyllanthus Niruri (Keezhanelli)-Solanum Trilobatum (Thooduvalai)- Grass Cyanodon dactylon (Arugampullu) – Greens – Portulaca oleracea (Pulli-kirai),

Herbs in the kitchen – Turmeric, Garlic, Cumin and Asafoetida.

UNIT IV: FOOD COLOURINGS, ADULTERATION, TESTING AND SAFETY

(6 Hours)

Natural flavourings – Crude spices and herbs – Synthetic flavourings – formulation.

Natural toxins in food from other sources – Food additives – Contaminants of fats and oils – Bacterial toxins in food – Health hazards – Testing Adulterants.

(6 Hours)

(6 Hours)

Hours: 30/S

UNIT V: FIBRES AND POLYMER PRODUCTS IN HOME (6 Hours)

Types of Fibre Reinforced Plastics - Things made of FRP. Manmade Bio based fibre products and their uses. Polyethylene foam – Polystyrene foam and Polyurethane foam – Components & Uses. Graphite containing everyday products – pencils, lithium batteries (Only brief idea for all the products)

TEXTBOOKS

- 1. Fundamental Concepts of Applied Chemistry, Jayashree Ghosh, S. Chand & Company Ltd., First Ed., 2006.
- 2. A textbook of Applied Chemistry for Home Science and Allied Science, Thankamma Jacob, Macmillan India Ltd., Reprint 1987.
- 3. Engineering Chemistry, Jain & Jain, Dhanpat Rai Publishing Company, 16 th Edition.

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I: EV	ERYDAY CONSUMER ITEMS		
	Cosmetics – Key ingredients - Formulation of some products.	3	Lecture
	Demonstration of the preparation of some products	2	Demonstration/ICT
	Benefits of herbal extracts in cosmetics	1	Discussion
UNIT II: M	ILK AND MILK PRODUCTS		
	Composition of Milk; Flavour and aroma of Milk; Physical properties of Milk: Effect of heat on milk; Pasteurisation; Homogenisation. Milk products; Cheese, Paneer, Cream, Butter, Ice Cream, Milk powder, Curd and butter milk.	4	Lecture
	Effect of heat on milk; Pasteurisation; Homogenisation.	1	ICT
	Milk products; Cheese, Paneer, Cream, Butter, Ice Cream, Milk powder, Curd and butter milk.	1	Discussion
UNIT III: N	HEDICINAL PLANTS AND HERBS IN THE KIT	CHEN	
	Medicinal properties of some Indian medicinal plants Herbs in the kitchen	3	Lecture
	Medicinal properties of mentioned herbal plants	1	Seminar (peer teaching)
	Collection of medicinal plants and exhibiting.	1	Collection of materials and demonstration
	Pictures of medicinal plants	1	ICT/Videos

	120		
UNIT IV: F	OOD COLOURINGS, ADULTERATION, TESTI	NG AND SAF	TETY
	Natural flavourings – Crude spices and herbs –	4	Lecture
	Synthetic flavourings – formulation.		
	Natural toxins in food from other sources – Food		
	additives – Contaminants of fats and oils –		
	Bacterial toxins in food – Health hazards – Testing		
	Adulterants.		
	Testing Adulterants	1	Demonstration
	Bacterial toxins in food	1	Discussion
UNIT V: FI	BRES AND POLYMER PRODUCTS IN HOME		I
	Types of Fibre Reinforced Plastics - Things made	4	Lecture
	of FRP. Manmade Bio based fibre products and		
	their uses.Polyethylene foam – Polystyrene foam		
	and Polyurethane foam – Components & Uses.		
	Crophite containing avanualay products papails		
	Graphite containing everyday products – pencils,		
	lithium batteries		
	Polymer products used in home	2	ICT

Course	Progra	imme Oi	utcomes	(POs)		Programme Specific Outcomes (PSOs)				Mean	
Outcomes											scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	5	4	5	3	4	4	5	4	3	5	4.2
CO2	4	5	3	4	4	5	4	3	4	5	4.1
CO3	5	3	4	5	4	4	3	5	4	4	4.1
CO4	5	3	3	4	4	4	5	4	3	5	4.0
CO5	5	4	3	4	5	3	4	3	5	4	4.0
Mean Overall Score										4.1	

Result: The Score for this Course is 4.1 (Very High Relationship)