# SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (A), MADURAI - 625 002 Reaccredited with "A" by NAAC

# B.Sc., PHYSICS SYLLABUS FOR THE ACADEMIC YEAR 2022 - 2023



## **DEAPRTMENT OF PHYSICS**

# CHOICE BASED CREDIT SYSTEM SYLLABUS

## FOR STUDENTS ADMITTED FROM JUNE 2022

# SRI MEENAKSHI GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS), MADURAI-2

## **PROGRAMME : B.SC**

| Part   | Course | Code     Title of the Course     Hrs/       Credits |                                     | Fyom | Marks  |     |     |     |       |
|--------|--------|-----------------------------------------------------|-------------------------------------|------|--------|-----|-----|-----|-------|
| 1 41 1 | Туре   | Couc                                                | The of the course                   | Week | Creans | Hrs | Int | Ext | Total |
| Ι      | LC     | U221A1/<br>U221H1                                   | Tamil/Hindi                         | 6    | 3      | 3   | 25  | 75  | 100   |
| II     | ELC    | U222A1                                              | English                             | 6    | 3      | 3   | 25  | 75  | 100   |
| III    | CC     | U22CP1                                              | Mechanics, Fluid dynamics and sound | 3    | 3      | 3   | 25  | 75  | 100   |
| III    | CC     | U22CP2                                              | Heat and Thermodynamics             | 3    | 3      | 3   | 25  | 75  | 100   |
| III    | CC     | U22CP3P                                             | Major Practical – paper I           | 3    | -      | -   | -   | -   | -     |
| III    | AC     | U22AMP1                                             | Allied Mathematics Paper –I         | 3    | 3      | 3   | 25  | 75  | 100   |
| III    | AC     | U22AMP2                                             | Allied Mathematics Paper –II        | 4    | 3      | 3   | 25  | 75  | 100   |
| IV     | AEC -I | U22AE1                                              | Value Education                     | 2    | 2      | 3   | 25  | 75  | 100   |
|        | Total  |                                                     |                                     |      | 20     |     |     |     | 700   |

## SEMESTER-I

## SEMESTER-II

| Part | CourseCodeTitle of the CourseHrs/<br>Week | Credits           | Exam                                | Ma     | rks |     |     |     |       |
|------|-------------------------------------------|-------------------|-------------------------------------|--------|-----|-----|-----|-----|-------|
|      | гуре                                      |                   |                                     | vv eek |     | Hrs | Int | Ext | Total |
| Ι    | LC                                        | U221A2/<br>U221H2 | Tamil/Hindi                         | 6      | 3   | 3   | 25  | 75  | 100   |
| II   | ELC                                       | U222A2            | English                             | 6      | 3   | 3   | 25  | 75  | 100   |
| III  | CC                                        | U22CP4            | Electricity and<br>Electromagnetism | 6      | 6   | 3   | 25  | 75  | 100   |
| III  | CC                                        | U22CP3P           | Major practical-paper I             | 3      | 3   | 3   | 40  | 60  | 100   |
| III  | AC                                        | U22AMP3           | Allied Mathematics Paper –<br>III   | 7      | 4   | 3   | 25  | 75  | 100   |
| IV   | AEC - II                                  | U22AE2            | Environmental Studies               | 2      | 2   | 3   | 25  | 75  | 100   |
|      | Tot                                       | al                | 30                                  | 21     |     |     |     | 600 |       |

| Part | Course | Code              | Title of the Course                    | Hrs/ | Credits | Exam |     | Mark | S     |
|------|--------|-------------------|----------------------------------------|------|---------|------|-----|------|-------|
|      | Туре   |                   |                                        | Week |         | Hrs  | Int | Ext  | Total |
| Ι    | LC     | U221A3/<br>U221H3 | Tamil/Hindi                            | 6    | 3       | 3    | 25  | 75   | 100   |
| Π    | ELC    | U222A3            | English                                | 6    | 3       | 3    | 25  | 75   | 100   |
| III  | CC     | U22CP5            | Physical and Laser optics              | 6    | 5       | 3    | 25  | 75   | 100   |
| III  | CC     | U22CP6P           | Major practical-paper II               | 3    | -       | -    | -   | -    | -     |
| III  | AC     | U22ACT1           | Allied Chemistry –<br>Paper –I         | 4    | 3       | 3    | 25  | 75   | 100   |
| Ι    | AC     | U22ACP            | Allied Chemistry<br>Practical paper –I | 3    | -       | -    | -   | -    | -     |
| IV   | NMEC-I | U22NMP1           | Weather forecasting                    | 2    | 2       | 3    | 25  | 75   | 100   |
| V    |        |                   | NCC/NSS/Extension<br>Activity          |      | 1       |      | 100 | -    | 100   |
|      |        |                   |                                        |      | 17      |      |     |      | 600   |

**SEMESTER - III** 

## SEMESTER-IV

| Part | Course  | Code              | Title of the Course                    | Hrs/ | Credits | Exam |     | Marks |       |
|------|---------|-------------------|----------------------------------------|------|---------|------|-----|-------|-------|
|      | Туре    |                   |                                        | Week |         | Hrs  | Int | Ext   | Total |
| Ι    | LC      | U221A4/<br>U221H4 | Tamil/Hindi                            | 6    | 3       | 3    | 25  | 75    | 100   |
| II   | ELC     | U222A4            | English                                | 6    | 3       | 3    | 25  | 75    | 100   |
| III  | CC      | U22CP7            | Mathematical methods                   | 4    | 4       | 3    | 25  | 75    | 100   |
| III  | CC      | U22CP6P           | Major<br>practical-<br>paper II        | 3    | 3       | 3    | 40  | 60    | 100   |
| III  | AC      | U22ACT2           | Allied Chemistry –<br>Paper –II        | 4    | 4       | 3    | 25  | 75    | 100   |
| III  | AC      | U22ACP            | Allied Chemistry<br>Practical paper –I | 3    | 3       | 3    | 40  | 60    | 100   |
| IV   | NMEC-II | U22NMP2           | Solar energy and its applications      | 2    | 2       | 3    | 25  | 75    | 100   |
| IV   | SEC–I   | U22SEP1           | Astrophysics                           | 2    | 2       | 3    | 25  | 75    | 100   |
|      |         | Total             |                                        | 30   | 24      |      |     |       | 800   |

## SEMESTER-V

| Part | Course  | Code     | Title of the Course                             | Hrs/ Credits |    | Exam | Mark | S   |       |
|------|---------|----------|-------------------------------------------------|--------------|----|------|------|-----|-------|
|      | Гуре    |          |                                                 | Week         |    | Hrs  | Int  | Ext | Total |
| III  | CC      | U22CP8   | Analog electronics                              | 5            | 5  | 3    | 25   | 75  | 100   |
| III  | CC      | U22CP9   | Atomic physics                                  | 5            | 5  | 3    | 25   | 75  | 100   |
| III  | CC      | U22CP10  | Classical ,Statistical and<br>Quantum Mechanics | 5            | 5  | 3    | 25   | 75  | 100   |
| III  | CC      | U22CP11P | Major practical-paper III                       | 6            | 5  | 3    | 40   | 60  | 100   |
| III  | DSEC –I | U22DSP1A | Medical Physics                                 | 5            | 5  | 3    | 25   | 75  | 100   |
|      |         | U22DSP1B | Radiation safety                                |              |    |      |      |     |       |
| III  | GEC I   | U22GEP1  | Physics of the earth                            | 2            | 2  | 3    | 25   | 75  | 100   |
| IV   | SEC-II  | U22SEP2  | Programming with C                              | 2            | 2  | 3    | 25   | 75  | 100   |
|      | Total   |          |                                                 |              | 29 |      |      |     | 700   |

## SEMESTER-VI

| Part  | Course       | Code                  | Title of the Course                                  | Hrs/ | Credits | Exam |     | Marl | KS    |
|-------|--------------|-----------------------|------------------------------------------------------|------|---------|------|-----|------|-------|
|       | Туре         |                       |                                                      | Week |         | Hrs  | Int | Ext  | Total |
| III   | CC           | U22CP12               | Digital electronics and communication                | 4    | 4       | 3    | 25  | 75   | 100   |
| III   | CC           | U22CP13               | Solid state physics                                  | 4    | 4       | 3    | 25  | 75   | 100   |
| III   | CC           | U22CP14P              | Major practical-paper IV                             | 6    | 5       | 3    | 40  | 60   | 100   |
| III   | CC           | U22CP15               | Optoelectronics                                      | 4    | 4       | 3    | 25  | 75   | 100   |
| III   | DSEC-II      | U22DSP2A/<br>U22DSP2B | Nuclear physics / Nano<br>Physics                    | 4    | 4       | 3    | 25  | 75   | 100   |
| IV    | DSEC–<br>III | U22DSP3A/<br>U22DSP3B | Spectroscopy / Problems<br>solving skills in Physics | 4    | 4       | 3    | 25  | 75   | 100   |
| IV    | SEC-III      | U22SEP3               | Physics for competitive examinations                 | 2    | 2       | 3    | 40  | 60   | 100   |
| IV    | AEC III      | U22AE3                | General Knowledge                                    | 2    | 2       | 3    | 25  | 75   | 100   |
| Total |              |                       |                                                      |      | 29      |      |     |      | 800   |

## COURSES OFFERED BY DEPARTMENT OF PHYSICS TO MATHEMATICS

| Part | Course | Code         | Title of the Course          | Hrs/ | Credits | Exam | Marks |     |       |  |
|------|--------|--------------|------------------------------|------|---------|------|-------|-----|-------|--|
|      | Туре   |              |                              | Week |         | Hrs  | Int   | Ext | Total |  |
| III  | AC-I   | U22AP<br>MT1 | General Physics - I<br>(T)   | 4    | 3       | 3    | 25    | 75  | 100   |  |
| III  | AC-II  | U22AP<br>MP  | General Physics<br>Practical | 3+3  | 3       | 3    | 25    | 75  | 100   |  |
| III  | AC-III | U22AP<br>MT2 | General Physics - II<br>(T)  | 4    | 4       | 3    | 25    | 75  | 100   |  |

## COURSES OFFERED BY DEPARTMENT OF PHYSICS TO CHEMISTRY

| Part | Course | Code         | Title of the Course       | Hrs/ | Credits | Exam | Marks |     |       |
|------|--------|--------------|---------------------------|------|---------|------|-------|-----|-------|
|      | Туре   |              |                           | Week |         | Hrs  | Int   | Ext | Total |
| III  | AC-I   | U22APC<br>T1 | Allied Physics - I (T)    | 4    | 3       | 3    | 25    | 75  | 100   |
| III  | AC-II  | U22APC<br>P  | Allied Physics Practical  | 3+3  | 3       | 3    | 25    | 75  | 100   |
| III  | AC-III | U22APC<br>T2 | Allied Physics -<br>II(T) | 4    | 4       | 3    | 25    | 75  | 100   |

| Value           | Code | Title of the Course  | Hrs/ | Credits | Exam | M   | arks |       |
|-----------------|------|----------------------|------|---------|------|-----|------|-------|
| added<br>course |      |                      | Week |         | Hrs  | Int | Ext  | Total |
| 1               |      | Agricultural Physics | 2    | 2       | 2    | 20  | 30   | 50    |

## VALUE ADDED COURSES (FOR B.Sc PHYSICS)

## VALUE ADDED COURSES (COMMON FOR ALL MAJORS)

| Value           | Code | Title of the Course      | Hrs/ | Credits | Exam | Μ   | larks |       |
|-----------------|------|--------------------------|------|---------|------|-----|-------|-------|
| added<br>course |      |                          | Week |         | Hrs  | Int | Ext   | Total |
| 1               | VAP1 | Renewable Energy Sources | 2    | 2       | 2    | 20  | 30    | 50    |

# COURSE STRUCTURE ABSTRACT FOR B.Sc. PROGRAMME

| Part | Course                         |                          | Total<br>No of<br>Papers | Hours | Credit | Marks |
|------|--------------------------------|--------------------------|--------------------------|-------|--------|-------|
| Ι    | Language Cour                  | rse (LC)                 | 4                        | 24    | 12     | 400   |
| II   | English Langua                 | age Course (ELC)         | 4                        | 24    | 12     | 400   |
| III  | Core Course (C                 | CC)                      | 15                       | 73    | 64     | 1500  |
| III  | Allied Course (                | 6                        | 28                       | 20    | 600    |       |
| III  | Discipline Spec<br>(DSEC)      | cific Elective Course    | 3                        | 13    | 13     | 300   |
| III  | Generic Electiv                | 1                        | 2                        | 2     | 100    |       |
| IV   | Non Major Ele                  | 2                        | 4                        | 4     | 200    |       |
| IV   | Skill Enhancen                 | nent Course (SEC)        | 3                        | 6     | 6      | 300   |
| IV   | Ability                        | Value Education          | 1                        | 2     | 2      | 100   |
| IV   | Enhancement<br>Course<br>(AEC) | Environmental<br>Studies | 1                        | 2     | 2      | 100   |
| IV   | (1120)                         | General Knowledge        | 1                        | 2     | 2      | 100   |
| V    | NCC/NSS/Exte                   | ension Activity          | 1                        | -     | 1      | 100   |
|      | Total                          |                          |                          | 180   | 140    | 4200  |
| Valu | Value Added Course             |                          |                          |       | 4      | 100   |
|      | Total                          |                          |                          |       | 144    | 4300  |

# **QUESTION PAPER PATTERN**

## I YEAR UG

| Section - A                      | Section-B                                                    | Section-C                                                     |  |  |  |  |
|----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|
| ( 10 * 1 = 10 ) or ( 5 * 2 = 10) | Answer ALL questions<br>Either – Or pattern<br>( 5 * 5 = 25) | Answer ALL questions<br>Either – Or pattern<br>( 5 * 8 = 40 ) |  |  |  |  |
| I to V units equal distribution  |                                                              |                                                               |  |  |  |  |

Programme : B.Sc Physics Semester : I Sub. Code : U22CP1

## Part III: Core Hours : 3 Hrs/W (45 Hrs P/S) Credits: 3

## TITLE OF THE PAPER: MECHANICS, FLUID DYNAMICS AND SOUND

|          | Hours | Lecture | Peer Teaching | GD/ Videos/Tutorial | ICT |
|----------|-------|---------|---------------|---------------------|-----|
| Pedagogy | 3     | 2       | -             | -                   | 1   |

**PREAMBLE:** To impart knowledge to the students covering all areas of Mechanics, Properties of matter and Sound

| <b>COURSE OUTCOME</b><br>At the end of the Semester, the Students will be able to                                               | Unit | Hrs P/S |
|---------------------------------------------------------------------------------------------------------------------------------|------|---------|
| <b>CO 1:</b> Identify the concepts of dynamics of rigid bodies                                                                  | Ι    | 9       |
| <b>CO 2:</b> Discuss about types of collision and able to derive the expression for final velocities and loss of kinetic energy | II   | 9       |
| CO 3: To collect primary idea of gravitation and rocket motion                                                                  | III  | 9       |
| <b>CO 4:</b> Impart the knowledge of properties of fluid, hydrostatics and kinematics of fluid flow                             | IV   | 9       |
| CO 5: Analyze about Ultrasonic and its applications.                                                                            | V    | 9       |

## SYLLABUS

## **Unit – I : MECHANICS OF RIGID BODY**

Rigid body – Translational and Rotational motion –Torque- angular momentum- Relation between torque and angular momentum - Expression for Torque, angular momentum, kinetic energy of a rotating rigid body – Compound pendulum theory – Determination of g by compound pendulum.

#### Unit – II : COLLISION

Impulse of a force-impulsive force – Collision – Elastic and inelastic collision - fundamental principles of impact- direct impact of two smooth spheres - loss of kinetic energy due to direct impact of two smooth spheres – oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth

#### Unit – III : GRAVITATION

Newton's Law of Gravitation - Kepler's laws of planetary motion - Determination of G -BOY's method experiment - Variation of g with latitude, altitude and depth- systems with varying mass : A Rocket – principle- acceleration of rocket at an instant- thrust on the rocket – velocity of the rocket at any instant

#### **Unit - IV : FLUID DYNAMICS**

Viscosity - stream lined and turbulent flow - Critical velocity – Significance of Reynold's number – poiseuille's formula for the flow of a liquid through a capillary tube – Equation of continuity – Energy of liquid- Bernoullie's theorem – Statement and proof –Applications of Bernoullie's theorem - Venturimeter - Pitot's tube.

#### Unit – V : SOUND

Transverse vibrations of stretched strings –velocity of transverse waves in a stretched string – frequency of transverse vibration of stretched string – laws of transverse vibration of stretched string - Melde's experiment – Ultrasonics- piezo electric effect-production of ultrasonic waves- piezo electric crystal method – detection of ultrasonic waves- properties of ultrasonic waves- applications of ultrasonic waves

## **TEXT BOOKS :**

 Properties of Matter - R. Murugeshan, S.Chand and company Pvt. Ltd, Revised Edition 2012. Unit I : Chapter 10 - 10.7 - 10.9 Chapter 6 - 6.10

Unit II : Chapter 8 - 8.1, 8.2, 8.4, 8.5-8.7

Unit III : Chapter 6 - 6.1-6.3, 6.7 - 6.9 Chapter 19 - 19.3

Unit IV : Chapter 2 - 2.1-2.3 Chapter 4 - 4.1, 4.2, 4.4

Unit V : Chapter 17 - 17.1

 Mechanics, properties of matter and sound - R. Murugeshan, S.Chand and company Pvt. Ltd, (2004)

Unit V : Chapter 6 – 6.1- 6.7

## **BOOKS FOR REFERENCES :**

- 1. Elements of properties of matter D.S. Mathur S. Chand & Co., 2004.
- 2. Properties of matter Brijlal and Subramanian S. Chand & Co., 2006.
- 3. N.Subrahmanyam and BrijLal, A Text Book of Sound, Vikas Publishing House Second revised edition(1995)

| UNITS  | TOPIC                                                                                                                             | LECTURE HOURS | MODE OF TEACHING |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|
|        | Rigid body – Translational and<br>Rotational motion –Torque- angular<br>momentum- Relation between torque<br>and angular momentum | 3             | Lecture & ICT    |
| UNIT I | Expression for Torque, angular<br>momentum, kinetic energy of a<br>rotating rigid body                                            | 3             | Lecture & ICT    |
|        | Compound pendulum theory –<br>Determination of g by compound<br>pendulum                                                          | 3             | Lecture & ICT    |

|                             | Impulse<br>Collisie<br>collisio<br>impact-                                                                                                                                                                     | e of a :<br>on —<br>n - fur<br>·.                                    | force-in<br>Elastic<br>ndamen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | npulsive<br>and<br>tal prin                                        | e force<br>inelasti<br>ciples o                         | -<br>of                   | 3                            |      | Lectur | e & ICT                             | •   |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|---------------------------|------------------------------|------|--------|-------------------------------------|-----|--|
| UNIT II                     | direct i<br>loss of<br>impact<br>impact<br>kinetic<br>of two                                                                                                                                                   | mpact of<br>kinetic<br>of two<br>of two<br>energy<br>smooth          | of two<br>e energy<br>smooth<br>smooth<br>due to<br>a sphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | smooth<br>y due t<br>i sphere<br>i sphere<br>oblique<br>s          | spheres<br>o directs<br>obliques-loss of<br>e impace    | -<br>ct<br>le<br>of<br>ct | 6                            |      | Lectur | e & ICT                             |     |  |
|                             | Newtor<br>Kepler <sup>3</sup><br>Determ<br>experin                                                                                                                                                             | n's La<br>'s laws<br>ination<br>nent.                                | w of<br>of pla<br>of G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gravi<br>netary<br>–BOY's                                          | tation<br>motion<br>s metho                             | -<br>-<br>d               | 3                            |      | Lectur | e & ICT                             |     |  |
| UNIT III                    | Variation<br>and dep<br>: A Ro                                                                                                                                                                                 | on of g<br>oth– sys<br>cket – p                                      | with lat<br>tems with tems with the second seco | itude, a<br>ith vary<br>e                                          | ltitude<br>ing mas                                      | s                         | 3                            |      | Lectur | e & ICT                             |     |  |
|                             | acceleration<br>thrust of<br>rocket a                                                                                                                                                                          | ation o<br>on the 1<br>at any i1                                     | f rocke<br>cocket –<br>nstant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | et at an<br>- veloci                                               | instan<br>ty of th                                      | t-<br>ie                  | 3                            |      | Lectur | e & ICT                             |     |  |
| UNIT IV                     | Viscosi<br>flow -<br>of Rey<br>formula<br>a capill                                                                                                                                                             | ity - str<br>Critical<br>nold's<br>a for the<br>ary tube             | eam lin<br>velocit<br>numbe<br>flow of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed and<br>y – Sig<br>r – po<br>f a liquio                          | turbulen<br>nificanc<br>biseuille<br>d throug           | nt<br>ce<br>c's<br>h      | 4                            |      |        | e & ICT                             |     |  |
|                             | Energy<br>– Stater<br>Bernou<br>Pitot's t                                                                                                                                                                      | of liqui<br>nent an<br>llie's th<br>ube.                             | id- Berr<br>d proof<br>neorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oullie's<br>–Applic<br>- Ventu                                     | s theoren<br>cations o<br>rimeter                       | n<br>of<br>-              | 5 Lec                        |      |        | e & ICT                             |     |  |
|                             | Transve<br>strings<br>in a stre<br>transve<br>string –<br>stretche                                                                                                                                             | erse vib<br>–veloci<br>etched s<br>rse vibr<br>- laws o<br>ed string | rations<br>ty of tra<br>tring –<br>ation of<br>f transv<br>g - Melo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of streto<br>insverse<br>frequen<br>fretch<br>erse vib<br>le's exp | ched<br>e waves<br>cy of<br>ned<br>pration c<br>eriment | f                         | 6                            |      | Lectur | e & ICT                             |     |  |
| UNIT V                      | Ultrasonics-piezoelectriceffect-production of ultrasonic waves-piezolecture & ICTelectric crystal method – detection ofultrasonic waves-propertiesultrasonic waves-propertiesofultrasonic waves-applicationsof |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                         |                           |                              |      |        |                                     |     |  |
| Course<br>Outcomes<br>(Cos) | Pro                                                                                                                                                                                                            | ogramm                                                               | e Outco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | omes (P                                                            | Os)                                                     | Pro                       | Programme Specific<br>(PSOs) |      |        | e Outcomes Mean<br>scores of<br>Cos |     |  |
|                             | PO1                                                                                                                                                                                                            | PO2                                                                  | PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PO4                                                                | PO5                                                     | PSO1                      | PSO2                         | PSO3 | PSO4   | PSO5                                |     |  |
| <u>CO1</u>                  | 4                                                                                                                                                                                                              | 4                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                  | 4                                                       | 4                         | 3                            | 3    | 2      | 4                                   | 3.3 |  |
|                             | +                                                                                                                                                                                                              | -                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                  | -                                                       | -                         | 5                            | 5    | 4      | -                                   | 5.4 |  |

| CO3 | 4 | 4 | 3 | 3      | 3       | 4     | 3 | 3 | 3 | 3 | 3.3 |
|-----|---|---|---|--------|---------|-------|---|---|---|---|-----|
| CO4 | 4 | 3 | 2 | 3      | 4       | 4     | 4 | 2 | 3 | 3 | 3.2 |
| CO5 | 4 | 4 | 3 | 3      | 4       | 4     | 3 | 3 | 2 | 4 | 3.4 |
|     |   |   |   | Mean ( | Overall | Score |   |   |   |   | 3.3 |

# **Result:** The Score for this Course is 3.3 (High Relationship)

| BLOOM'S TAXANOMY                   | INTERNAL | EXTERNAL |
|------------------------------------|----------|----------|
| K1(Remembering / Recalling)        | 40%      | 40%      |
| K2 (Understanding / comprehension) | 30%      | 30%      |
| K3 (Application and analysis)      | 30%      | 30%      |

Course Designer: Mrs. S V Meenakshi

Department of Physics

Programme: B.Sc., PHYSICS Semester : I Sub. Code : U22CP2

#### Part III: Core II Hours : 3 Hrs/W 45 Hrs/S Credits : 3

#### TITLE OF THE PAPER: HEAT AND THERMODYNAMICS

| Pedagogy                                                                 | Hours                     | Hours Lecture Peer Teaching GD/VIDOES/TUTORIAL ICT |                         |                   |      | СТ      |  |
|--------------------------------------------------------------------------|---------------------------|----------------------------------------------------|-------------------------|-------------------|------|---------|--|
|                                                                          | 3 1 - 1 1                 |                                                    |                         |                   |      |         |  |
| PREAMBLE: Unde                                                           | quire knowledge in low to | empera                                             | ature physics.          |                   |      |         |  |
| Understand the transm                                                    | nission o                 | f heat and q                                       | uantum theory of radia  | ation.            |      |         |  |
|                                                                          |                           | COURSE                                             | E OUTCOME               |                   | Unit | Hrs P/S |  |
| At the end of the Sem                                                    | nester, the               | e Students w                                       | vill be able to         |                   |      |         |  |
| CO1: Understand the                                                      | e behavio                 | or of real gas                                     | ses and derive Vander   | Waals equation    | Ι    | 9       |  |
| of a state. Understand                                                   | the conc                  | cept of trans                                      | port phenomenon.        |                   |      |         |  |
| CO2: State and expla                                                     | ain the la                | ws of therm                                        | odynamics. Apply the    | laws to explain   | II   | 9       |  |
| carnot engine. Under                                                     | stand the                 | concept of e                                       | entropy and derive Ma   | xwell's           |      |         |  |
| equations.                                                               |                           |                                                    |                         |                   |      |         |  |
| CO3: Understand the                                                      | e method                  | s of liquefac                                      | tion of air. Explain th | e properties of   | III  | 9       |  |
| Helium I and I                                                           | I. Descri                 | be the proce                                       | ss of Adiabatic demag   | netization.       |      |         |  |
| CO4: Understand the                                                      | e differen                | t methods o                                        | f transmission of heat. | State and explain | IV   | 9       |  |
| Wien's displace                                                          | cement La                 | aw – Raylei                                        | gh Jean's Law - Solar   | constant. Explain |      |         |  |
| Waterflow Pyrheliom                                                      |                           |                                                    |                         |                   |      |         |  |
| CO5: Understand the                                                      | V                         | 9                                                  |                         |                   |      |         |  |
| relation- $C_v$ by Jolys differential steam calorimeter method- $C_p$ by |                           |                                                    |                         |                   |      |         |  |
| Regnaults method.                                                        |                           |                                                    |                         |                   |      |         |  |

#### SYLLABUS

#### **UNIT – I : KINETIC THEORY OF GASES**

Kinetic model, Postulates of Kinetic theory of gasea- Vander Waal's equation of state– Estimation of Critical constants – contants of Van der Waals equation -Molecular collisions-Mean free path-Expression for mean free path-Transport phenomenon-Expression for viscosity, thermal conductivity and Diffusion.

#### **UNIT – II : THERMODYNAMICS**

Zeroth, I, II and III Laws (statements alone) –Isothermal and adiabatic process- Carnot's ideal Heat Engine, Carnot's cycle-Concept of entropy – Change in entropy- change of entropy in reversible and irreversible processes – change of entropy when ice converted into steam –- Maxwell's equations- Clausius-Claypeyron latent heat equation.

#### **UNIT – III : LOW TEMPERATURE PHYSICS**

Joule Kelvin effect -Liquefaction of air - Linde's process – Liquefaction of Helium – Kammerling-Onne's method – Helium I and II –Lambda point- Adiabatic demagnetization-practical applications of low temperature.

#### **UNIT - IV : TRANSMISSION OF HEAT**

Conduction- Coefficient of thermal conductivity, Rectilinear flow of heat along a bar- Radiation – black body-Kirchoffs law-Stefan Boltzmann law- law - Distribution of energy spectrum of a black body -Wien's displacement Law – Rayleigh Jean's Law - Solar constant — Water flow Pyroheliometer.

## **UNIT – V : THERMOMETRY AND CALORIMETRY**

Platinum resistance thermometer-calendar and Griffiths bridge-Specific heat capacity of solids-Regnaults method of mixtures(solid)- Specific heat capacity of liquids-Callendar and Barns method- Specific heat capacity of gases-  $C_p$  and  $C_v$ - Mayers relation- $C_v$  by Jolys differential steam calorimeter method-  $C_p$  by Regnaults method.

#### **TEXT BOOK :**

1. Heat Thermodynamics and statistical Physics, Brijlal, Dr. N. Subrahmanian, P.S.Hemne, Revised Edition (2010) S.Chand & Co.,

Unit 1. Ch 1,2 &3 (sec.1.3, 2.8, 2.10, 2.11, 3.1, 3.2, 3.5, 3.7, 3.8, 3.11, 3.16)

Unit 2.Ch 4, 5 & 6 (sec. 4.2, 4.7, 4.28, 5.15 (only statements), 4.10.4, 4.10.7, 4.23, 4.24, 5.1, 5.2,

5.4, 5.6, 6.3, 6.11.)

Unit 3. Ch7 (sec.7.5,7.8, 7.11, 7.12, 7.16).

Unit 4. Ch15 & 8 (sec.15.1, 15.2, 8.1, 8.6,8.10, 8.12, 8.13,8.14,8.15,8.26,8.29).

Unit 5. Ch13 & 14 (sec.13.15, 13.16, 14.2, 14.7, 14.10, 14.11, 14.12).

#### **REFERENCE :**

- 1. Heat and Thermodynamics Brijlal & Subramanian, Sixteenth edition
- 2. Heat and Thermodynamics Singhal & Agarwal & Prakash, Eighth Revised Edition. Prakashan (Unit
- 3. Heat and Thermodynamics D.S.Mathur, Sultan Chand & Sons, 5<sup>th</sup> edition, New Delhi, 2014
- 4. Thermodynamics and Statistical Mechanics S.LKakani .

| UNITS    | ΤΟΡΙΟ                                                                                                                                                              | LECTURE<br>HOURS | MODE OF<br>TEACHING                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|
|          | Kinetic model, Postulates of Kinetic theory of gasea-<br>Vander Waal's equation of state– Estimation of Critical<br>constants – contants of Van der Waals equation | 3                | Lecture, GD, ICT<br>and Teaching    |
| UNIT I   | Molecular collisions-Mean free path-Expression for<br>mean free path                                                                                               | 3                | Lecture, Video,<br>ICT and Teaching |
|          | Transport phenomenon-Expression for viscosity, thermal conductivity and Diffusion.                                                                                 | 3                | Lecture, GD, ICT<br>and Teaching    |
|          | Zeroth, I, II and III Laws (statements alone) –Isothermal<br>and adiabatic process- Carnot's ideal Heat Engine,<br>Carnot's cycle                                  | 3                | Lecture, GD, ICT<br>and Teaching    |
| UNIT II  | Concept of entropy – Change in entropy- change of<br>entropy in reversible and irreversible processes – change<br>of entropy when ice converted into steam.        | 3                | Lecture, Video,<br>ICT and Teaching |
|          | Maxwell's equations- Clausius-Claypeyron latent heat equation.                                                                                                     | 3                | Lecture, GD, ICT<br>and Teaching    |
|          | Joule Kelvin effect -Liquefaction of air - Linde's process                                                                                                         | 3                | Lecture, GD, ICT<br>and Teaching    |
| UNIT III | Liquefaction of Helium – Kammerling-Onne's method –<br>Helium I and II –Lambda point                                                                               | 3                | Lecture, GD, ICT<br>and Teaching    |
|          | Adiabatic demagnetization-practical applications of low temperature.                                                                                               | 3                | Lecture, GD, ICT<br>and Teaching    |
|          | Conduction- Coefficient of thermal conductivity,                                                                                                                   | 3                | Lecture, GD, ICT                    |

|         | Rectilinear flow of heat along a bar                                        |   | and Teaching     |
|---------|-----------------------------------------------------------------------------|---|------------------|
|         | Radiation – black body-Kirchoffs law-Stefan Boltzmann                       | 3 | Lecture, GD, ICT |
|         | law- law - Distribution of energy spectrum of a black                       |   | and Teaching     |
| UNIT IV | body.                                                                       |   |                  |
|         | Wien's displacement Law – Rayleigh Jean's Law -                             | 3 | Lecture, GD, ICT |
|         | Solar constant — Water flow Pyrheliometer                                   |   | and Teaching     |
|         | Platinum resistance thermometer-calendar and Griffiths                      | 3 | Lecture, GD, ICT |
|         | bridge                                                                      |   | and Teaching     |
|         | Specific heat capacity of solids-Regnaults method of                        | 3 | Lecture, GD, ICT |
|         | mixtures(solid)- Specific heat capacity of liquids-                         |   | and Teaching     |
| UNIT V  | Callendar and Barns method                                                  |   |                  |
|         | Specific heat capacity of gases- C <sub>p</sub> and C <sub>v</sub> - Mayers | 3 | Lecture, GD, ICT |
|         | relation-C <sub>v</sub> by Jolys differential steam calorimeter             |   | and Teaching     |
|         | method- C <sub>p</sub> by Regnaults method.                                 |   |                  |

| Cour | Programme Outcomes (Pos) |     |     |     |     | Program | Programme Specific Outcomes (PSOs) |      |      |      |      | Mean      |
|------|--------------------------|-----|-----|-----|-----|---------|------------------------------------|------|------|------|------|-----------|
| se   | 2                        |     |     |     |     |         |                                    |      |      |      |      | scores of |
| Outc |                          |     |     |     |     |         |                                    |      |      |      |      | Cos       |
| ome  | PO1                      | PO2 | PO3 | PO4 | PO5 | PSO1    | PSO2                               | PSO3 | PSO4 | PSO5 | PSO6 |           |
| S    |                          |     |     |     |     |         |                                    |      |      |      |      |           |
| (Cos |                          |     |     |     |     |         |                                    |      |      |      |      |           |
| )    |                          |     |     |     |     |         |                                    |      |      |      |      |           |
|      |                          |     |     |     |     |         |                                    |      |      |      |      |           |
| CO1  | 4                        | 2   | 4   | 4   | 3   | 4       | 2                                  | 4    | 3    | 4    | 4    | 3.45      |
| CO2  | 4                        | 2   | 4   | 4   | 3   | 4       | 2                                  | 4    | 3    | 4    | 4    | 3.45      |
| CO3  | 4                        | 2   | 4   | 4   | 3   | 4       | 2                                  | 4    | 3    | 4    | 4    | 3.45      |
| CO4  | 4                        | 2   | 4   | 4   | 3   | 4       | 2                                  | 4    | 3    | 4    | 4    | 3.45      |
| CO5  | 4                        | 2   | 4   | 4   | 3   | 4       | 2                                  | 4    | 3    | 4    | 4    | 3.45      |
|      |                          |     |     |     |     | Mean C  | Overall So                         | core |      |      |      | 3.45      |

## Result: The Score for this Course is 3.45 (High Relationship)

| Mapping          | 1-20%                                  | 21-40%                      | 41-60%           | 61-80%                              | 81-100%                           |
|------------------|----------------------------------------|-----------------------------|------------------|-------------------------------------|-----------------------------------|
| Scale            | 1                                      | 2                           | 3                | 4                                   | 5                                 |
| Relation         | 0.0-1.0                                | 1.1-2.0                     | 2.1-3.0          | 3.1-4.0                             | 4.1-5.0                           |
| Quality          | Very Poor                              | Poor                        | Moderate         | High                                | Very High                         |
| Mean Score of CO | Ds = <u>Total of</u><br>Total No. of I | <u>EValue</u><br>Pos & PSOs | Mean Overall Sco | re of COs = <u>Total o</u><br>Total | <u>f Mean Score</u><br>No. of COs |

| BLOOM'S TAXANOMY              | INTERNAL | EXTERNAL |
|-------------------------------|----------|----------|
| K1(Remembering / Recalling)   | 40%      | 40%      |
| K2 (Understanding /           | 30%      | 30%      |
| comprehension)                |          |          |
| K3 (Application and analysis) | 30%      | 30%      |

Course Designer: Dr. K. Lilly Mary Eucharista, Department of Physics.

Programme : B.Sc., Physics Semester : I Sub. Code : U22CP3P

#### Part III : Core Practical Hours : 3 P/W 60 Hrs/I&II SEM Credits : 3

#### TITLE OF THE PAPER: MAJOR PRACTICAL PAPER -I

| Pedagogy | Hours | Lecture | Peer Teaching | GD/VIDOES/TUTORIAL | ICT |  |  |  |
|----------|-------|---------|---------------|--------------------|-----|--|--|--|
|          | 2     | 1       | -             | 1                  | -   |  |  |  |
|          |       |         |               |                    |     |  |  |  |

**PREAMBLE:** This course offers opportunity to handle the laboratory equipments and develop skills to determine elastic properties, thermal properties, surface tension which are relevant to the theory learnt in core courses.

#### COURSE OUTCOME

At the end of the Semester, the Students will be able to

- **CO1** : be familiar with elasticity and various moduli of elasticity
- **CO 2** : calibrate the low range voltmeter
- CO 3 : construct different types of waveforms
- **CO 4** : be familiar with spectroscopic techniques
- **CO 5 :** experiment with semiconductor devices to understand their properties

#### LIST OF PRACTICALS

- 1. Thermal conductivity Lee's method.
- 2. Joule's calorimeter specific heat capacity of liquid.
- 3. Compound pendulum.
- 4. Torsional pendulum.
- 5. Young's modulus uniform bending microscope
- 6. Young's modulus non uniform bending telescope
- 7. Young's modulus Cantilever depression.
- 8. Viscosity Stoke's method.
- 9. Surface tension by capillary rise.
- 10. Potentiometer calibration of low range voltmeter
- 11. Potentiometer calibration of ammeter
- 12. Desauty's bridge
- 13. Spectrometer Refractive index of prism
- 14. Newton's law of cooling

- 15. Young's modulus uniform bending telescope
- 16. Young's modulus non uniform bending microscope
- 17. L Owen's bridge
- 18. Diode characteristics
- 19. Study of multimeter
- 20. Series Resonance

#### **TEXT BOOKS**

- 1. M.N.Srinivasan, S. Balasubramanian and R.Ranganathan, 2013 "A Text book of Practical Physics" (Sultan Chand & Sons)
- 2. Ouseph C.C., Rao U.J. and Vijayendran V., 2008, "Practical Physics and Electronics", S. Viswanathan (Printers and Publishers), Private Ltd., New Delhi.

#### **REFERENCE BOOKS**

- 1. Arora C.L., 2012, "B.Sc. Practical Physics", Twentieth Edition, S. Chand & Company Ltd., New Delhi.
- 2. Kakani S.L. and Shubhra K., 2015, "Applied Physics Theory and Practicals", Viva Books Private Ltd., New Delhi.
- 3. Kakani S.L. and Shubhra K., 2011, "Engineering Practical Physics", CBS Private Ltd., New Delhi.
- 4. Manjeet S. and Anita D., 2011, "Applied Physics Theory and Experiments", Vayu Education of India, New Delhi.
- 5. Srivasta A. and Shukla R.K., 2006, "Practical Physics", New Age International Private Ltd., New Delhi.

Programme : B.Sc., Physics Semester : II Sub. Code : U22CP4

#### Part III : Core Course 3 Hours : 6 Hrs P/W 90 Hrs/P/S Credits :6

#### TITLE OF THE PAPER : ELECTRICITY AND ELECTROMAGNETISM

| Pedagogy        | Hours     | Lecture       | Peer Teaching      | <b>GD/VIDEOS/TUTORIAL</b>    | ICT                 |  |  |  |  |
|-----------------|-----------|---------------|--------------------|------------------------------|---------------------|--|--|--|--|
|                 | 6         | 4             | -                  | 1                            | 1                   |  |  |  |  |
| Preamble:       |           |               |                    |                              |                     |  |  |  |  |
| The scope of th | is course | e is to impar | t the basic knowle | edge in the elemental concep | ots and enhance the |  |  |  |  |

intellectual, experimental, analytical and Mathematical skills of the students in Electricityand Magnetism which has the key role in the development of modern technological world.

| COURSE OUTCOME                                                                        | Unit | Hrs P/S |
|---------------------------------------------------------------------------------------|------|---------|
| On the successful completion of the course students will able to                      |      |         |
| <b>CO1</b> : Understand fundamental laws of electricity and magnetism apply           | 1    | 18      |
| the knowledge of electricity and magnetism to technological advances                  |      |         |
| <b>CO2</b> : Get a clear idea about chemical, thermal and magnetic effect of electric | 2    | 18      |
| current and its uses which provide a pathway for the new scientific invention         |      |         |
| CO3 Understand how Faraday's law relates to induced emf and to                        | 3    | 18      |
| calculate the energy stored in an inductor                                            |      |         |
| <b>CO4</b> : Apply the knowledge of basic circuital laws and simplify the DC and AC   | 4    | 18      |
| networks using reduction techniques                                                   |      |         |
| CO5 : Apply Maxwell's equations to solve various physical problems and                | 5    | 18      |
| develop problem solving skills in electromagnetism                                    |      |         |

#### UNIT I : MAGNETIC EFFECT OF ELECTRIC CURRENT

Magnetic induction-Magnetic flux- Lorent'z force on a moving charge- Biot Savart law-Magnetic induction at a point due to a straight conductor carrying current –Ampere's circuital law (statement & proof) - Applications of Ampere's law (magnetic induction due to long straight current carrying wire)-Torque on a current loop in a uniform magnetic field (moving galvanometer basic concept) -Moving coil Ballistic galvanometer-theory (reduction factor) – current and voltage sensitivities of a moving coil galvanometer -Measurement of charge sensitiveness (Figure of merit)

## UNIT II : THERMAL AND CHEMICAL EFFECT OF ELECTRIC CURRENT

Thermoelectricity- Seebeck effect-Measurement of thermo e.m.f using potentiometer-Peltier effect-Demonstration (S.G. Starling Method) -Thomson effect- Demonstration thermodynamics of thermo couple - Faradays laws of electrolysis- electrical conductivity of an electrolyte-specific conductivity- Kohlrausch's bridge method of determining the specific conductivity of an electrolyte

## UNIT III : ELECTROMAGNETIC INDUCTION

Faraday's laws of induction-self induction –self inductance of a long solenoid -determination of L by Anderson's method-self inductance of a toroidal coil of circular cross section- energy stored in magnetic field - mutual induction-mutual inductance between two co-axial solenoids-Measurement of mutual inductance by Carey Foster's method-co-efficient of coupling

## UNIT IV : AC AND DC CIRCUITS

Introduction of AC and DC (definition, peak value, Mean value, RMS Value) -Growth of current in a circuit containing resistance and inductance - Decay of current in a circuit containing resistance and inductance - Growth and Decay of charge in a circuit containing resistance and capacitance - Alternating current Circuit Theory (AC circuit containing resistance only, inductance only and capacitance only) - LCR series resonance circuit (acceptor circuit, Q-factor and sharpness) - choke coil

## UNIT V : MAXWELL'S EQUATION& ELECTROMAGNETIC WAVES

Introduction- -Displacement current-Maxwell's equations in a material media (No Derivation) - Plane electromagnetic waves in free space-Poynting vector- -Hertz experiment for production and detection of EM waves - Wave equations for Electric field and Magnetic field-The Ionosphere-Refraction of radio wave in ionosphere

## TEXT BOOK

R. Murugeshan, Electricity and Magnetism, Tenth Revised Edition (2017) S Chand & Company Limited, NewDelhi

UNIT I : Chapter 10 - Section 10.1, 10.2, 10.3, 10.7, 10.8 (i), 10.10, 10.11, 10.12, 10.13

UNIT II : Chapter 8 & 9 – Section 8.1, 8.3, 8.4, 8.5, 8.6, 9.12, 9.2, 9.3

UNIT III : Chapter 11 & 13 - Section 11.1, 11.3, 11.4, 11.6, 11.12, 11.13, 11.15, 11.17, 11.18, 11.19

UNIT IV : Chapter 12 & 13 – Section 13.1, 12.1, 12.2, 12.3, 13.2, 13.3, 13.6

UNIT V : Chapter 15 – Section 15.1, 15.2, 15.7, 15.8, 15.10, 15.12, 15.23, 15.31

## **REFERENCE BOOKS**

- 1. BrijLal& Subramanyam, Electricity and Magnetism, (2005) Ratan Prakashan Mandir Publishers, Agra
- 2. M.Narayanamurthy&N.Nagarathnam, Electricity & Magnetism,NPpub., Revised edition.
- 3. Electricity and Magnetism -D.N.Vasudeva (Twelfth revisededition)
- 4. Electricity and Magnetism K.K.Tiwari (S.Chand&Co.)
- 5. Electricity and Magnetism -E.M.Pourcel,Berkley Physics Cource, Vol.2 (McGrraw-Hill)
- 6. Electricity and Magnetism Tayal (Himalalaya Publishing Co.)
- 7. D.Halliday, R.Resnick and J.Walker, Fundamentals of Physics Electicity and Magnetism (2011), Wiley India, Pvt Ltd
- 8. David J. Griffith, Introduction to Electrodynamics, (2012) PHI, NewDelhi

## WEB REFERENCES

- 1. http://www.gutenberg.org/ebooks/34221
- 2. <u>https://bookboon.com/en/university-physics-ii-notes-and-exercises-i-ebook</u>

| UNITS             | TOPIC                              | LECTURE              | MODE OF TEACHING                 |
|-------------------|------------------------------------|----------------------|----------------------------------|
| UNIT I: MAG       | <b>CNETIC EFFECT OF ELECTRIC C</b> | HOUKS<br>URRENT(18 H | rs)                              |
| Magnetic in       | duction-Magnetic flux-             |                      | 1 hours Lecture                  |
| Lorent'z for      | ree on a moving charge             | 2                    | And1 hour Discussion             |
| Biot Savart       | law- Magnetic induction at a       |                      | 2 hours Lecture                  |
| point due to      | a straight conductor carrying      | 3                    | and 1 hour Discussion and Ouiz   |
| current           | a straight conductor carrying      | 5                    |                                  |
| Ampere's c        | ircuital law (statement & proof)   |                      |                                  |
| - Applicatio      | ns of Ampere's law (magnetic       | 4                    | 2 hours Lecture                  |
| induction du      | ie to long straight current        | -                    | 1 hour ICT and 1 hour Discussion |
| carrying with     | ce)-                               |                      |                                  |
| Torque on a       | current loop in a uniform          |                      |                                  |
| magnetic fie      | eld (moving galvanometer basic     | 5                    | 3 hours Lecture                  |
| concept) - N      | Ioving coil Ballistic              |                      | 1 hour ICT and 1 hour Discussion |
| galvanomet        | er-theory                          |                      |                                  |
| (reduction f      | actor)                             |                      |                                  |
| current and       | l voltage sensitivities of a       | 4                    | 3 hours Lecture                  |
| moving coil       | galvanometer -Measurement          |                      | 1 hour ICT and Discussion        |
| of charge s       | ensitiveness (Figure of merit)     |                      |                                  |
|                   |                                    |                      |                                  |
|                   | HERMAL AND CHEMICAL EFF            | ECT OF ELE           | CTRIC CURRENT (18 Hrs)           |
| Thermoelec        | tricity- Seebeckeffect-            | _                    | 4 hours lecture                  |
| Measureme         | nt of thermoe.m.f using            | 5                    | I hourICT& Discussion            |
| potentiomet       | er                                 |                      |                                  |
| Peltier effec     | t-Demonstration (S.G. Starling     | _                    | 4 hours lecture                  |
| Method) - I       | homson effect- Demonstration -     | 5                    | I hourICI & Discussion           |
| Eanadaria 1       | mics of thermo couple              |                      | 2 hours looture                  |
| Faradays I        | aws of electrolysis-               | 4                    | 5 nours lecture                  |
| electrical        | conductivity of an                 | 4                    | 1 nour IC I & Discussion         |
| Vehlrougeh        | specific conductivity              |                      | 2 hours locture                  |
| Konfrausch        | s bridge method of                 | Л                    | 5 nours lecture                  |
| aetermining       | the specific                       | 4                    | I HOUTIC I & DISCUSSION          |
|                   | TECTROMACNETIC INDUCT              | (18  Hm)             |                                  |
| Earaday's         | laws of induction                  |                      | 2 hours lacture                  |
| selfinductio      | n self inductorice of a            | 4                    | 1 hour Discussion and Ouiz       |
| long soleno       | id                                 |                      | Thour Discussion and Quiz        |
| determinatio      | on of L by Anderson's method-      | 4                    | 3 hours lecture                  |
| self inducta      | nce of a toroidal coil of circular | -                    | 1 hour Discussion and Ouiz       |
| cross section     | n                                  |                      | i noui Discussion and Quiz       |
| energy store      | ed in magnetic field - mutual      | 4                    | 3 hours lecture                  |
| induction-m       | utual inductance between two       | •                    | 1 hour ICT&Discussion            |
| co-axial sol      | enoids-                            |                      |                                  |
| Measureme         | nt of mutual                       | 3                    | 2 hours lecture                  |
| inductance        | oy Carey Foster's                  | -                    | 1 hour ICT&Discussion            |
| Kirchoff's la     | ws, Wheatstone's network.          | 3                    | 2 hours lecture                  |
| Condition for     | r balance                          |                      | 1 hour ICT&Discussion, Problem   |
|                   |                                    |                      | solving                          |
| <b>UNITIV : A</b> | C AND DCCIRCUITS (18 Hrs)          |                      |                                  |

| Introduction of AC and DC (definition, peak   |                 | 2 hours lecture           |
|-----------------------------------------------|-----------------|---------------------------|
| value, Mean value, RMS Value)                 | 3               | 1 hour Discussion and ICT |
|                                               |                 |                           |
| Growth of current in a circuit containing     |                 | 4 hours lecture           |
| resistance and inductance - Decay of          | 5               | 1 hour Discussion and ICT |
| current in a circuit containing resistance    |                 |                           |
| and inductance - Growth and Decay of          |                 |                           |
| charge in a circuit containing resistance and |                 |                           |
| capacitance                                   |                 |                           |
| Alternating current Circuit Theory (AC        |                 | 4 hours lecture           |
| circuit containing resistance only,           | 6               | 1 hour Discussion and ICT |
| inductance only and capacitance only)         |                 | 1 hour problem solving    |
| LCR series resonance circuit                  |                 | 2 hours lecture           |
| (acceptor circuit, Q-factor and sharpness) -  | 4               | 1 hour Discussion and ICT |
| choke coil                                    |                 | 1 hour problem solving    |
| UNIT V :MAXWELL'SEQUATION& ELEC'              | <b>FROMAGNE</b> | FICWAVES (18 Hrs)         |
| Introduction-Displacement current-            | 5               | 4 hours lecture           |
| Maxwell's equations in a material media       |                 | 1 hour Discussion and ICT |
| Plane electromagnetic waves in free           |                 |                           |
| space-Poynting vectorHertz experiment         | 5               | 4 hours lecture           |
| for production and detection of EM waves      |                 | 1 hour Discussion and ICT |
| Wave equations for Electric field and         | 4               | 3 hours lecture           |
| Magnetic field-The Ionosphere                 |                 | 1 hour Discussion and ICT |
| Refraction of radio wave in ionosphere        | 4               | 3 hours lecture           |
|                                               |                 | 1 hour Discussion and ICT |

| Course<br>Outcomes | Programme Outcomes (POs) |     |     |     |      | Programme Specific Outcomes (PSOs) |      |      |      |      | Mean<br>scores of |
|--------------------|--------------------------|-----|-----|-----|------|------------------------------------|------|------|------|------|-------------------|
| (Cos)              | PO1                      | PO2 | PO3 | PO4 | PO5  | PSO1                               | PSO2 | PSO3 | PSO4 | PSO5 | Cos               |
| CO1                | 4                        | 3   | 3   | 3   | 3    | 4                                  | 4    | 4    | 4    | 4    | 3.6               |
| CO2                | 4                        | 3   | 3   | 3   | 3    | 4                                  | 4    | 4    | 4    | 4    | 3.6               |
| CO3                | 3                        | 4   | 3   | 4   | 4    | 3                                  | 4    | 3    | 3    | 4    | 3.5               |
| CO4                | 4                        | 3   | 3   | 4   | 4    | 4                                  | 3    | 3    | 3    | 3    | 3.4               |
| CO5                | 3                        | 4   | 4   | 4   | 4    | 3                                  | 3    | 4    | 3    | 3    | 3.5               |
|                    |                          |     |     |     | Mean | Overall S                          | core |      |      |      | 3.52              |

Result: The Score for this Course is 3.52 (High Relationship)

| Mapping                                                                             | 1-20%     | 21-40%  |  | 41-60%             | 61-80%                                              | 81-100%                  |
|-------------------------------------------------------------------------------------|-----------|---------|--|--------------------|-----------------------------------------------------|--------------------------|
| Scale                                                                               | 1         | 2       |  | 3                  | 4                                                   | 5                        |
| Relation                                                                            | 0.0-1.0   | 1.1-2.0 |  | 2.1-3.0            | 3.1-4.0                                             | 4.1-5.0                  |
| Quality                                                                             | Very Poor | Poor    |  | Moderate           | High                                                | Very High                |
| Mean Score of COs = $\frac{\text{Total of Values}}{\text{Total No. of Pos & PSOs}}$ |           |         |  | n Overall Score of | $TCOs = \frac{\text{Total of } N}{\text{Total } N}$ | lean scores<br>o. of COs |

#### ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 40%      | 40%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 30%      | 30%      |
| K3 (APPLICATION and ANALYSIS)    | 30%      | 30%      |

Course Designer: Dr. P. INDRA DEVI & Dr. A. BEULAH MARY Assistant Professor, Department of Physics.

Programme : B.Sc., Physics Semester : III Part III : Core paper IV Hours : 6 HrsP/W 90Hrs/P/S

#### Credits :5

#### TITLE OF THE PAPER : PHYSICAL AND LASER OPTICS

| Pedagogy                                                                                            | Hours                                                                                          | Lecture       | Peer Teaching        | GD/VIDEOS/TUTORIAL           |          | ICT     |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------|----------------------|------------------------------|----------|---------|--|--|--|--|--|
|                                                                                                     | 6                                                                                              | 3             | 1                    | 1                            | 1        |         |  |  |  |  |  |
| Preamble:                                                                                           | Preamble:                                                                                      |               |                      |                              |          |         |  |  |  |  |  |
| The scope of this course is to understand the concept of wave nature of light to describe different |                                                                                                |               |                      |                              |          |         |  |  |  |  |  |
| optical phenor                                                                                      | optical phenomenon like interference, diffraction, polarization. To expose the students to the |               |                      |                              |          |         |  |  |  |  |  |
| application of                                                                                      | lasers in                                                                                      | n various ai  | eas of life, scien   | nce and industry of optics a | and lase | r       |  |  |  |  |  |
| COURSE OU                                                                                           | ГСОМЕ                                                                                          | 4             |                      |                              | Unit     | Hrs P/S |  |  |  |  |  |
| On the success                                                                                      | vill able to                                                                                   |               |                      |                              |          |         |  |  |  |  |  |
| CO1 : describe                                                                                      | 1                                                                                              | 18            |                      |                              |          |         |  |  |  |  |  |
| CO2 : describe                                                                                      | and disc                                                                                       | uss diffracti | on effects observe   | ed in a single slit and      | 2        | 18      |  |  |  |  |  |
| circular apertur                                                                                    | e and rel                                                                                      | ate to optica | l resolution         |                              |          |         |  |  |  |  |  |
| CO3 know how                                                                                        | v to Prod                                                                                      | uce and dete  | ct of plane, circu   | larly and elliptically       | 3        | 18      |  |  |  |  |  |
| polarised light                                                                                     |                                                                                                |               |                      |                              |          |         |  |  |  |  |  |
| CO4 : explain                                                                                       | the basic                                                                                      | principles o  | f laser and types of | of laser                     | 4        | 18      |  |  |  |  |  |
| CO5 :understan                                                                                      | nd the wo                                                                                      | orking princi | ple, recording, re   | construction and types in    |          |         |  |  |  |  |  |
| holography and                                                                                      | l the adva                                                                                     | ance applica  | tions of laser in v  | arious field like medicine   | 5        | 18      |  |  |  |  |  |
| and industry                                                                                        |                                                                                                |               |                      |                              |          |         |  |  |  |  |  |

#### **UNIT I : INTERFERENCE**

Introduction - Theory of Interference fringes – Wedge-shaped film - Determination of wavelength of sodium light by Newton's rings - Determination of refractive index of liquid byNewton's rings - Michelson interferometer - determination of wavelength of monochromatic light – Determination of difference between two doublets – Jamin's interferometer – Rayleigh's refractometer

#### **UNIT II : DIFFRACTION**

Introduction -Fresnel's explanation of rectilinear propagation of light-Diffraction of light waves – The Zone plate -Diffraction at a straight edge-Fraunhofer diffraction at a single slit-Fraunhofer diffraction at a Double slit-Plane transmission diffraction grating-Absent spectra with a diffraction grating- Dispersive power of a grating-Overlapping of spectral lines-Determination of wavelength of spectral lines using transmission grating (Normal incidence) -Resolving power of a plane diffraction grating

#### **UNIT III : POLARISATION**

Introduction- Polarisation of light - Double refraction - Nicol prism - Theory of plane polarized light, elliptically polarized light and circularly polarised light –Theory of production of elliptically and circularly polarised light –Quarter wave plate – Half wave plate - Production and detection of plane, circularly and elliptically polarised light – Babinet's compensator –Dichroism

#### **UNIT IV : LASER OPTICS**

Induced absorption- Spontaneous emission – Stimulated emission –Principles of laser, Population inversion, pumping - Einstein's coefficients – Relation between Einstein's A and B coefficients- Ruby laser – He-Ne laser -  $CO_2$  Laser- Semiconductor Laser

#### UNIT V :APPLICATIONS OF LASER

Laser Welding – hole drilling – laser cutting – Holography – principle, recording, viewing a hologram-Laser tracking- Lider- Lasers in medicine – Fibre optics – introduction-Fibre construction - Fibre optic communication system – Advantages of fibre optic communicationsystem-Fibre optic sensors.

#### **TEXT BOOKS**

# Optics and spectroscopy – R.Murugesan, KiruthigaSivaprasath, 7 th revised edition, 2010, S.Chand& Company Limited

UNIT-I: CHAPTER –2.1, 2.2,2.7, 2.9, 2.10 - 2.14 UNIT-II : CHAPTER -3.1- 3.3, 3.7, 3.10- 3.15, 3.17, 3.24 UNIT-III : CHAPTER -4.1, 4.5, 4.8, 4.10, 4.11, 4.12 -4.14, 16.8,31.3 UNIT-IV: CHAPTER -5.13, 12.1,12.2,12.4, 5.14, 5.15, 5.16 UNIT-V : CHAPTER – 39.2, 9.1, 39.3, 39.4, 39.5, 8.1, 8.2, 8.5, 8.6, 8.10

## **REFERENCE BOOKS**

1. Optics and Spectroscopy -Brijlal& Subramanian, 2006 edition, S.Chand&Co.

2. A Text book of Physics- R.Murugesan, 2006 edition, S.Chand&Co.

3. N. Avadhanulu, An introduction to LASERS, S. Chand & Company, 2001.

4. WilliamT.Silfvast,Laserfundamentals,UniversityPress,Publishedin South Asia by Foundation books, New Delhi,1998

5. K.ThyagarajanandA.K.Ghatak,LASERTheoryandApplication,Mc Millan, India Ltd,1984.

#### WEB REFERENCES

- 1. Free Optics Books Download | Ebooks Online Textbooks Tutorials (freebookcentre.net)
- 2. <u>Geometrical Optics and Physical Optics, by Herimanda A. Ramilison: FREE Book Download</u> (free-ebooks.net)
- 3. <u>Atomic and Laser Physics</u> Download book (freebookcentre.net)

| UNITS                           | TOPIC                                                  | LECTURE<br>HOURS | MODE OF TEACHING                  |
|---------------------------------|--------------------------------------------------------|------------------|-----------------------------------|
| UNIT I: INT                     | ERFERENCE (18 Hrs)                                     |                  |                                   |
| Introduction                    | - Theory of Interference fringes -                     | 4                | 3 hour Lecture                    |
| Wedge-shape                     | ed film                                                |                  | and1 hour Discussion and ICT      |
| Determination                   | of wavelength of sodium light by                       | 5                | 4 hours Lecture                   |
| Newton's ring<br>of liquid by N | s - Determination of refractive index<br>ewton's rings |                  | and 1 hour Discussion and Quiz    |
| Michelson inte                  | erferometer - determination of                         | 5                | 4 hours Lecture                   |
| wavelength of                   | monochromatic light                                    |                  | 1 hour ICT& Discussion, Problem   |
|                                 |                                                        |                  | solving                           |
| Determination                   | of difference between two doublets –                   | 4                | 3 hours Lecture                   |
| Jamin's interfe                 | erometer – Rayleigh's refractometer                    |                  | 1 hour ICT                        |
| UNIT II :DI                     | FFRACTION (18 Hrs)                                     |                  |                                   |
| Introduction -                  | Fresnel's explanation of rectilinear                   | 3                | 2 hours lecture 1 hour Discussion |
| propagation of                  | f light-                                               |                  |                                   |
| Diffraction of                  | light waves – The Zone plate -                         | 5                | 4 hour lecture                    |
| Diffraction at                  | a straight edge-Fraunhofer diffraction                 |                  | 1 hour ICT&Discussion             |
| at a single slit-               | Fraunhofer diffraction at a Double slit                |                  |                                   |
| Plane transmis                  | ssion diffraction grating-Absent                       | 5                | 4 hour lecture                    |
| spectra with a                  | diffraction grating- Dispersive power                  |                  | 1 hour ICT&Discussion             |
| of a grating-O                  | verlapping of spectral lines-                          |                  |                                   |
| Determination                   | of wavelength of spectral lines using                  | 5                | 4 hour lecture                    |
| transmission g                  | grating (Normal incidence) -Resolving                  |                  | 1 hour ICT&Discussion             |

| power of a plane diffraction grating                                                                                                                                       |    |                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------|
| UNIT III : POLARISATION (18 Hrs)                                                                                                                                           |    |                                                          |
| Introduction- Polarisation of light - Double refraction<br>- Nicol prism                                                                                                   | 4  | 3 hours lecture<br>1 hour Discussion                     |
| Theory of plane polarized light, elliptically polarized<br>light and circularly polarised light –Theory of<br>production of elliptically and circularly polarised<br>light | 5  | 4 hours lecture<br>1 hour ICT &Discussion                |
| Quarter wave plate – Half wave plate –<br>Production and detection of plane, circularly and<br>elliptically polarised light                                                | 5  | 4 hours lecture<br>1 hour ICT&Discussion                 |
| Babinet's compensator- Dichroism                                                                                                                                           | 4  | 3 hours lecture 1 hour ICT and discussion                |
| <b>UNITIV : LASER OPTICS (18 Hrs)</b>                                                                                                                                      |    |                                                          |
| Induced absorption- Spontaneous emission – Stimulated emission                                                                                                             | 3  | 2 hours lecture and 1 hour discussion                    |
| Principles of laser, Population inversion,<br>pumping                                                                                                                      | 3  | 2 hours lecture and 1 hour discussion                    |
| Einstein's coefficients – Relation between<br>Einstein's A and B coefficients                                                                                              | 4  | 3 hours lecture<br>1 hour Discussion and Problem solving |
| Ruby laser – He-Ne laser                                                                                                                                                   | 4  | 3 hours lecture<br>1 hour ICT &Discussion                |
| CO <sub>2</sub> Laser- Semiconductor Laser                                                                                                                                 | 4  | 3 hours lecture<br>1 hour ICT&Discussion                 |
| <b>UNIT V: APPLICATIONS OF LASER (18 Hrs</b>                                                                                                                               | s) |                                                          |
| Laser Welding – hole drilling – laser cutting –                                                                                                                            | 4  | 3 hours lecture<br>1 hour Discussion                     |
| Holography – principle, recording, viewing a hologram-                                                                                                                     | 5  | 4 hours lecture<br>1 hour Discussion and ICT             |
| Laser tracking- Lider- Lasers in medicine –<br>Fibre optics – introduction-                                                                                                | 4  | 3 hours lecture<br>1 hour Discussion and ICT             |
| Fibreconstruction-Fibreopticcommunication system -Advantagesoffibreopticcommunicationsystem-Fibreopticsensors                                                              | 5  | 4 hours lecture<br>1 hour Discussion and ICT             |

| Course<br>Outcomes | Programme Outcomes (POs) |     |     |     |      | Programme Specific Outcomes (PSOs) |      |      |      |      | Mean<br>scores of |
|--------------------|--------------------------|-----|-----|-----|------|------------------------------------|------|------|------|------|-------------------|
| (Cos)              | PO1                      | PO2 | PO3 | PO4 | PO5  | PSO1                               | PSO2 | PSO3 | PSO4 | PSO5 | Cos               |
| CO1                | 4                        | 3   | 4   | 3   | 3    | 4                                  | 3    | 4    | 4    | 3    | 3.5               |
| CO2                | 4                        | 3   | 3   | 4   | 3    | 4                                  | 3    | 4    | 3    | 3    | 3.4               |
| CO3                | 4                        | 4   | 3   | 3   | 4    | 3                                  | 4    | 4    | 3    | 4    | 3.6               |
| CO4                | 4                        | 3   | 3   | 4   | 4    | 4                                  | 3    | 3    | 4    | 4    | 3.6               |
| CO5                | 3                        | 4   | 4   | 3   | 4    | 3                                  | 3    | 4    | 4    | 4    | 3.6               |
|                    |                          |     |     |     | Mean | Overall S                          | core |      |      |      | 3.54              |

Result: The Score for this Course is 3.54 (High Relationship)

| Mapping                                                               | 1-20%     | 21-40%  |     | 41-60%             | 61-80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81-100%                  |
|-----------------------------------------------------------------------|-----------|---------|-----|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Scale                                                                 | 1         | 2       |     | 3                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                        |
| Relation                                                              | 0.0-1.0   | 1.1-2.0 |     | 2.1-3.0            | 3.1-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1-5.0                  |
| Quality                                                               | Very Poor | Poor    |     | Moderate           | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Very High                |
| Mean Score of COs = <u>Total of Values</u><br>Total No. of Pos & PSOs |           |         | Mea | n Overall Score of | $COs = \frac{Total of M}{Total Notal No$ | lean scores<br>o. of COs |

#### ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 30%      | 30%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 40%      | 40%      |
| K3 (APPLICATION and ANALYSIS)    | 30%      | 30%      |

Course Designer: Dr. P.N.NIRMALA, Dr. A. BEULAH MARY & Dr.P. INDRA DEVI, Assistant Professor, Department of Physics.

Programme: B.Sc. Semester : III Part III: Elective Paper Hours : 2 Hrs/W 30 Hrs/S

#### Sub. Code : U22NMP1

#### Credits: 2

#### **TITLE OF THE PAPER: Weather Forecasting**

| Pedagogy                                                                      | Hours                   | Lecture         | Peer Teaching        | GD/VIDOES/TUTORIAL           | ICT         |         |  |
|-------------------------------------------------------------------------------|-------------------------|-----------------|----------------------|------------------------------|-------------|---------|--|
|                                                                               | 2                       | 1               | 1                    |                              |             |         |  |
| <b>PREAMBLE:</b>                                                              | Unders                  | tand the bas    | sics of Weather a    | nd Climate                   |             |         |  |
|                                                                               |                         |                 |                      |                              |             |         |  |
|                                                                               |                         |                 |                      |                              |             |         |  |
|                                                                               |                         | COUD            |                      |                              | <b>TT I</b> | 11 D/G  |  |
|                                                                               |                         | COUR            | SE OUTCOME           |                              | Unit        | Hrs P/S |  |
| At the end of the                                                             | Semester                | t, the Students | s will be able to    |                              |             |         |  |
| UNIT 1 CO1: U                                                                 | Jnderstan               | d the importan  | nce of atmosphere,   | composition and structure of | 1           | 6 Hrs   |  |
| atmosphere also                                                               | know the                | characteristic  | S                    | -                            |             |         |  |
| UNIT 2 CO2: K                                                                 | Know abo                | ut the Wind s   | ystems and Clouds.   |                              | 2           | 6 Hrs   |  |
| UNIT 3 CO3: i                                                                 | dentify the             | e Cyclones, C   | lassification of Cyc | clones and thunderstorms     | 3           | 6 Hrs   |  |
| UNIT 4 CO4: Know about the classification of climate and importance of global |                         |                 |                      |                              |             | 6 Hrs   |  |
| warming                                                                       | warming                 |                 |                      |                              |             |         |  |
| UNIT 5 CO5: U                                                                 | ecasting and Satellites | 5               | 6 Hrs                |                              |             |         |  |
| observations.                                                                 | observations.           |                 |                      |                              |             |         |  |

#### WEATHER FORECASTING

#### **Course Objective:**

The main objective of the course is not only to impart theoretical knowledge to the students and to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomenon and basic forecasting techniques

#### **Unit 1: Introduction to atmosphere**

Atmosphere - physical structure and composition - atmospheric pressure - its measurement - cyclones and anticyclones - its characteristics – Measuring air temperature – Sensor – Types.

#### **Unit 2: Measuring the weather**

Wind - force - speed - direction - measurement –atmospheric moisture/ humidity- clouds - rainfall- radiation- absorption- emission and scattering in atmosphere - radiation laws.

#### Unit 3: Weather systems

Air masses and fronts - classifications - jet streams - local thunderstorms - tropical cyclones - classification - tornadoes - hurricanes.

#### Unit 4: Climate and Climate Change

Climatic classification - causes of climate change – global warming - air pollution - aerosols- ozone depletion- acid rain - environmental issues related to climate.

#### Unit 5: Basics of weather forecasting:

Weather forecasting - historical background - need -

types - weather forecasting methods - criteria of choosing weather station –Basics of choosing site and exposure - satellites observations - weather maps - uncertainty and predictability - probability forecasts.

#### **Reference books:**

- 1. Berry and Chorley Atmosphere , Weather and Climate Metheun
- 2. Howard J. Critch Field (1999) General Climatology Prentice Hall of India Delhi - 1999
- 3. Keith Smith Principles of Applied Climatology Mc Graw Hill Book Co, Newyork 1998
- 4. Glenn T. Trewartha & Lyle -H. Horn. An introduction to Climate -
- Mc. Grew Hill Book Co. New Delhi 1980

| UNITS            | ΤΟΡΙϹ                                     | LECTURE<br>HOURS | MODE OF TEACHING                              |
|------------------|-------------------------------------------|------------------|-----------------------------------------------|
| UNIT 1 ELE       | CTROSTATICS                               |                  |                                               |
| Coulomb's lav    | w, Electric field, Electric potential     | 2                | 2 hours Lecture                               |
|                  |                                           |                  | and Discussion                                |
| Potential at a p | point due to a point charge, Potential at | 4                | 3 hours Lecture                               |
| a point due to   | a Uniformly charged conducting            |                  | and 1 hour Discussion and Quiz                |
| sphere           |                                           |                  |                                               |
| Capacitors, Ca   | apacitance of a spherical capacitor       | 3                | 2 hours Lecture                               |
| (outer sphere e  | earthed & inner sphere earthed)           | _                | 1 hour PPT and Discussion                     |
| Capacitance o    | f a Parallel plate capacitor, Capacitance | 3                | 2 hours Lecture                               |
| of a Parallel    | plate capacitor partially filled with a   |                  | 1 hour PPT and Discussion                     |
| dielectric slab  |                                           | 2                |                                               |
| Energy stored    | in a charged capacitor, Loss of energy    | 2                | 2 hours Lecture and Discussion                |
| On sharing of C  | inarges between two capacitors.           | Ĩ <b>C</b>       |                                               |
| Causa'a Law      | Electric Eicld due to a Uniformly         | 5                | 3 hours losture                               |
| charged sphere   | Electric Filed due to a Uniformity        | 4                | 5 hours lecture<br>1 hour Discussion and Ouiz |
| plane sheet of   | charge                                    |                  |                                               |
| Coulomb's the    | orem Mechanical force experienced         | 4                | 3 hours lecture                               |
| by unit area of  | F a charged conductor. Charged soap       | •                | 1 hour Discussion and Ouiz                    |
| bubble           | , , , , , , , , , , , , , , , , , , ,     |                  |                                               |
| Electrical image | ges – Applications (i). Surface density   | 4                | 3 hours lecture                               |
| of charge at a   | point on a conducting plane (ii). Force   |                  | 1 hour Discussion and Quiz                    |
| of attraction b  | etween the charge and the conducting      |                  |                                               |
| plane.           | -                                         |                  |                                               |
|                  |                                           |                  |                                               |
|                  |                                           |                  |                                               |
|                  |                                           |                  |                                               |

| UNIT III ELECTROSTATIC INSTRUMENTS                   |   |                            |
|------------------------------------------------------|---|----------------------------|
| Kelvin's the attracted Disc or Absolute Electrometer | 4 | 2 hours lecture            |
|                                                      |   | 1 hour Discussion and Quiz |
| Measurement of Potential difference between two      | 4 | 2 hours lecture            |
| given points, Determination of Relative permittivity |   | 1 hour Discussion and Quiz |
| of a material(in the form of a parallel slab)        |   |                            |

| The Quadrant electrometer, Measurement of             | 4 | 2 hours lecture            |
|-------------------------------------------------------|---|----------------------------|
| ionization current.                                   |   | 1 hour Discussion and Quiz |
|                                                       |   |                            |
| UNIT IV ELECTRICAL MEASUREMENTS                       |   |                            |
| Kirchoff's laws, Wheatstone's network, Condition      | 4 | 3 hours lecture            |
| for balance                                           |   | 1 hour Discussion and PPT  |
| Carey Foster's Bridge – Potentiometer, Calibration of | 4 | 3 hours lecture            |
| Ammeter                                               |   | 1 hour Discussion and PPT  |
| Calibration of voltmeter (Low range & High Range),    | 4 | 3 hours lecture            |
| Comparison of capacitance of two capacitors.          |   | 1 hour Discussion and PPT  |
| UNIT V THERMO ELECTRICITY                             |   |                            |
| Seebeck Effect, Measurement of thermo EMF using       | 4 | 2 hours lecture            |
| potentiometer                                         |   | 1 hour Discussion and PPT  |
| Peltier Effect, Thomson Effect                        | 2 | 1 hours lecture            |
|                                                       |   | 1 hour Discussion and PPT  |
| Thermodynamics of thermocouple (Expressions for       | 4 | 3 hours lecture            |
| Peltier & Thomson Coefficients), Thermoelectric       |   | 1 hour Discussion and PPT  |
| diagram and its uses.                                 |   |                            |
|                                                       |   |                            |

| Course<br>Outcomes | Programme Outcomes (POs) |     |     |     | Programme Specific Outcomes (PSOs) |      |      |      | (PSOs) | Mean<br>scores of |     |
|--------------------|--------------------------|-----|-----|-----|------------------------------------|------|------|------|--------|-------------------|-----|
| (Cos)              | PO1                      | PO2 | PO3 | PO4 | PO5                                | PSO1 | PSO2 | PSO3 | PSO4   | PSO5              | Cos |
| CO1                | 4                        | 3   | 3   | 3   | 3                                  | 4    | 3    | 4    | 4      | 3                 | 3.4 |
| CO2                | 4                        | 3   | 3   | 3   | 3                                  | 4    | 3    | 4    | 3      | 3                 | 3.3 |
| CO3                | 3                        | 4   | 3   | 3   | 4                                  | 3    | 4    | 4    | 3      | 4                 | 3.5 |
| CO4                | 4                        | 3   | 3   | 3   | 4                                  | 4    | 3    | 3    | 3      | 3                 | 3.3 |
| CO5                | 3                        | 4   | 4   | 3   | 4                                  | 3    | 3    | 4    | 3      | 3                 | 3.4 |
| Mean Overall Score |                          |     |     |     |                                    |      |      |      | 3.38   |                   |     |

Result: The Score for this Course is 3.38 (High Relationship)

| Mapping                                                               | 1-20%     | 21-40%  |  | 41-60%          | 61-80%                           | 81-100%                      |
|-----------------------------------------------------------------------|-----------|---------|--|-----------------|----------------------------------|------------------------------|
| Scale                                                                 | 1         | 2       |  | 3               | 4                                | 5                            |
| Relation                                                              | 0.0-1.0   | 1.1-2.0 |  | 2.1-3.0         | 3.1-4.0                          | 4.1-5.0                      |
| Quality                                                               | Very Poor | Poor    |  | Moderate        | High                             | Very High                    |
| Mean Score of COs = <u>Total of Values</u><br>Total No. of Pos & PSOs |           |         |  | n Overall Score | of COs = <u>Total o</u><br>Total | of Mean scores<br>No. of COs |

Programme : B.Sc. Semester : III & IV Part III: Practical Hours :2 Hrs/W , 30Hrs /S

## Sub. Code : U22CP6P

## Credits : 2

## TITLE OF THE PAPER: MAJOR PRACTICAL – PAPER – II

|                                                                | ITTLE O                                 | F THE PAPI                          | ER: MAJOR PRA                               | CIICAL – PAPER – II             |              |                     |
|----------------------------------------------------------------|-----------------------------------------|-------------------------------------|---------------------------------------------|---------------------------------|--------------|---------------------|
| Pedagogy                                                       | Hours                                   | Lecture                             | Peer Teaching                               | GD/ Vedos/Tutorial              |              | <u>P</u>            |
|                                                                | 2<br>This cour                          | raa is abla ta                      | -                                           | knowladga by annlying i         | the experim  | 2<br>nontal mathada |
| to correlate wit                                               | h the Phy                               | vsics theory                        | 2 To learn the u                            | sage of electrical and or       | ntical syste | ms for various      |
| measurements.                                                  | 3. Apply                                | the analytic                        | al techniques and                           | graphical analysis to the       | e experime   | ntal data. 4. To    |
| develop intelle                                                | ctual con                               | nmunication                         | skills and discus                           | s the basic principles of       | f scientific | concepts in a       |
| group.                                                         |                                         |                                     |                                             |                                 |              | -                   |
| At the and of the                                              | Comostor                                | COUR                                | SE OUTCOME                                  |                                 |              |                     |
| <b>CO1</b> : apply the                                         | procedure                               | es and technic                      | ues for the experin                         | ients.                          |              |                     |
| con upply ale                                                  | procedure                               |                                     | ques for the experim                        |                                 |              |                     |
| CO2: use the dif                                               | ferent mea                              | asuring devic                       | es and meters to rec                        | cord the data                   |              |                     |
| with precision .                                               | haaia mad                               | leine oonditie                      |                                             |                                 |              |                     |
| CO3: show the                                                  | mathemat                                | tical concepts                      | lequations to obtain                        | quantitative results            |              |                     |
| <b>CO4</b> : understand                                        | d the stand                             | lard value of                       | the results and the                         | applications.                   |              |                     |
| CO5:communica                                                  | ate scienti                             | fic informatic                      | on in oral, written ar                      | nd graphical formats.           |              |                     |
| CO6: develop ba                                                | asic comm                               | unication ski                       | lls through working                         | g in groups in performing       |              |                     |
| <b>CO7</b> • identify th                                       | ratory exp                              | periments and                       | d to develop a progr                        | results                         |              |                     |
|                                                                |                                         |                                     |                                             |                                 |              |                     |
| <ol> <li>LCR Part</li> <li>BH dete</li> <li>AC freq</li> </ol> | rallel resor<br>rmination<br>uency - So | nance<br>– field coil<br>onometer   |                                             |                                 |              |                     |
| 4. $MG - fig$                                                  | gure of me                              | erit                                |                                             |                                 |              |                     |
| 5. $B.G-fi$                                                    | gure of me                              | erit                                |                                             |                                 |              |                     |
| 6. $BG - co$                                                   | mparison                                | of capacitanc                       | es                                          |                                 |              |                     |
| 7. Air wed                                                     | ge – Thick                              | these of thin y                     | wire                                        |                                 |              |                     |
| 8. Dispersi                                                    | ve power                                | of prism – sp                       | ectrometer                                  |                                 |              |                     |
| 9. Grating                                                     | – normal i                              | ncidence – sr                       | pectrometer                                 |                                 |              |                     |
| 10. Grating                                                    | – minimui                               | m deviation –                       | spectrometer                                |                                 |              |                     |
| 11. Boltzma                                                    | nn's const                              | tant                                | L.                                          |                                 |              |                     |
| 12. a) Progra<br>b) To fir                                     | am for ten<br>1d the solu               | nperature con<br>ation of a quae    | version -from °C to<br>dratic equation (els | °F or °F to °C<br>e-if ladder). |              |                     |
| 13. a) To fir<br>b) To fir                                     | nd the large<br>and the sum             | est of given tl<br>1 of digits of a | hree numbers (neste<br>1 given number (wh   | ed if else)<br>ile)             |              |                     |
| 14. a) To fir<br>b) To so                                      | nd the factor<br>rt the give            | orial of a give<br>n numbers in     | en number (for)<br>ascending or desce       | nding order (1D – array)        |              |                     |
| 15. a) To fir<br>b) To ar                                      | nd the mult<br>range a lis              | tiplication tab<br>st of names in   | ble (Do-While)<br>an Alphabetical or        | der (string)                    |              |                     |

- 16. To reverse the digits of the given number
- 17. To find the grade of the students
- 18. To generate a electric bill

#### Reference Books

- 1. C.L. Arora, Practical physics, S. Chand Publication
- 2. B.L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House
- 3. A Textbook of Practical Physics, M.N.Srinivasan, S.Balasubramanian, R.Ranganathan S.Chand&Sons Publications
- 4. Programming in ANSI C E.Balagurusamy, 6<sup>th</sup> Edition Tata McGrawHill Education Pvt. Ltd.

Course designer: R. Vijayalakshmi Department of physics

Programme : B.Sc Semester : IV Part III: CC Hours : 4 P/W 60Hrs P/S

## Credits : 4

## **TITLE OF THE PAPER: Mathematical Methods**

| Pedagogy                                                             | Hours                       | Lecture       | Peer Teaching       | GD/VIDOES/TUTORIAL              | ICT   |    |  |  |
|----------------------------------------------------------------------|-----------------------------|---------------|---------------------|---------------------------------|-------|----|--|--|
|                                                                      | 2                           | 1             | -                   | 1                               |       | -  |  |  |
| <b>PREAMBLE:</b>                                                     | Underst                     | and various   | approximation m     | ethods to find solution to prol | blems |    |  |  |
| which do not h                                                       | ave exact                   | t solutions.  |                     |                                 |       |    |  |  |
|                                                                      |                             |               |                     |                                 |       |    |  |  |
|                                                                      | COURSE OUTCOME Unit Hrs P/S |               |                     |                                 |       |    |  |  |
| At the end of th                                                     | ne Semes                    | ter, the Stud | ents will be able t | to                              |       |    |  |  |
| CO1:define th                                                        | e errors a                  | and root of e | quations            |                                 | Ι     | 12 |  |  |
| CO2: solve the                                                       | e problen                   | ns using Mat  | trices              |                                 | II    | 12 |  |  |
| CO3: interpret the interpolation                                     |                             |               |                     |                                 |       | 12 |  |  |
| <b>CO4</b> : explain about numerical differentiation and integration |                             |               |                     |                                 |       | 12 |  |  |
| CO5: solve the                                                       | V                           | 12            |                     |                                 |       |    |  |  |

| UNITS    | ТОРІС                                                                                       | LECTURE | MODE OF            |
|----------|---------------------------------------------------------------------------------------------|---------|--------------------|
|          |                                                                                             | HOURS   | TEACHING           |
|          | Errors and their computations –<br>Absolute error - relative error                          | 4       | Lecture & Tutorial |
| UNIT I   | percentage error - General error<br>formula - Bisection method                              | 4       | Lecture & Tutorial |
|          | Method of False position - Newton<br>Raphson method                                         | 4       | Lecture & Tutorial |
|          | Introduction- Gauss-Elimination<br>method- Gauss Jordan elimination<br>method               | 4       | Lecture & Tutorial |
| UNIT II  | Crout's method for finding the inverse method                                               | 4       | Lecture & Tutorial |
|          | Iterative Methods - Gauss Seidal<br>Iteration method.                                       | 4       | Lecture & Tutorial |
|          | Linear Interpolation – Gregory-<br>Newton forward Interpolation<br>formula                  | 4       | Lecture & Tutorial |
| UNIT III | Gregory-Newton backward<br>Interpolation formula                                            | 4       | Lecture & Tutorial |
|          | Lagrange's Interpolation – Inverse interpolation                                            | 4       | Lecture & Tutorial |
| UNIT IV  | Numerical differentiation –<br>Newton's forward difference<br>formula to get the derivative | 4       | Lecture & Tutorial |
|          | Newton's backward difference<br>formula to compute the derivative-                          | 4       | Lecture & Tutorial |

|      | Numerical Integration                                       |   |                    |
|------|-------------------------------------------------------------|---|--------------------|
|      | trapezoidal rule - Simpson's 1/3                            | 4 | Lecture & Tutorial |
|      | and 3/8 rules                                               |   |                    |
|      | Introduction-Euler's method -<br>Improved Euler's method –. | 4 | Lecture & Tutorial |
| UNIT | Modified Euler's method – Runge-                            | 4 | Lecture & Tutorial |
|      | kutta methods (II,III and IVorder)                          |   |                    |
|      | predictor corrector methods                                 | 4 | Lecture & Tutorial |

| Course             | Programme Outcomes (POs) |     |     |     | Programme Specific Outcomes |      |      |      | Mean   |      |     |
|--------------------|--------------------------|-----|-----|-----|-----------------------------|------|------|------|--------|------|-----|
| Outcomes           |                          |     |     |     | (PSOs)                      |      |      |      | Scores |      |     |
| (COs)              |                          |     |     |     |                             |      |      | of   |        |      |     |
|                    |                          |     |     |     |                             |      |      |      | Cos    |      |     |
|                    | PO1                      | PO2 | PO3 | PO4 | PO5                         | PSO1 | PSO2 | PSO3 | PSO4   | PSO5 |     |
| CO1                | 3                        | 4   | 3   | 4   | 3                           | 3    | 4    | 3    | 3      | 5    | 3.5 |
| CO2                | 5                        | 3   | 4   | 3   | 4                           | 3    | 3    | 4    | 3      | 4    | 3.6 |
| CO3                | 3                        | 3   | 3   | 4   | 3                           | 3    | 5    | 4    | 3      | 3    | 3.4 |
| CO4                | 3                        | 3   | 4   | 3   | 3                           | 3    | 4    | 4    | 3      | 4    | 3.4 |
| CO5                | 4                        | 3   | 3   | 4   | 4                           | 3    | 3    | 4    | 4      | 3    | 3.5 |
| Mean Overall score |                          |     |     |     |                             |      |      | 3.48 |        |      |     |

Result: The Score for this Course is 3.48 (High Relationship)

| Mapping                                       | 1-20%     | 21-40%                                                                                             | 41-60%   | 61-80%  | 81-100%   |
|-----------------------------------------------|-----------|----------------------------------------------------------------------------------------------------|----------|---------|-----------|
| Scale                                         | 1         | 2                                                                                                  | 3        | 4       | 5         |
| Relation                                      | 0.0-1.0   | 1.1-2.0                                                                                            | 2.1-3.0  | 3.1-4.0 | 4.1-5.0   |
| Quality                                       | Very Poor | Poor                                                                                               | Moderate | High    | Very High |
| Mean Score of COs =<br>Total No. of Pos& PSOs |           | Mean Overall Score of COs = $\underline{\text{Total of}}$<br><u>Mean Score</u><br>Total No. of COs |          |         |           |

| BLOOM'S TAXANOMY                    | INTERNAL | EXTERNAL |
|-------------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)          | 30%      | 30%      |
| K2<br>(UNDERSTANDING/COMPREHENSION) | 40%      | 40%      |
| K3 (APPLICATION and ANALYSIS)       | 30%      | 30%      |

Course Designers: Dr. M. Mahalakshmi & Dr. G.Selvarani , Department of physics

## Programme: B.Sc.

## Part III: NME

Semester : VI Sub. Code : U22NMP2

#### Hours : 2 Hrs/W 30 Hrs/S Credits: 2

#### TITLE OF THE PAPER: SOLAR ENERGY AND ITS APPLICATIONS

|                                                                                       |           | 1       |               |                    | 1   |       |  |  |
|---------------------------------------------------------------------------------------|-----------|---------|---------------|--------------------|-----|-------|--|--|
| Pedagogy                                                                              | Hours     | Lecture | Peer Teaching | GD/VIDOES/TUTORIAL | ICT |       |  |  |
|                                                                                       | 2         | 1       | 1             |                    |     |       |  |  |
| Preamble:                                                                             | Preamble: |         |               |                    |     |       |  |  |
| The scope of this course is to understand the importance of SOLAR ENERGY              |           |         |               |                    |     |       |  |  |
|                                                                                       |           |         |               |                    |     |       |  |  |
|                                                                                       |           |         |               |                    |     |       |  |  |
|                                                                                       | Unit      | Hrs P/S |               |                    |     |       |  |  |
| At the end of the Semester, the Students will be able to                              |           |         |               |                    |     |       |  |  |
| <b>CO1</b> : Understand the importance of sun, composition, layers.                   |           |         |               |                    |     | 6 Hrs |  |  |
| <b>CO2</b> : Know the difference of renewable energy sources and non-renewable energy |           |         |               |                    | 2   | 6 Hrs |  |  |
| sources                                                                               |           |         |               |                    |     |       |  |  |
| CO3: know the                                                                         | 3         | 6 Hrs   |               |                    |     |       |  |  |
| CO4: Know th                                                                          | 4         | 6 Hrs   |               |                    |     |       |  |  |
| CO5: know the                                                                         | 5         | 6 Hrs   |               |                    |     |       |  |  |

#### SYLLABUS

#### UNIT : I SUN

Sun - composition of sun – basic parameters of sun – layers of sun – fusion in sun – black spots – solar flares – solar wind – solar radiations.

#### **UNIT : II ENERGY**

Non - renewable energy sources - non-renewable energy sources - solar energy - wind energy - Bio mass energy

#### **UNIT : III SOLAR HEATER & DRIER**

Solar water heaters – Types of water heaters – construction, working, efficiency, advantages and disadvantages of flat plate collector. Solar drier – types of driers – construction, working efficiency, advantages and disadvantages of integrated solar drier.

#### **UNIT : IV SOLAR COOKER AND SOLAR PONDS**

Solar cooker – types of cookers – construction, working, efficiency, advantages and disadvantages of dish type cooker –Solar ponds- types of ponds- construction, working, efficiency, advantages and disadvantages of non-convecting solar pond.

#### **UNIT : V APPLICATIONS OF SOLAR ENERGY**

Solar refrigerator - construction, working, efficiency, advantages and disadvantages of solar refrigerator – solar photovoltaic cell - construction, working, efficiency, advantages and disadvantages of solar photovoltaic cell – solar toys – solar caps – solar mobile chargers – solar torches – solar lanterns – solar garden lights – solar street lights – solar traffic signals – solar fountains – solar pumps.

#### **Text Book:**
Energy Physics by Dr. R.V.Jebha Rajasekhar., Eden publication, Nov 2009 Edition, Madurai.

#### **Reference:**

Non Conventional energy Sources – G.D.Rai, Fifth edition (April 2011) Khanna Publisher

| UNITS           | TOPIC                             | LECTURE           | MODE OF TEACHING  |
|-----------------|-----------------------------------|-------------------|-------------------|
|                 |                                   | HOURS             |                   |
| UNIT 1 : SUN    | N                                 |                   |                   |
| Intro           | duction to sun, composition       | 2                 | 1 hour Lecture    |
|                 |                                   |                   | 1 hour Discussion |
| Layers, fusio   | n and fission                     | 2                 | 1 hours Lecture   |
|                 |                                   |                   | 1 hour Discussion |
| Solar flares, s | solar wind and its radiation      | 2                 | 1 hour Lecture    |
|                 |                                   |                   |                   |
| UNIT II: RE     | ENEWABLE AND NON-RENEWABL         | <u>E ENERGY S</u> | OURCES            |
| Intro           | oduction to Energy Sources        | 2                 | 1 hour lecture    |
|                 |                                   |                   | 1 hour Discussion |
| Introduction    | to Renewable energy sources       | 2                 | 1 hour lecture    |
|                 |                                   |                   | 1 hour Discussion |
| Introduction    | to non-renewable energy sources   | 2                 | 1 hour lecture    |
|                 |                                   |                   | I hour Discussion |
| UNIT III : S    | OLAR HEATER AND SOLAR DRIEL       | K                 |                   |
|                 | Construction, Working, advantages | 3                 | 2 hour lecture    |
| and disadvant   | ages of solar heater              |                   | 1 hour Discussion |
|                 | Construction, Working, advantages | 3                 | 2 hour lecture    |
| and disadvant   | ages of solar drier               |                   | 1 hour Discussion |
| UNIT IV : SO    | OLAR COOKER AND SOLAR POND        | )                 |                   |
|                 | Construction, Working, advantages | 3                 | 2 hour lecture    |
| and disadvant   | ages of solar cooker              |                   | 1 hour Discussion |
|                 | Construction, Working, advantages | 3                 | 2 hour lecture    |
| and disadvant   | ages of solar pond                |                   | 1 hour Discussion |
| UNIT V : AP     | PLICATIONS OF SOLAR ENERGY        |                   |                   |
|                 | Construction, Working, advantages | 2                 | 1 hours lecture   |
| and disadvant   | ages of solar refrigerator.       |                   | 1 hour Discussion |
|                 | Construction, Working, advantages | 2                 | 1 hour lecture    |
| and disadvant   | ages of solar photovoltaic cells. |                   | 1 hour Discussion |
| Uses of Solar   | Energy                            | 2                 | 2 hour lecture    |
|                 |                                   |                   |                   |

| Course   | Programme Outcomes (POs) | Programme Specific Outcomes (PSOs) | Mean      |
|----------|--------------------------|------------------------------------|-----------|
| Outcomes |                          |                                    | scores of |

| (Cos)                  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | Cos |
|------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|-----|
| CO1                    | 3   | 3   | 3   | 3   | 4   | 3    | 3    | 4    | 4    | 3    | 3.3 |
| CO2                    | 3   | 3   | 3   | 3   | 4   | 4    | 3    | 4    | 3    | 4    | 3.4 |
| CO3                    | 3   | 4   | 4   | 3   | 3   | 3    | 4    | 4    | 3    | 4    | 3.5 |
| CO4                    | 4   | 3   | 4   | 3   | 3   | 3    | 3    | 3    | 4    | 3    | 3.3 |
| CO5                    | 4   | 4   | 3   | 3   | 3   | 3    | 3    | 4    | 3    | 3    | 3.3 |
| Mean Overall Score 3.3 |     |     |     |     |     |      |      |      | 3.36 |      |     |

Result: The Score for this Course is 3.36 (High Relationship)

| Mapping                                                               | 1-20%     | 21-40%  |  | 41-60%             | 61-80%                             | 81-100%                  |
|-----------------------------------------------------------------------|-----------|---------|--|--------------------|------------------------------------|--------------------------|
| Scale                                                                 | 1         | 2       |  | 3                  | 4                                  | 5                        |
| Relation                                                              | 0.0-1.0   | 1.1-2.0 |  | 2.1-3.0            | 3.1-4.0                            | 4.1-5.0                  |
| Quality                                                               | Very Poor | Poor    |  | Moderate           | High                               | Very High                |
| Mean Score of COs = <u>Total of Values</u><br>Total No. of Pos & PSOs |           |         |  | n Overall Score of | $COs = \frac{Total of M}{Total N}$ | lean scores<br>o. of COs |

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 40%      | 40%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 30%      | 30%      |
| K3 (APPLICATION and ANALYSIS)    | 30%      | 30%      |

Course Designers: V. SATHYABAMA

Programme : B.Sc., Physics Semester : IV Part III : Skill Based Paper- 3 Hours : 2 P/W 30 Hrs/SEM

#### Sub. Code : U22SEP1

#### Credits : 2

#### **TITLE OF THE PAPER : ASTROPHYSICS**

| Pedagogy                                                                                          | Hours        | Lecture       | Peer Teaching          | GD/VIDOES/Tu        | utorial    | ICT            |  |  |  |
|---------------------------------------------------------------------------------------------------|--------------|---------------|------------------------|---------------------|------------|----------------|--|--|--|
|                                                                                                   | 2            | 1             | -                      | 1                   |            | -              |  |  |  |
| Preamble: The course is designed to provide students of physics their first pedagogical introduct |              |               |                        |                     |            |                |  |  |  |
| the Universe. The                                                                                 | students ar  | e expected    | to understand the fun  | damentals, princi   | ples, phy  | sical concepts |  |  |  |
| and recent develop                                                                                | pments in tl | ne Astrophy   | sics area. To attain a | an advanced leve    | el of und  | lerstanding of |  |  |  |
| a topic of conten                                                                                 | nporary as   | trophysics    | and develop the pow    | ver of appreciation | ns, the ac | hievements in  |  |  |  |
| Astrophysics and                                                                                  | role in natu | re and socie  | ety for the sustenand  | ce of prosperous    | earth at   | mosphere       |  |  |  |
|                                                                                                   |              |               |                        |                     |            |                |  |  |  |
| <b>COURSE OUTC</b>                                                                                | COME         |               |                        |                     | Unit       | 30 Hrs         |  |  |  |
| On the successful                                                                                 | completion   | of the cour   | rse students will able | to                  |            | P/ S           |  |  |  |
| <b>CO1</b> . describe th                                                                          | e features c | f objects in  | the Solar system giv   | ing details of      | 1          | 6              |  |  |  |
| similarities and di                                                                               | fferences b  | etween thes   | e objects Understand   | the                 | 1          | 0              |  |  |  |
| fundamental conc                                                                                  | ents of the  | celestial spl | ere comets asteroid    | s meteors           |            |                |  |  |  |
| galaxies and motio                                                                                | on of planet | s.            |                        | ,                   |            |                |  |  |  |
| <b>CO2:</b> understand                                                                            | the elemen   | ts and types  | of telescopes and kn   | low the             | 2          | 6              |  |  |  |
| importance and fe                                                                                 | atures of S  | bectrograph   | L L                    |                     |            |                |  |  |  |
| CO3 : study class                                                                                 | ification of | stars and H   | ertzsprung - Russel d  | liagram for         |            |                |  |  |  |
| population of stars                                                                               | s, understar | d absolute,   | apparent luminosity    | and their           | 3          | 6              |  |  |  |
| measurement and                                                                                   | black hole   | S             |                        |                     |            |                |  |  |  |
| CO4: study the p                                                                                  | ar activity  | 4             | 6                      |                     |            |                |  |  |  |
| CO5 : study struct                                                                                | stand the    |               |                        |                     |            |                |  |  |  |
| relations between                                                                                 | the Moon a   | and earth an  | d Know the effects o   | f sun, moon and     | 5          | 6              |  |  |  |
| earth                                                                                             |              |               |                        |                     |            |                |  |  |  |

#### **Unit I : EXPLORING THE SKY**

Celestial sphere – Kepler's laws of planetary motion – Newton's Laws of Gravitation –Asteroids-Comets-Meteors--Types of Galaxies:(Spiral –Elliptical – barred spiral galaxies, irregular galaxies, Lenticular galaxies etc.,-Milky Way Galaxy)

#### **Unit II : OBSERVATIONAL ASTRONOMY**

Elements of telescope -Radio telescope -The Hubble Space Telescope -James webb space telescope-Spectrograph

#### **Unit III : THE STARS**

Classification of Stars –Hertzprung-Russel Diagram-Magnitude of star - Luminosity of a Star –Stellar distance –Black holes

#### **Unit IV: SOLAR PHYSICS**

Sun – Physical properties – Solar Atmosphere:(Core – Nuclear Reactions –Photosphere – Chromosphere – Corona - Sunspots) -Solar Cycle–solar activity: (Solar Wind– solar prominences – solar flares)

#### **Unit V: THE EARTH AND LUNAR PHYSICS**

Structure of earth–Characteristics of earth –Magnetosphere–Auroras, space-weather effects - The cycles of the moon - The phases of the moon – Types of tide-Relation Between Moon Phases & Tides – Lunar eclipses – Solar eclipses.

#### **Text Book**

A. Mujiber Rahman, Concepts toAstrophysics,SciTechPublications, Chennai

UNIT I:1.2, 1.7, 1.8, 1.9, 1.10, 1.11, 5.2, 5.3 https://en.wikipedia.org/wiki/Galaxy https://www.britannica.com/science/galaxy

UNIT II: 2.5, 2.8,2.9 <u>https://en.wikipedia.org/wiki/Hubble\_Space\_Telescope\_</u> <u>https://www.nasa.gov/mission\_pages/hubble/main/index.html</u>

UNIT III :4.1,4.2,4.3,4.7 https://en.wikipedia.org/wiki/Apparent\_magnitude https://www.space.com/30417-parallax.html

UNIT IV:3.1,3.2, 3.3,3,4, 3.5, 3.8, 3.10,3.11 https://en.wikipedia.org/wiki/Solar\_cycle http://solar\_system.nasa.gov

UNIT V: 3.9,3.12

https://en.wikipedia.org/wiki/Structure\_of\_Earth https://www.school-for-champions.com/astronomy/earth.htm https://en.wikipedia.org/wiki/Magnetosphere https://en.wikipedia.org/wiki/Lunar\_phase https://moon.nasa.gov/moon-in-motion/moon-phases https://www.ldisd.net/cms/lib5/TX01817232/Centricity/Domain/218/Moons%20Phas es%20and%20Tides%20notes.pdf https://www.britannica.com/story/what-causes-lunar-and-solar-eclipses

#### References

- Carrol and Ostlie, 2007, Introduction to Modern Astrophysics, 2<sup>nd</sup> Pearson International.
- Astrophysics-Stars and galaxies K.D.Abhyankar, 1992
   Tata McGraw Hill Publishing, New Delhi.
- 3. Universe William J. Kaufmann- 4<sup>th</sup> Edition,1994.

| UNITS                          | TOPIC                                               | LECTURE   | MODE OF TEACHING          |  |  |
|--------------------------------|-----------------------------------------------------|-----------|---------------------------|--|--|
|                                |                                                     | HOURS     |                           |  |  |
| UNIT 1: EX                     | PLORING THE SKY (6 Hours)                           |           |                           |  |  |
| Celestial sphe                 | re, Kepler's laws of planetary motion,              |           | 2 hours Lecture           |  |  |
| Newton's Law                   | vs of Gravitation                                   | 3         | 1 hour ICT and Discussion |  |  |
| Asteroids-Co                   | omets-Meteors                                       | 1         | 1 hour Lecture            |  |  |
| Types of Gala                  | axies: (Spiral – Elliptical – barred spiral         | 2         | 1 hours lecture           |  |  |
| galaxies, irreg<br>Milky Way G | gular galaxies,Lenticular galaxies etc.,–<br>alaxy) |           | 1 hour ICT and Discussion |  |  |
| UNIT II : O                    | BSERVATIONAL ASTRONOMY (6                           | Hours)    |                           |  |  |
| Elements of t                  | elescope, Radio telescope, The Hubble               |           | 3 hours lecture           |  |  |
| Space Telesco                  | ре                                                  | 4         | 1 hour ICT and Discussion |  |  |
| James webb                     | space telescope                                     | 2         | 1 hour lecture            |  |  |
| Spectrograph                   |                                                     |           | 1 hour ICT and Discussion |  |  |
| UNIT III : 7                   | THE STARS (6 Hours)                                 |           |                           |  |  |
| Classification                 | of Stars, Hertzprung-Russel, Diagram                | 4         | 3 hours lecture           |  |  |
| Magnitude of                   | star - Luminosity of a Star                         |           | 1 hour ICT and Discussion |  |  |
| Stellar distan                 | nce, Black holes                                    | 2         | 1 hour lecture            |  |  |
|                                |                                                     |           | 1 hour ICT and Discussion |  |  |
| UNIT IV : S                    | OLAR PHYSICS (6 Hours)                              |           |                           |  |  |
| Sun – Physica                  | l properties                                        | 2         | 1 hour lecture            |  |  |
|                                |                                                     |           | 1 hour Discussion and ICT |  |  |
| Solar Atmos                    | phere:(Core – Nuclear Reactions –                   | 2         | 1 hour lecture            |  |  |
| Photosphere                    | - Chromosphere - Corona - Sunspots)                 |           | 1 hour Discussion and ICT |  |  |
| Solar Cycle                    | , solar activity: (Solar Wind- solar                | 2         | 1 hour lecture            |  |  |
| prominences                    | – solar flares)                                     |           | 1 hour Discussion and ICT |  |  |
| UNIT V : T                     | HE EARTH AND LUNAR PHYSICS                          | (6 Hours) |                           |  |  |
| Structure of ea                | arth-Characteristics of earth - The phases          | 2         | 1 hour lecture            |  |  |
| of the moon                    |                                                     |           | 1 hour Discussion and ICT |  |  |
| Magnetospher                   | e-Auroras, space-weather effects - The              | 2         | 1 hour lecture            |  |  |
| cycles of the r                | noon                                                |           | 1 hour Discussion and ICT |  |  |
| Types of tid                   | le-Relation Between Moon Phases                     | 2         | 1 hour lecture            |  |  |
| & Tides – L                    | unar eclipses – Solar eclipses                      |           | 1 hour Discussion and ICT |  |  |

| Course<br>Outcomes | Programme Outcomes (POs) |     |     |     |      | Programme Specific Outcomes (PSOs) |      |      |      | Mean<br>scores of |      |
|--------------------|--------------------------|-----|-----|-----|------|------------------------------------|------|------|------|-------------------|------|
| (Cos)              | PO1                      | PO2 | PO3 | PO4 | PO5  | PSO1                               | PSO2 | PSO3 | PSO4 | PSO5              | Cos  |
| CO1                | 4                        | 3   | 3   | 3   | 3    | 4                                  | 3    | 3    | 4    | 4                 | 3.4  |
| CO2                | 4                        | 3   | 3   | 3   | 3    | 4                                  | 3    | 3    | 4    | 3                 | 3.3  |
| CO3                | 4                        | 3   | 3   | 4   | 3    | 4                                  | 3    | 4    | 3    | 4                 | 3.5  |
| CO4                | 4                        | 3   | 3   | 4   | 3    | 4                                  | 3    | 3    | 3    | 3                 | 3.3  |
| CO5                | 4                        | 3   | 3   | 4   | 3    | 3                                  | 3    | 3    | 4    | 4                 | 3.4  |
|                    |                          |     |     |     | Mean | Overall S                          | core |      |      |                   | 3.38 |

Result: The Score for this Course is 3.38 (High Relationship)

| Mapping                                                                             | 1-20%     | 21-40%  |  | 41-60%             | 61-80%                              | 81-100%                  |   |   |
|-------------------------------------------------------------------------------------|-----------|---------|--|--------------------|-------------------------------------|--------------------------|---|---|
| Scale                                                                               | 1         | 2       |  | 2                  |                                     | 3                        | 4 | 5 |
| Relation                                                                            | 0.0-1.0   | 1.1-2.0 |  | 2.1-3.0            | 3.1-4.0                             | 4.1-5.0                  |   |   |
| Quality                                                                             | Very Poor | Poor    |  | Moderate           | High                                | Very High                |   |   |
| Mean Score of COs = $\frac{\text{Total of Values}}{\text{Total No. of Pos & PSOs}}$ |           |         |  | n Overall Score of | COs = <u>Total of M</u><br>Total No | lean scores<br>o. of COs |   |   |

#### ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 30%      | 30%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 40%      | 40%      |
| K3 (APPLICATION and ANALYSIS)    | 30%      | 30%      |

Course Designer: Dr. A.BEULAH MARY, Dr. P. N. NIRMALA & Dr.P. INDRA DEVI, Assistant Professors

Programme : B.Sc Semester : V Sub. Code : U22CP8

#### Part III: Core Hours : 5 P/W, 75 Hrs P/S Credits: 5

| <b>D</b> 1                                                                               | Hours                                                                             | Lecture          | Peer Teaching      | GD/ Videos/Tutori       | ial      | ICT        |  |  |  |  |  |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------|--------------------|-------------------------|----------|------------|--|--|--|--|--|
| Pedagogy                                                                                 |                                                                                   | 1                |                    |                         |          |            |  |  |  |  |  |
| <b>PREAMBLE:</b>                                                                         | PREAMBLE: To provide the students depth knowledge about various network theorems, |                  |                    |                         |          |            |  |  |  |  |  |
| characteristics ar                                                                       | nd applic                                                                         | ations of semi   | iconductor diode   | s, working of Transisto | or, mult | ivibrator, |  |  |  |  |  |
| oscillator, Operat                                                                       | ional am                                                                          | plifier and FET  | and their applica  | tions                   |          |            |  |  |  |  |  |
| COURSE OUTCOME<br>At the end of the Semester, the Students will be able toUnit           |                                                                                   |                  |                    |                         |          |            |  |  |  |  |  |
| <b>CO 1:</b> understand Kirchhoff's Laws and various network theorems and describe I     |                                                                                   |                  |                    |                         |          |            |  |  |  |  |  |
| CO 2: distinguish                                                                        | h between                                                                         | n BJT and FET    | and able to expla  | in the working of       | п        | 15         |  |  |  |  |  |
| Transistor amplif                                                                        | ïers                                                                              |                  |                    |                         | 11       |            |  |  |  |  |  |
| CO 3:describe the working of various types of amplifiers                                 |                                                                                   |                  |                    |                         |          |            |  |  |  |  |  |
| <b>CO 4:</b> explain the working of different types of oscillators and multivibrators IV |                                                                                   |                  |                    |                         |          |            |  |  |  |  |  |
| CO 5: explain the                                                                        | e charact                                                                         | eristics and app | lication of operat | ional amplifier         | V        | 15         |  |  |  |  |  |

#### **TITLE OF THE PAPER : ANALOG ELECTRONICS**

#### SYLLABUS

#### **Unit I :NETWORK THEOREMS AND SEMICONDUCTOR DIODES:**

Kirchhoff's Laws - Kirchhoff's current law- - Kirchhoff's voltage law Thevenin's Theorem Procedure for applying Thevenin's Theorem- Norton's Theorem- Procedure for applying Norton's Theorem-Superposition Theorem- Maximum power transfer theorem-Application of the Maximum power transfer theorem- V-I Characteristic of a PN junction Diode – forward characteristic – Reverse characteristic – Diode current equation – Zener Diode- Reverse characteristics of a Zener Diode – Zener Diode Application – Light Emitting Diode(LED) - Applications

#### Unit II: BIPOLAR JUCTIONTRANSISTORS AND FET :

Transistor Biasing- Operation of an NPN and PNP Transistors – BJT Circuit Configurations – characteristics of a Transistor in a Common base Configuration– Input and Output Characteristics – characteristics of a Transistor in a Common Emitter Configuration– Input and Output Characteristics - Transistor as an Amplifier – Common Emitter Transistor Amplifier - junction field effect transistor-Operation of JFET – Characteristics of JFET- Drain and Transfer Characteristics – JFET Parameters – Comparision between JFET and BJT

#### **UNIT-III – TRANSISTOR AMPLIFIERS:**

The h parameters of a linear circuit- Determination and meaning of h parameters- determination and meaning of a linear circuit- The h parameters notation for transistors- hybrid equivalent circuit for

common emitter transistor-RC Coupled amplifier-calculation of voltage gain for RC Coupled amplifier-classification of power amplifiers- class A amplifier- class B amplifier- characteristics of class C amplifier.

#### UNIT-IV: OSCILLATORS AND MULTIVIBRATORS:

Principle of feedback - Advantages and Disadvantages of negative feedback – Sinusoidal Oscillators – Comparison Between an Amplifier and an Oscillators - Classification of Oscillators - The Barkhausen Criterion - Hartley Oscillator- Colpitts Oscillators – Phase shift Oscillators – Multivibrators – types-Astable Multivibrators- Monostable Multivibrators .

#### **UNIT- V: OPERATIONAL AMPLIFIER**

Operational amplifier- Block diagram- Characteristics – slew rate – open loop operation – closed loop operation – virtual ground – inverting Operational amplifier – summing amplifier – subtracting amplifier –Op amp integrator - Op amp differentiator– Logarithmic amplifiers–Non inverting Operational amplifier– Voltage follower.

**TEXT BOOKS :** 

1. A Text Book of Applied Electronics- Dr.R.S.SEDHA- S.CHAND & Company Pvt . Ltd. Reprint 2015.

Unit – I: Chapter 5: 5.1-5.11, Chapter 12: 12.1-12.5, Chapter 13: 13.1-13.3,13.6,13.21,13.23 Unit –II: Chapter14: 14.7-14.9, Chapter15:15.2,15.3,15.5-15.8, Chapter24: 24.3,24.4, Chapter 16: 16.2-16.7,16.9,16.11,16.13

Unit –III:Chapter 25,26&27 (sec 25.1-25.3,25.6-25.8,26.4,26.5,27.6,27.7,27.12,27.26) Unit–IV:Chapter 29,31&32: 29.1-29.3,31.1-31.3,31.9,31.14,31.15,31.26,32.6-32.8,32.11. 2.BASIC ELECTRONICS – G.JOSE ROBIN & A.UBALDRAJ, Indira Publication First Edition:May 2005.

Unit–V :Chapter 4: Page No: 227-255.

#### BOOKS FOR REFERENCE :

- 2. Principles of Electronics V.K. Mehta, S.Chand& Co., Ltd., Reprint, 1993.
- 3. Elements of Solid state electronics -A.Ambrose&VincentDevaraj,MeraPublication,IV

Edition,1993

4. Hand Book of Electronics-Gupta S.L, Kumar V, -20<sup>th</sup> edition- Pragati Prakashan Publications.
5.Electronic Devices and Circuits-S.Salivahanan, secondedition, TataMcgraw Hill Publications, 2011

WebResources:

- 1. <u>https://amiestudycircle.com/free-samples%5Crecruitment%5Ctheory%5Ctheory-basic-circuits-network-theorems.pdf</u>
- 2. <u>https://www.brainkart.com/article/Configuration-of-Transistor-Circuit--CB,-CE,-CC-configuration-Input-and-Output-Characteristics\_12528/</u>
- 3. https://www.electrical4u.com/what-is-an-oscillator/
- 4. <u>https://electronicscoach.com/multivibrator.html</u>
- 5. https://www.electronicshub.org/power-amplifier/
- 6. <u>https://en.wikipedia.org/wiki/Operational\_amplifier</u>

| UNITS      | ΤΟΡΙΟ                                                                                                                                                                                                                                                                 | LECTURE<br>HOURS | MODE OF TEACHING                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|
|            | Kirchhoff's Laws - Kirchhoff's<br>current law Kirchhoff's voltage<br>law Thevenin's TheoremProcedure<br>for applying Thevenin's Theorem                                                                                                                               | 5                | Lecture ,Groupdiscussion,ICT             |
| UNIT I     | Norton's Theorem- Procedure for<br>applying Norton's Theorem-<br>Superposition Theorem- Maximum<br>power transfer theorem-Application<br>of the Maximum power transfer<br>theorem                                                                                     | 5                | Lecture ,Group discussion,<br>Assignment |
|            | V-I Characterstic of a PN junction<br>Diode – forward characteristic –<br>Reverse characteristic – Diode<br>current equation – Zener Diode-<br>Reverse characteristics of a Zener<br>Diode – Zener Diode Application –<br>Light Emitting Diode(LED) –<br>Applications | 5                | Lecture ,Group discussion,<br>ICT        |
|            | Transistor Biasing- Operation of an<br>NPN and PNP Transistors – BJT<br>Circuit Configurations –<br>characteristics of a Transistor in a<br>Common base Configuration– Input<br>and Output Characteristics —                                                          | 5                | Lecture ,Group discussion,<br>Assignment |
| UNIT<br>II | characteristics of a Transistor in a<br>Common Emitter Configuration–<br>Input and Output Characteristics -<br>Transistor as an Amplifier Common<br>Emitter Transistor Amplifier -                                                                                    | 5                | Lecture ,Group<br>discussion,ICT         |
|            | junction field effect transistor-<br>Operation of JFET – Characterstics<br>of JFET- Drain and Transfer<br>Characteristics – JFET Parameters –<br>Comparision between JFET and BJT                                                                                     | 5                | Lecture &ICT and Group<br>Discussion     |
| UNIT III   | The h parameters of a linear circuit-<br>Determination and meaning of h<br>parameters- determination and<br>meaning of a linear circuit- The h<br>parameters notation for transistors-<br>hybrid equivalent circuit for common<br>emitter transistor                  | 5                | Lecture &Group Discussion                |
|            | RC Coupled amplifier-calculation of voltage gain for RC Coupled amplifier                                                                                                                                                                                             | 4                | Lecture ,ICT&Group<br>Discussion         |

|         | classification of power amplifiers-                   |   | Lecture                     |
|---------|-------------------------------------------------------|---|-----------------------------|
|         | class A amplifier- class B amplifier-                 | 6 | ,GroupDiscussion,Assignment |
|         | characteristics of class C amplifier.                 |   |                             |
|         | Principle of feedback - Advantages                    |   | Lecture ,ICT&Group          |
|         | and Disadvantages of negative                         |   | Discussion                  |
|         | feedback – Sinusoidal Oscillators –                   | 5 |                             |
|         | Comparison Between an Amplifier                       |   |                             |
|         | and an Oscillators                                    |   |                             |
| UNIT IV | Classification of Oscillators - The                   |   | Lecture ,ICT&Group          |
| 011111  | Barkhausen Criterion - Hartley                        | 6 | Discussion                  |
|         | Oscillator- Colpitts Oscillators -                    | 0 |                             |
|         | Phase shift Oscillators.                              |   |                             |
|         | Multivibrators-types-Astable                          |   | Lecture ,ICT & Assignment   |
|         | Multivibrators-Monostable                             | 4 |                             |
|         | Multivibrators                                        |   |                             |
|         | Operational amplifier- Block                          |   | Lecture ,ICT&Group          |
|         | diagram- Characteristics – slew rate                  |   | Discussion                  |
|         | <ul> <li>open loop operation – closed loop</li> </ul> | 7 |                             |
|         | operation – virtual ground –                          | 7 |                             |
| UNIT    | inverting Operational amplifier –                     |   |                             |
| UNII    | summing amplifier                                     |   |                             |
| v       | subtracting amplifier –Op amp                         |   | Lecture ,ICT&Group          |
|         | integrator - Op amp differentiator-                   |   | Discussion                  |
|         | Logarithmic amplifiers–Non                            | 8 |                             |
|         | inverting Operational amplifier-                      |   |                             |
|         | Voltage follower.                                     |   |                             |

| Course<br>Outcomes<br>(Cos) | Programme Outcomes (POs) |     |     |     | Programme Specific Outcomes<br>(PSOs) |           |      |      | Mean<br>scores of<br>Cos |      |     |
|-----------------------------|--------------------------|-----|-----|-----|---------------------------------------|-----------|------|------|--------------------------|------|-----|
|                             | PO1                      | PO2 | PO3 | PO4 | PO5                                   | PSO1      | PSO2 | PSO3 | PSO4                     | PSO5 |     |
| CO1                         | 4                        | 4   | 4   | 3   | 4                                     | 4         | 4    | 3    | 4                        | 4    | 3.7 |
| CO2                         | 4                        | 4   | 3   | 4   | 4                                     | 4         | 4    | 3    | 4                        | 4    | 3.6 |
| CO3                         | 4                        | 4   | 4   | 3   | 4                                     | 4         | 3    | 4    | 4                        | 4    | 3.8 |
| CO4                         | 4                        | 3   | 4   | 3   | 4                                     | 4         | 3    | 4    | 4                        | 4    | 3.7 |
| CO5                         | 4                        | 4   | 3   | 4   | 4                                     | 4 4 3 4 4 |      |      |                          | 3.8  |     |
| Mean Overall Score          |                          |     |     |     |                                       |           |      |      | 3.72                     |      |     |

Result: The Score for this Course is 3.72 (High Relationship)

| Mapping                                                            | 1-20%     | 21-40%  |  | 41-60%             | 61-80%                               | 81-100%                  |
|--------------------------------------------------------------------|-----------|---------|--|--------------------|--------------------------------------|--------------------------|
| Scale                                                              | 1         | 2       |  | 3                  | 4                                    | 5                        |
| Relation                                                           | 0.0-1.0   | 1.1-2.0 |  | 2.1-3.0            | 3.1-4.0                              | 4.1-5.0                  |
| Quality                                                            | Very Poor | Poor    |  | Moderate           | High                                 | Very High                |
| Mean Score of COs = <u>Total Values</u><br>Total No. of Pos & PSOs |           |         |  | n Overall Score of | $COs = \frac{Total of M}{Total Net}$ | lean scores<br>o. of COs |

#### ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 30%      | 30%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 30%      | 30%      |
| K3 (APPLICATION and ANALYSIS)    | 40%      | 40%      |

**Course Designer: 1.**DR.N.NAGARANI 2.DR.G.KRISHNA BAMA Programme : B.Sc., PHYSICS Semester : V Sub. Code : U22CP9 Part III: MAJOR Core Hours : 5 P/W, 75 Hrs P/S Credits : 5

#### TITLE OF THE PAPER: ATOMIC PHYSICS

| Pedagogy | Hours | Lecture | Peer<br>Teaching | GD/VIDOES/TUTORIAL | ICT |
|----------|-------|---------|------------------|--------------------|-----|
|          | 5     | 2       |                  | 2                  | 1   |
|          |       |         |                  |                    |     |

#### **PREAMBLE:**

To provide an introductory account about the atomic structure and the impact of X-rays.

Acquire knowledge in spectral analysis.

Understand and apply the properties of X-rays in medical fields and the Photo Electric Devices with their performance.

| COURSE OUTCOME                                                                         | Unit | Hrs P/S |
|----------------------------------------------------------------------------------------|------|---------|
| At the end of the Semester, the Students will be able to                               |      |         |
| CO1: Explain the Atom Model and the Quantum Number associated with the                 | Ι    | 15      |
| Vector Atom Model.                                                                     |      |         |
| CO2:Explain the properties of positive rays and analyze the presence of positive       | II   | 15      |
| rays by Thomson's parabola method. To able to solve the problem in Mass                |      |         |
| Spectrograph.                                                                          |      |         |
| CO3: Summarize the free electron theory of metals, to classify the solids on the       | III  | 15      |
| basis of band theory.                                                                  |      |         |
| CO4:Explain the various types of Coupling scheme and to define the effect of           | IV   | 15      |
| Normal and Zeeman Effect.                                                              |      |         |
| <b>CO5</b> :Study the production, properties, absorption and characteristics of X-rays | V    | 15      |
| sspectra and to solve problems using Moseley's law.                                    |      |         |
| Examine and understand the process of scattering of X-rays by light elements           |      |         |
| (Compton effect).                                                                      |      |         |
| Demonstrate and describe the photoelectric effect and to list the performance and      |      |         |
| applications of photoelectric devices.                                                 |      |         |
| Formulate the Einstein's light quanta hypothesis.                                      |      |         |

#### SYLLABUS

**Unit I: ATOMIC STRUCTURE:** 

Introduction-Rutherford 's Experiments on Scattering of Alpha Particles-Drawbacks-Theory of Alpha Particle Scattering (Relationship Between b and  $\theta$ ) - Bohr Atom model (only Basic Postulates and Explanation) –Bohr's Interpretation of the Hydrogen Spectrum- Spectral Series of Hydrogen Atom -Ritz Combination Principle and Correspondence Principle (only Statement) -The Vector Atom Model – Quantum Numbers Associated with the Vector Atom Model — the Pauli's Exclusion Principle e - Some Examples of Electronic Configuration.

#### Unit II:POSITIVE RAYS:

Introduction - Discovery - Properties - Analysis - Thomson's Parabola Method -

Bainbridge's Mass Spectrograph -Mass Defect and Packing Fraction.

#### **Unit III: BAND THEORY OF SOLIDS:**

Introduction- The Free Electron Theory of Metals – Expressions for Electrical Conductivity – Wiedman- Franz's Law (Statement) - Electron Microscope – Band Theory of Solids – Classification of Solids on the Basis of Band Theory - Millikan's Oil Drop Method. **Unit IV: FINE STRUCTURE OF SPECTRAL LINES:**  Introduction - Coupling Schemes-L-S Coupling-j-j Coupling - Magnetic Dipole Moment due to Orbital Motion of the Electron - due to Spin of the Electron - Stern and Gerlach Experiment - Optical Spectra- Spectral terms- Spectral Notation- Selection Rules- Intensity Rules- Interval Rule- Fine Structure of Sodium D line –Normal Zeeman Effect, Larmor's Theorem, Anomalous Zeeman Effect, Paschen–Bach Effect and Stark Effect" (Statement and brief explanation).

#### Unit V: X-Rays and Photo Electric Effect:

Introduction- Production of X-rays – Properties- Absorption of X-rays - Bragg's law – Bragg's X-ray Spectrometer – The Powder Crystal Method –X-ray Spectra- Main Features of Continuous X- Ray Spectrum - Characteristic X-ray Spectrum - Moseley's Law (Statement) – Compton Scattering (No experimental verification).

Photo Electric Effect: Introduction- Einstein's Photo Electric Equation – Photo Electric Cells-Photo Emissive Cells-Photo Voltaic Cells-Photo Conductive Cells-Applications of Photoelectric Cells.

Text Book :

 Modern Physics by R. Murugeshan, Kiruthiga Sivaprasath, S. Chand & Co., NewDelhi-55, 14<sup>th</sup> Revised Multicolor Edition 2008.

**Unit I:** ). Chapter 6 : (Sec: 6.1 - 6.4, 6.7, 6.12, 6.13, 6.15 & 6.17 ).

**Unit II:** Chapter 5 : (Sec: 5.1 - 5.3, 5.5 & 5.7). **Unit III:** Chapter 4 : (Sec: 4.1 - 4.3 & 4.5 - 4.7).

**Unit IV:** Chapter 6: (Sec: 6.14, 6.18 – 6.20, 6.22 – 6.24 & 6.26 - 6.28).

Unit V: Chapter 7 & 8 : (Sec: 7.1, 7.2, 7.4, 7.6 - 7.8 and 7.11 - 7.14) AND (8.5&8.6) Reference Books:

**1. Modern Physics** by D.L.Sehgal, K.L.Chopra and N.K.Sehgal. Sultan Chand & Sons Publication, 7th Edition, NewDelhi(**1991**).

**2. Atomic Physics** by J.B. Rajam, S. Chand & Co., 20<sup>th</sup>Edition, New Delhi, (**2004**).

**3. Atomic and Nuclear Physics** by N. Subrahmanyam and BrijLal, S.

Chand & Co. 5<sup>th</sup> Edition, NewDelhi (2000).

**4. Concepts of Modern Physics** by A. Beiser, Tata McGraw-Hill, New Delhi (**1997**).

**5**. Fundamentals of Physics by D. Halliday, R.Resnick and J.

Walker, Wiley, 6<sup>th</sup>Edition, New York (2001).

6. Modern Physics by B L Theraja-S Chand & Company Ltd 15<sup>th</sup> edition (1990)

7. Atomic and Nuclear Physics -by Dr. W W Kulkarni,

Himalayan Publishing House, 1<sup>st</sup> Edition (2004).

#### Web Reference:

- a. <u>https://opentextbc.ca</u>
  b. <u>https://byjus.com</u>
  c. <u>https://youtu.be/vEwjwUxWokQ</u>

| UNITS   | TOPIC                    | LECTURE HOURS | MODE OF TEACHING             |
|---------|--------------------------|---------------|------------------------------|
|         | Introduction -           | 4             | Motivation by asking         |
|         | Rutherford's             |               | questions – peer group       |
|         | Experiments on           |               | discussion and by lecturing  |
|         | Scattering of Alpha      |               | through ICT (power point     |
|         | Particles-Drawbacks -    |               | presentation ).              |
| UNIT I  | Theory of Alpha Particle |               |                              |
|         | Scattering (Relationship |               |                              |
|         | Between b and $\theta$ ) |               |                              |
|         | Bohr Atom model (only    | 3             | Lecturing and by group       |
|         | Basic Postulates and     |               | discussion.                  |
|         | Explanation ) – Bohr's   |               |                              |
|         | Interpretation of        |               |                              |
|         | theHydrogen Spectrum-    |               |                              |
|         | Spectral Series of       |               |                              |
|         | Hydrogen Atom - Ritz     |               |                              |
|         | Combination Principle    |               |                              |
|         | and Correspondence       |               |                              |
|         | Principle                |               |                              |
|         | (onlyStatement)          |               |                              |
|         | The Vector Atom Model    | 4             | Peer group discussion and    |
|         |                          |               | by framing questions.        |
|         | Quantum Numbers          | 4             | Lecturing with discussion    |
|         | Associated with the      |               | and deriving the expression. |
|         | Vector Atom Model —      |               |                              |
|         | the Pauli's Exclusion    |               |                              |
|         | Principle - Some         |               |                              |
|         | Examples of Electronic   |               |                              |
|         | Configuration.           |               |                              |
|         | Introduction – Discovery | 5             | Lecture                      |
|         | – Properties             |               |                              |
|         | Analysis Thomson's       | 5             | Lecturing deriving the       |
| UNIT II | Parabola Method          | 5             | expression for E/M           |
|         | Rainbridge's Mass        | 5             | Lecturing with ICT and       |
|         | Spectrograph Mass        | 5             | solving the problem          |
|         | Defect and Packing       |               | solving the problem.         |
|         | Fraction                 |               |                              |
|         | Introduction- The Free   |               |                              |
|         | Flectron Theory of       |               |                              |
|         | Metals – Expressions for | 5             | Lecturing with group         |
|         | Electrical Conductivity- | 5             | discussion                   |
|         | Electrical Conductivity- |               | discussion                   |

|          | Wiedman- Franz's Law       |   |                              |
|----------|----------------------------|---|------------------------------|
|          | (Statement) - Electron     |   |                              |
|          | Microscope                 |   |                              |
|          | Band Theory of Solids –    | 5 | Seminar and given problem    |
| UNIT III | Classification of Solids   |   | for solving.                 |
|          | on the Basis of            |   |                              |
|          | BandTheory                 |   |                              |
|          | Millikan's Oil             | 5 |                              |
|          | Drop Method.               |   | Lecture                      |
|          | Introduction - Coupling    | 5 | ICT                          |
|          | Schemes - L-S              |   |                              |
|          | Coupling - j-j Coupling    |   |                              |
|          | - Magnetic Dipole          |   |                              |
|          | Moment due to Orbital      |   |                              |
|          | Motion of the Electron-    |   |                              |
|          | due to Spin of the         |   |                              |
|          | Electron -Stern and        |   |                              |
| UNIT IV  | Gerlach Experiment.        |   |                              |
|          | Optical Spectra -          |   |                              |
|          | Spectral terms -           |   |                              |
|          | Spectral Notation-         | 5 | ICT                          |
|          | Selection Rules-           |   |                              |
|          | Intensity Rules-           |   |                              |
|          | Interval Rule- Fine        |   |                              |
|          | Structure of Sodium D      |   |                              |
|          | line                       |   |                              |
|          | Normal Zeeman Effect       |   |                              |
|          | , Larmor's Theorem,        |   | Explaining                   |
|          | Anomalous Zeeman           | 5 |                              |
|          | Effect, Paschen – Bach     |   |                              |
|          | Effect and StarkEffect     |   |                              |
|          | (Statement and brief       |   |                              |
|          | explanation).              |   |                              |
|          | Introduction -             |   | Seminar with ICT.            |
|          | Production of X-ravs –     | 5 |                              |
|          | Properties - Absorption    |   |                              |
|          | of X-rays - Bragg's law    |   |                              |
| UNIT V   | - Bragg's X-ray            |   |                              |
|          | Spectrometer – The         |   |                              |
|          | Powder Crystal Method.     |   |                              |
|          | X-ray Spectra - Main       |   | Seminar with ICT and         |
|          | Features of Continuous X-  |   | solving the problem.         |
|          | Ray Spectrum -             | 5 | <i>o i i i i i i i i i i</i> |
|          | Characteristic X-ray       | - |                              |
|          | Spectrum - Moseley's Law   |   |                              |
|          | (Statement)_ Compton       |   |                              |
|          | Scattering (No             |   |                              |
|          | avarimental varification   |   |                              |
|          | Experimental verification) | E | Seminar with ICT             |
|          | introduction -             | 3 | Seminar with IC1.            |

|                             | Einstein's Photo<br>Electric Equation –<br>Photo Electric Cells-<br>Photo Emissive Cells-<br>Photo Voltaic Cells-<br>Photo Conductive Cells<br>- Applications of<br>Photoelectric Cells |    |    |    | ls |                                    |      |      |      |      |                          |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|------------------------------------|------|------|------|------|--------------------------|
| Course<br>Outcomes<br>(COs) | Programme Outcomes<br>(POS)                                                                                                                                                             |    |    |    |    | Programme Specific Outcomes (PSOs) |      |      |      | SOs) | Mean<br>scores<br>of Cos |
|                             | PO                                                                                                                                                                                      | PO | PO | PO | PO | PSO1                               | PSO2 | PSO3 | PSO4 | PSO5 |                          |
|                             | 1                                                                                                                                                                                       | 2  | 3  | 4  | 5  |                                    |      |      |      |      |                          |
| CO1                         | 3                                                                                                                                                                                       | 4  | 3  | 4  | 3  | 3                                  | 4    | 4    | 3    | 3    | 3.3                      |
| CO2                         | 3                                                                                                                                                                                       | 4  | 4  | 4  | 3  | 3                                  | 3    | 3    | 3    | 4    | 4.0                      |
| CO3                         | 3                                                                                                                                                                                       | 4  | 3  | 3  | 3  | 4                                  | 3    | 4    | 3    | 3    | 3.3                      |
| CO4                         | 3                                                                                                                                                                                       | 4  | 3  | 4  | 3  | 4                                  | 3    | 4    | 3    | 4    | 3.5                      |
| CO5                         | 4                                                                                                                                                                                       | 4  | 4  | 4  | 4  | 4                                  | 4    | 4    | 4    | 4    | 4.0                      |
| Mean Overall Score          |                                                                                                                                                                                         |    |    |    |    |                                    |      |      | 3.62 |      |                          |

Result: The Score for this Course is **3.62** (High Relationship)

| Mapping                              | 1-20%       | 21-40%      | 41-60%                                                 | 61-80%  | 81-100%          |
|--------------------------------------|-------------|-------------|--------------------------------------------------------|---------|------------------|
| Scale                                | 1           | 2           | 3                                                      | 4       | 5                |
| Relation                             | 0.0-1.0     | 1.1-2.0     | 2.1-3.0                                                | 3.1-4.0 | 4.1-5.0          |
| Quality                              | Very Poor   | Poor        | Moderate                                               | High    | Very High        |
| Mean Score of $COs = Total of Value$ |             |             | Mean Overall Score of COs = <u>Total of Mean Score</u> |         |                  |
|                                      | Total No. o | f POS& PSOs |                                                        |         | Total No. of Cos |

| <b>BLOOM'S TAXANOMY</b> | INTERNAL | EXTERNAL |
|-------------------------|----------|----------|
| K1: REMEMBERING/        | 30%      | 30%      |
| RECALLING.              |          |          |
| K2: UNDERSTANDING/      | 30%      | 30%      |
| COMPREHENSION.          |          |          |
| K3: APPLICATION AND     | 40%      | 40%      |
| ANALYSIS.               |          |          |

Course Designer : Dr. Mrs. SANTHI. M

Department of physics

#### Part III: CC Hours :5 P/W 75 HrP/S Credits : 5

### TITLE OF THE PAPER: CLASSICAL, STATISTICAL AND QUANTUM MECHANICS

| Pedagogy                                                                    | Hours           | ours Lecture Peer Teaching |                                                                             | GD/<br>Videos/Tutorial | ICT             |  |  |
|-----------------------------------------------------------------------------|-----------------|----------------------------|-----------------------------------------------------------------------------|------------------------|-----------------|--|--|
|                                                                             | 5               | 3                          | -                                                                           | 1                      | 1               |  |  |
| PREAMBLE: This of                                                           | course is esser | ntial to formulate         | and solve classical m                                                       | echanics problems us   | sing Lagrangian |  |  |
| and Hamiltonian met                                                         | hods. Evolution | on of wave mecha           | anics and Schrodinger                                                       | equation. To learn s   | tatistical      |  |  |
| interpretation of them                                                      | modynamics.     |                            | -                                                                           | -                      |                 |  |  |
|                                                                             | COURSE          | OUTCOME                    |                                                                             | T                      | II-ra D/C       |  |  |
| At the end of the Sen                                                       | nester, the Stu | dents will be able         | to                                                                          | Unit                   | nrs P/S         |  |  |
| CO1: define the basi                                                        | c concepts in o | classical mechanic         | cs.                                                                         | Ι                      | 15              |  |  |
| CO2: apply classical                                                        | approach to s   | ome of the physic          | cal systems.                                                                | II                     | 15              |  |  |
| CO3: know the basic                                                         | s of wave me    | chanics.                   |                                                                             | III                    | 15              |  |  |
| <b>CO4</b> : understand thermodynamic probability and classical statistics. |                 |                            |                                                                             | IV                     | 15              |  |  |
| CO5: explain quantu                                                         | m statistics an | d differentiate it         | <b>CO5</b> : explain quantum statistics and differentiate it from classical |                        |                 |  |  |

#### SYLLABUS

#### UNIT I:MechanicsofaSystemofParticles

External and internal forces - centre of mass - Conservation of linear momentum – Conservation of Angularmomentum – Conservation of energy-work-energytheorem – Conservativeforces – examples- Degreeoffreedom-GeneralizedCoordinates(transformationequations) - Constraints-Typesofconstraints-Examples.

#### UNIT II : Lagrangianand HamiltonianFormulations

Principle of virtual work - D'Alembert's principle -Lagrange's equation of motion for conservative and non-conservative systems –Simple applications- simple pendulum-Atwood's machine –compound pendulum –Hamiltonian function H- Hamilton's Canonical equation of motion –Applications-Harmonic oscillator-Planetary motion-Compound pendulum.

#### **UNIT III : Wave Mechanics**

statistics.

Matter waves – Phase velocity – Group velocity – Relation between phase velocity and group velocity – Heisenberg's uncertainty principle - Applications of uncertainty principle (Non existence of electron in the nucleus, Ground state energy and the radius of the hydrogen atom) -Schrodinger's equation - Properties of the wave function– Simple applications– Free particle solution – The particle in a box.

#### **UNIT IV : ClassicalStatistics**

Micro and macro states-Thermo dynamical probability (Definition)-The mu-space and gamma space-fundamental postulates of statistical mechanics – Ensembles-different typescomparison of ensembles - Boltzmann's theorem of entropy and probability-Maxwell-Boltzmann statistics-Maxwell-Boltzmann energy distributive law in general form and energy distribution function for an ideal gas.

#### **UNIT V: Quantum Statistics**

Development of Quantum statistics- Bose- Einstein and Fermi-Dirac statistics- Bose-

Einstein distribution law- Derivation of Planck's radiation formula from Bose–Einstein statistics – Fermi-Dirac distribution law - Free electrons inmetal-Fermi gas- comparison of three statistics - Difference between classical and quantum statistics.

#### **BOOKS FOR STUDY:**

1. Classical Mechanics - J.C.Upadhyaya, HimalayaPublishing House, Mumbai, Reprint July 2005. Unit I: Ch. 1,2 & 3 (1.7.1-1.7.3, 1.7.5, 1.7.8(a), 2.2, 2.3, 2.3.1-2.3.3) Unit II: Ch.2 & 3 (2.5-2.7, 2.8, Ex 2,3,5, 3.4, 3.5, 3.7 (1,2,4)

2. Heat&Thermodynamics, Brijlal&Subramaniam,S.Chand&CompanyLtd., Reprint1998. Unit IV: Ch. 9,10 & 11(9.7, 9.8, 10.5,10.8, 10.10 (1-3),10.11,10.15, 11.3) Unit V: Ch. 12 (12.2, 12.5, 12.7, 12.8, 12.9, 12.15, 12.16)

3. Modern Physics, R. Murugeshan, Kiruthiga Sivaprasath, 18<sup>th</sup> Edition, S.Chand & Co. Pvt. Ltd., 2016, Unit III: Ch. 7 &8 (7.2,7.2.3,7.2.4,7.2.5,7.5,7.5.2 (Ex 2&3),8.1,8.11,8.2,8.3)

#### **REFERENCE:**

1. Classical Mechanics, Gupta,B.D., Satyaprakash, 1991, 9<sup>th</sup>ed.,KadernathRamnathPubl., Meerut

2. Classical Mechanics, Gupta Kumar & Sharma, 2005, PragatiPrakashanPubl., Meerut.

| UNITS    | ΤΟΡΙϹ                                                                                                                                                                                    | LECTURE<br>HOURS | MODE OF<br>TEACHING   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
|          | External and internal forces, centre of mass,<br>Conservation of linear momentum, Conservation of<br>angular momentum.                                                                   | 5                | Lecture, G.D<br>& ICT |
| UNIT I   | Conservation of energy,work-energy theorem,<br>Conservative forces,examples, Degree of freedom.                                                                                          | 5                | Lecture,G.D&<br>ICT   |
|          | Generalized coordinates (transformation<br>equations), Constraints, Types of constraints,<br>Examples.                                                                                   | 5                | Lecture &<br>ICT      |
| UNIT II  | Principle of virtual work, D'Alembert's principle,<br>Lagrange's equation of motion for conservative and<br>non-conservative systems.                                                    | 5                | Lecture,G.D&<br>ICT   |
|          | Simple applications, simple pendulum, Atwood's machine, compound pendulum, Hamiltonian function H.                                                                                       | 5                | Lecture,G.D&<br>ICT   |
|          | Hamilton's Canonical equation of motion,<br>Applications, Harmonic oscillator, Planetary<br>motion, Compound pendulum.                                                                   | 5                | Lecture,G.D&<br>ICT   |
|          | Matter waves, Phase velocity, Group velocity, Relation<br>between phase velocity and group velocity, Properties of<br>wave function.                                                     | 5                | Lecture, G.D<br>& ICT |
| UNIT III | Heisenberg's uncertainty principle - Applications of<br>uncertainty principle (Non existence of electron in the<br>nucleus, Ground state energy and the radius of the<br>hydrogen atom). | 5                | Lecture,G.D&<br>ICT   |

|         | Schrodinger's equation, Simple applications– Free particle solution – The particle in a box.                                                                   | 5 | Lecture,G.D&<br>ICT   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|
|         | Micro and macro states, Thermo dynamical<br>probability (Definition), The mu-space and<br>gamma space.                                                         | 5 | Lecture, G.D<br>& ICT |
| UNIT IV | Fundamental postulates of statistical mechanics,<br>ensembles, different types, comparison of<br>ensembles, Boltzmann's theorem of entropy and<br>probability. | 5 | Lecture,G.D&<br>ICT   |
|         | Maxwell-Boltzmann energy distributive law in general form and energy distribution function for an ideal gas.                                                   | 5 | Lecture, G.D<br>& ICT |
|         | Development of Quantum statistics, Bose-Einstein<br>and Fermi Dirac statistics, Bose-Einstein<br>distribution law.                                             | 5 | Lecture, G.D<br>& ICT |
| UNIT V  | Derivation of Planck's radiation formula from<br>Bose–Einstein statistics, Fermi-Dirac distribution<br>law.                                                    | 5 | Lecture, G.D<br>& ICT |
|         | Free electrons in metal from Fermi gas, comparison<br>of three statistics, Difference between classical and<br>quantum statistics.                             | 5 | Lecture, G.D<br>& ICT |

| Course       | Programme Outcomes (POs)                                             |         |     |          | Progra                                                                     | umme Sp         | Mean Scores |           |                             |         |          |  |
|--------------|----------------------------------------------------------------------|---------|-----|----------|----------------------------------------------------------------------------|-----------------|-------------|-----------|-----------------------------|---------|----------|--|
| Outcomes     |                                                                      |         |     |          |                                                                            | (PSOs           | )           |           |                             |         | of Cos   |  |
| (COs)        | PO1                                                                  | PO2     | PO3 | PO4      | PO5                                                                        | PSO1            | PSO2        | PSO3      | PSO4                        | PSO     | 5        |  |
| CO1          | 3                                                                    | 4       | 3   | 4        | 3                                                                          | 3               | 4           | 3         | 3                           | 5       | 3.5      |  |
| CO2          | 5                                                                    | 3       | 4   | 3        | 4                                                                          | 3               | 3           | 4         | 3                           | 4       | 3.6      |  |
| CO3          | 3                                                                    | 3       | 3   | 4        | 3                                                                          | 3               | 5           | 4         | 3                           | 3       | 3.4      |  |
| CO4          | 3                                                                    | 3       | 4   | 3        | 3 3 3                                                                      |                 | 4           | 4         | 3                           | 4       | 3.4      |  |
| CO5          | 4                                                                    | 3       | 3   | 4        | 4                                                                          | 3               | 3           | 4         | 4                           | 3       | 3.5      |  |
| Mean Overall |                                                                      |         |     |          |                                                                            | 1 score 3.48    |             |           |                             |         | 3.48     |  |
|              |                                                                      |         | Re  | esult: T | The Sco                                                                    | ore for the     | nis Cours   | se is 3.4 | 8 (High                     | n Relat | ionship) |  |
| Mapping      | 1                                                                    | -20%    |     | 21-40    | )%                                                                         | 41-60% 61-80% 8 |             | 31-100%   |                             |         |          |  |
| Scale        |                                                                      | 1       |     |          | 2                                                                          | 3               |             |           | 4                           |         | 5        |  |
| Relation     | 0                                                                    | ).0-1.0 |     | 1.1-2    | .0                                                                         | 2.1             | -3.0        | 3.        | 1-4.0                       | 4       | 4.1-5.0  |  |
| Quality      | uality Very Poor Poor                                                |         |     | M        | oderate                                                                    | H               | gh          | 7         | Very High                   |         |          |  |
| Mean Score o | Alean Score of COs = <u>Total of Value</u><br>Total No. of Pos& PSOs |         |     |          | Mean Overall Score of $COs = \frac{Total of Mean Score}{Total No. of COs}$ |                 |             |           | of Mean Score<br>No. of COs |         |          |  |

| BLOOM'S TAXANOMY            | INTERNAL | EXTERNAL |
|-----------------------------|----------|----------|
| K1(Remembering / Recalling) | 30%      | 30%      |
| K2 Understanding /          | 30%      | 30%      |
| comprehension               |          |          |
| K3 Application and analysis | 40%      | 40%      |

Course Designer: R. Vijayalakshmi, Department of Physics

Programme : B.Sc. PHYSICS Semester : V Sub. Code : U22DSP1A

#### Part III: DSEC I Hours : 5P/W 75Hrs P/S Credits :5

#### TITLE OF THE PAPER: MEDICAL PHYSICS

| Pedagogy                                                         | Hours     | Lecture        | Peer Teaching       | GD/Videos/Tutorial         | ICT      |          |  |  |
|------------------------------------------------------------------|-----------|----------------|---------------------|----------------------------|----------|----------|--|--|
|                                                                  |           |                |                     |                            |          |          |  |  |
|                                                                  | 5         | 3              | -                   | 1                          | 1        |          |  |  |
| <b>PREAMBLE:</b>                                                 | To know   | the parts of   | biomedical instru   | ments.To understand the us | e of the | m in the |  |  |
| recording syste                                                  | m and ph  | siological a   | assist devices.     |                            |          |          |  |  |
|                                                                  |           | COUR           | SE OUTCOME          |                            | Unit     | Hrs P/S  |  |  |
| At the end of th                                                 | e Semest  | ter, the stude | nts will be able to | )                          |          |          |  |  |
| CO1 : list the e                                                 | lectrode  | material and   | types of electrode  | es                         | Ι        | 15       |  |  |
| CO2 : mention                                                    | active an | d passive tra  | ansducers           |                            | II       | 15       |  |  |
| <b>CO3</b> : explain the characteristics of the recording system |           |                |                     |                            |          | 15       |  |  |
| CO4 : discuss about the diagnostic instruments                   |           |                |                     |                            |          | 15       |  |  |
| CO5: understand the working of medical equipments                |           |                |                     |                            |          | 15       |  |  |
|                                                                  | SYLLABUS  |                |                     |                            |          |          |  |  |

#### **UNIT I: BIOPOTENTIAL AND ELECTRODES**

Transport of ions through cell membranes - Resting and action potentials – Design of medical instruments - Component of biomedical instrument systems – Electrodes - Half cell potential - Electrode paste - Electrode material -Types of electrodes - Micro electrodes (metal micro electrodes) - Depth and needle electrodes - Surface electrodes.

#### **UNIT II:TRANSDUCERS**

Active transducers-magnetic induction type – piezo electrictype –photovoltaic type - thermoelectric type - Passive transducer- resistive type–loading effect and sensitivity of a bridge –inductive transducer- linear variable differential transducer(LVDT).

#### **UNIT III: BIO POTENTIAL RECORDERS**

Electro Cardio Grapy (ECG) – origin of cardiac action potential – lead Configurationsrecording setup – practical considerations – Analysis of recorded signals - Electro Encephalography (EEG) – brain waves - recording set up – Electromyography (EMG) - recording set up – determination of condition velocities in motor nerves- Electroretinography(ERG).

#### **UNIT IV: DIAGNOSTIC INSTRUMENTS**

Blood flow meters - (Electromagnetic blood flow meter, ultrasonic blood flow meter, Recording fetal heart movements and blood circulation using Doppler ultrasonic method) - Gas analysers: (infra red gas analysers, para magnetic oxygen analyser only).

#### **UNIT V: MEDICAL EQUIPMENTS**

X-ray machine – radiography and fluoroscopy – angiography – applications of X-ray examination – radiation safety instrumentation –nuclear imaging techniques – computer tomography (CT) – applications of computer tomography –magnetic resonance imaging – MRI instrumentation – Positron Emission Tomography (PET).

#### **BOOK:**

1. Bio Medical Instrumentation, Dr. M.Arumugam, Edition II ,McGraw Hill, 1994. Unit – I : **Ch. 1&2** (Sec. 1.4., 1.5., 2.2.-2.4., 2.4.1. -2.4.7). Unit – II: **Ch. 2** (Sec. 2.5., 2.5.1 - 2.5.8., 2.5.14., 2.5.15). Unit – III: **Ch. 4** (Sec. 4.3., 4.3.1.-4.3.5., 4.4., 4.4.2., 4.4.4., 4.4.5., 4.5., 4.5.1., 4.5.2., 4.6., 4.7). Unit – IV : **Ch. 6** (Sec. 6.10., 6.10.1., 6.10.2.( (i), (ii), b), 6.13., 6.13.1., 6.13.2). Unit – V : **Ch. 7, 9 & 10** (Sec. 7.9., 7.10., 7.12., 7.13., 9.2., 10.6., 10.7., 10.10.8., 10.11.) **REFERENCE:** Handbook of Biomedical Instrumentation – R.S.Khandpur – Second Edition, McGraw Hill.

| UNITS    | TOPIC                                                                                                                                                        | LECTURE<br>HOURS | MODE OF<br>TEACHING      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
|          |                                                                                                                                                              | nooks            | ILACIIII O               |
|          | Transport of ions through cell membranes, Resting<br>and action potentials, Design of medical instruments.                                                   | 5                | Lecture , Video & ICT    |
| UNIT I   | Component of biomedical instrument systems,<br>Electrodes , Half cell potential, Electrode paste,<br>Electrode material.                                     | 5                | Lecture , Video &<br>ICT |
|          | Types of electrodes, Micro electrodes (metal micro electrodes), Depth and needle electrodes, Surface electrodes.                                             | 5                | Lecture , Video & ICT    |
|          | Active transducers, magnetic induction type, piezoelectric type, photovoltaic type.                                                                          | 5                | Lecture , Video & ICT    |
| UNIT II  | thermoelectric type, Passive transducer,<br>resistive type, loading effect and sensitivity of<br>a bridge.                                                   | 5                | Lecture , Video & ICT    |
|          | inductive transducer, linear variable differential transducer(LVDT).                                                                                         | 5                | Lecture , Video &<br>ICT |
| UNIT III | Electro Cardio Grapy (ECG), origin of cardiac<br>action potential, lead Configurations, recording<br>setup, practical considerations.                        | 5                | Lecture , Video & ICT    |
|          | Analysis of recorded signals - Electro<br>Encephalography (EEG) , brain waves, recording<br>set up.                                                          | 5                | Lecture , Video & ICT    |
|          | Electromyography (EMG), recording set up,<br>determination of condition velocities in motor<br>nerves, Electroretinography (ERG) - Accuracy of<br>recorders. | 5                | Lecture , Video & ICT    |
|          | Blood flow meters -Electromagnetic blood flow meter                                                                                                          | 5                | Lecture , Video & ICT    |
| UNIT IV  | ultrasonic blood flow meter, Recording fetal heart<br>movements and blood circulation using Doppler<br>ultrasonic method                                     | 5                | Lecture , Video & ICT    |
|          | Gas analysers: (infra red gas analysers, para magnetic oxygen analyser only)                                                                                 | 5                | Lecture , Video & ICT    |
| UNIT V   | X-ray machine – radiography and fluoroscopy –<br>angiography – applications of X-ray examination –<br>radiation safety instrumentation                       | 5                | Lecture , Video & ICT    |
|          | nuclear imaging techniques – computer tomography<br>(CT) – applications of computer tomography                                                               | 5                | Lecture , Video & ICT    |

| magnetic resonance imaging - MRI instrumentation | 5 | Lecture, Video & |
|--------------------------------------------------|---|------------------|
| – Positron Emission Tomography (PET)             |   | ICT              |

| Course              | Programme Outcomes (POs) |         |     |                             |       | Progra            | mme Sp    |         | Mean    |           |           |
|---------------------|--------------------------|---------|-----|-----------------------------|-------|-------------------|-----------|---------|---------|-----------|-----------|
| Outcomes            |                          |         | -   |                             |       | (PSOs)            | )         | -       |         |           | scores of |
| (COs)               | PO1                      | PO2     | PO3 | PO4                         | PO5   | PSO1              | PSO2      | PSO3    | PSO4    | PSO5      | Cos       |
| CO1                 | 3                        | 3       | 3   | 4                           | 4     | 4                 | 3         | 3       | 3       | 4         | 3.4       |
| CO2                 | 3                        | 4       | 3   | 4                           | 3     | 4                 | 3         | 3       | 3       | 4         | 3.4       |
| CO3                 | 3                        | 3       | 4   | 4                           | 4     | 4                 | 3         | 3       | 3       | 4         | 3.5       |
| CO4                 | 3                        | 3       | 3   | 4                           | 3     | 4                 | 3         | 3       | 3       | 4         | 3.3       |
| CO5                 | 3                        | 3       | 3   | 4                           | 3     | 4                 | 3         | 3       | 3       | 4         | 3.3       |
| Mean Overall Score  |                          |         |     |                             |       |                   | 3.38      |         |         |           |           |
|                     |                          |         | Re  | sult: The                   | Score | for this <b>(</b> | Course is | s 3.38  | (High R | elationsl | hip)      |
| Mapping             | 1-                       | 20%     |     | 21-40%                      |       | 41-60%            |           | 61-80%  |         | 81-100%   |           |
| Scale               |                          | 1       |     | 2                           |       | 3                 |           | 4       |         | 5         |           |
| Relation            | 0.                       | 0-1.0   |     | 1.1-2.0                     |       | 2.1-3.0           |           | 3.1-4.0 |         | 4.1-5.0   |           |
| Quality             | V                        | ery Poo | r   | Poor                        |       | Moderate          |           | High    |         | Very High |           |
| Mean Score of COs = |                          |         |     | Mean Overall Score of COs = |       |                   |           |         |         |           |           |
| Total of Value      |                          |         |     | Total of Mean Score         |       |                   |           |         |         |           |           |
| Total No. c         | of POs                   | & PSOs  |     |                             |       | Total No. of COs  |           |         |         |           |           |

| BLOOM'S TAXANOMY                   | INTERNAL | EXTERNAL |
|------------------------------------|----------|----------|
| K1 (Remembering / Recalling)       | 30%      | 30%      |
| K2 (Understanding / comprehension) | 30%      | 30%      |
| K3 (Application and analysis)      | 40%      | 40%      |

Course Designer: G.Selvarani, Department of Physics

Programme : B.Sc. PHYSICS Semester : V Sub. Code : U22DSP1B

#### Part III: DSEC I Hours : 5P/W 75Hrs P/S Credits :5

#### TITLE OF THE PAPER:RADIATION SAFETY

| Pedagogy                                                                                                  | Hours | Lecture | Peer Teaching | eaching GD/Videos/Tutorial |   | ICT |  |
|-----------------------------------------------------------------------------------------------------------|-------|---------|---------------|----------------------------|---|-----|--|
|                                                                                                           |       |         |               |                            |   |     |  |
|                                                                                                           | 5     | 3       | -             | 1                          | 1 |     |  |
| <b>PREAMBLE:</b> To understand the basics of atomic and nuclear physics. To study the types of radiators, |       |         |               |                            |   |     |  |
| monitoring devices and radiation safety management. To understand the use of them in medicines and        |       |         |               |                            |   |     |  |
| food industries.                                                                                          |       |         |               |                            |   |     |  |
| COURSE OUTCOME Unit Have D/S                                                                              |       |         |               |                            |   |     |  |

| COURSE OUTCOME                                                    | Unit | Hrs P/S |
|-------------------------------------------------------------------|------|---------|
| At the end of the Semester, the students will be able to          |      |         |
| CO1 : understand the basics of atomic and nuclear physics         | 1    | 15      |
| CO2 : list the types of radiation and its interaction with matter | 2    | 15      |
| CO3 : discuss different radiators and monitoring devices          | 3    | 15      |
| CO4 : specify the radiation safety management                     | 4    | 15      |
| CO5:study the use of radiators in medicines and industries        | 5    | 15      |
|                                                                   |      |         |

**SYLLABUS** 

#### UNIT I: BASICS OF ATOMIC AND NUCLEAR PHYSICS

Basic concept of atomic structure- X rays characteristic and production- concept of bremsstrahlung and auger electron-The composition of nucleus and its properties- mass number- isotopes of element- spin, binding energy- stable and unstable isotopes- law of radioactive decay- Mean life and half life- basic concept of alpha, beta and gamma decay- concept of cross section and kinematics of nuclear reactions- types of nuclear reaction- Fusion- fission.

#### **UNIT II: INTERACTION OF RADIATION WITH MATTER**

Types of Radiation: Alpha, Beta, Gamma and Neutron and their sources- sealed and unsealed sources-Interaction of Photons -Photo-electric effect- Compton Scattering- Pair Production- Linear and Mass -Attenuation Coefficients- Interaction of Charged Particles: Heavy charged particles- Beth-Bloch Formula- Scaling laws- Mass Stopping Power- Range- Straggling- Channeling and Cherenkov radiation-Beta Particles- Collision and Radiation loss(Bremsstrahlung)- Interaction of Neutrons- Collision-slowing down and Moderation.

#### **UNIT III: RADIATION DETECTION AND MONITORING DEVICES**

Radiation Quantities and Units:Basic idea of different units of activity- KERMA- exposureabsorbed dose-equivalent dose- effective dose- collective equivalent dose- Annual Limit of Intake (ALI) and derived Air Conentration (DAC)- Radiation detection: Basic concept and working principle of gas detectors (Ionization Chambers, Proportional Counter,Multi-Wire Proportional Counters (MWPC) and Gieger Muller Counter)- Scintillation Detectors (Inorganic and Organic Scintillators)- Solid States Detectors and NeutronDetectors-Thermo luminescent Dosimetry.

#### **UNIT IV: RADIATION SAFETY MANAGEMENT**

Biological effects of ionizing radiation- Operational limits and basics of radiation hazardsevaluation and control- radiation protection standards- International Commission on Radiological Protection (ICRP) principles- justification-optimization- limitation- introduction of safety and risk management of radiation- Nuclear waste and disposal management- Brief idea about Accelerator driven Sub-critical system (ADS) for waste management.

#### **UNIT V: APPLICATION OF NUCLEAR TECHNIQUES**

Application in medical science (e.g., MRI, PET, Projection Imaging Gamma Camera, radiation therapy)- Archaeology- Art, Crime detection, Mining and oil- Industrial Uses: Tracing- Gauging-

Material Modification-Sterilization-Food preservation. BOOKS FOR STUDY:

- 1. Nuclear and Particle Physics W.E. Burcham and M. Jobes Longman, 1995.
- 2. An Introduction to Radiation Protection A.Martin and S.A.Harbisor, John

Willey & Sons, Inc. New York, 1981.

3. Fundamental Physics of Radiology - W.J.Meredith and J.B.Massey, John

Wright and Sons, UK, 1989.

#### **REFERENCE:**

- 1. Thermoluninescense Dosimetry Mcknlay, A.F., Bristol, Adam Hilger
- 2. Radiation detection and measurements G.F.Knoll.
- 3. Medical Radiation Physics Year Book W.R. Hendee, Medical Publishers Inc. London, 1981
- 4.Handbook of Biomedical Instrumentation R.S.Khandpur Second Edition, McGraw Hill.

| UNITS    | TOPIC                                                                                                                                                                                                                            | LECTURE | MODE OF               |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|
|          |                                                                                                                                                                                                                                  | HOURS   | TEACHING              |
|          | Basic concept of atomic structure- X rays<br>characteristic and production- concept of<br>Bremsstrahlung and auger electron                                                                                                      | 5       | Lecture , Video & ICT |
| UNIT I   | The composition of nucleus and its properties- mass<br>number- isotopes of element- spin, binding energy-<br>stable and unstable isotopes- law of radioactive<br>decay                                                           | 5       | Lecture , Video & ICT |
|          | Mean life and half life- basic concept of alpha, beta<br>and gamma decay- concept of cross section and<br>kinematics of nuclear reactions- types of nuclear<br>reaction- Fusion- fission.                                        | 5       | Lecture , Video & ICT |
|          | Types of Radiation: Alpha, Beta, Gamma and<br>Neutron and their sources- sealed and unsealed<br>sources-Interaction of Photons -Photo-electric effect                                                                            | 5       | Lecture , Video & ICT |
| UNIT II  | Compton Scattering- Pair Production- Linear and<br>Mass -Attenuation Coefficients- Interaction of<br>Charged Particles: Heavy charged particles- Beth-<br>Bloch Formula- Scaling laws- Mass Stopping<br>Power- Range- Straggling | 5       | Lecture , Video & ICT |
|          | Channeling and Cherenkov radiation- Beta Particles-<br>Collision and Radiation loss(Bremsstrahlung)-<br>Interaction of Neutrons- Collision- slowing down and<br>Moderation.                                                      | 5       | Lecture , Video & ICT |
| UNIT III | Radiation Quantities and Units:Basic idea of<br>different units of activity- KERMA- exposure-<br>absorbed dose-equivalent dose- effective dose-<br>collective equivalent dose                                                    | 5       | Lecture , Video & ICT |
|          | Annual Limit of Intake (ALI) and derived Air<br>Conentration (DAC)- Radiation detection: Basic<br>concept and working principle of gas detectors<br>(Ionization Chambers, Proportional Counter                                   | 5       | Lecture , Video & ICT |

|         | Multi-Wire Proportional Counters (MWPC) and            | 5 | Lecture, Video & |
|---------|--------------------------------------------------------|---|------------------|
|         | Gieger Muller Counter)- Scintillation Detectors        |   | ICT              |
|         | (Inorganic and Organic Scintillators)- Solid States    |   |                  |
|         | Detectors and NeutronDetectors-Thermo                  |   |                  |
|         | luminescent Dosimetry.                                 |   |                  |
|         | Biological effects of ionizing radiation- Operational  | 5 | Lecture, Video & |
|         | limits and basics of radiation hazards- evaluation and |   | ICT              |
|         | control- radiation protection standards                |   |                  |
| UNIT IV | International Commission on Radiological               | 5 | Lecture, Video & |
|         | Protection (ICRP) principles- justification-           |   | ICT              |
|         | optimization- limitation- introduction of safety and   |   |                  |
|         | risk management of radiation                           |   |                  |
|         | Nuclear waste and disposal management- Brief idea      | 5 | Lecture, Video & |
|         | about Accelerator driven Sub-critical system (ADS)     |   | ICT              |
|         | for waste management.                                  |   |                  |
|         |                                                        |   |                  |
|         | Application in medical science (e.g., MRI, PET,        | 5 | Lecture, Video & |
|         | Projection Imaging Gamma Camera, radiation             |   | ICT              |
| UNIT V  | therapy)                                               |   |                  |
|         | Archaeology- Art, Crime detection, Mining and oil      | 5 | Lecture, Video & |
|         |                                                        |   | ICT              |
|         | Industrial Uses: Tracing- Gauging- Material            | 5 | Lecture, Video & |
|         | Modification-Sterilization-Food preservation.          |   | ICT              |

| Course                           | Progra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Programme Outcomes (POs) |     |          |                             |                      | Programme Specific Outcomes |         |         |           | Mean      |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|----------|-----------------------------|----------------------|-----------------------------|---------|---------|-----------|-----------|
| Outcomes                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |     |          |                             | (PSOs)               |                             |         |         | _         | scores of |
| (COs)                            | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO2                      | PO3 | PO4      | PO5                         | PSO1                 | PSO2                        | PSO3    | PSO4    | PSO5      | Cos       |
| CO1                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                        | 3   | 4        | 4                           | 4                    | 3                           | 3       | 3       | 4         | 3.4       |
| CO2                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                        | 3   | 4        | 3                           | 4                    | 3                           | 3       | 3       | 4         | 3.4       |
| CO3                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                        | 4   | 4        | 4                           | 4                    | 3                           | 3       | 3       | 4         | 3.5       |
| CO4                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                        | 3   | 4        | 3                           | 4                    | 3                           | 3       | 3       | 4         | 3.3       |
| CO5                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                        | 3   | 4        | 3                           | 4                    | 3                           | 3       | 3       | 4         | 3.3       |
| Mean Over                        | all Sco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | re                       |     |          |                             |                      |                             |         |         |           | 3.38      |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Res | ult: The | Score                       | for this <b>(</b>    | Course is                   | s 3.38  | (High R | elationsl | hip)      |
| Mapping                          | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20%                      |     | 21-40%   |                             | 41-60% 61-80% 81-100 |                             |         | 81-100  | %         |           |
| Scale                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        |     | 2        |                             | 3                    |                             | 4       |         | 5         |           |
| Relation                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-1.0                    |     | 1.1-2.0  |                             | 2.1-3.0              |                             | 3.1-4.0 |         | 4.1-5.0   |           |
| Quality                          | Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yery Poor Poor           |     |          |                             | Modera               | ite                         | High    |         | Very High |           |
| Mean Score of COs =              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |     |          | Mean Overall Score of COs = |                      |                             |         |         |           |           |
| Total of Value Total No. of POs& |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |     |          | Total of Mean Score         |                      |                             |         |         |           |           |
| PSOs                             | PSOs Former Form |                          |     |          |                             |                      | Total No. of COs            |         |         |           |           |

| BLOOM'S TAXANOMY                   | INTERNAL | EXTERNAL |
|------------------------------------|----------|----------|
| K1 (Remembering / Recalling)       | 30%      | 30%      |
| K2 (Understanding / comprehension) | 30%      | 30%      |
| K3 (Application and analysis)      | 40%      | 40%      |

Course Designer: R.Vijayalakshmi & G.Selvarani, Department of PhysicsProgramme:B.Sc., PHYSICSPart III: GEN.SKILL PAPER

Semester : V Sub. Code : U22GEP1

#### Hours : 2 Hrs P/W 30Hrs P/S Credits : 2

#### TITLE OF THE PAPER : PHYSICS OF THE EARTH

| Pedagog                                                                                                                                          | y Hours                                                                     | Lecture     | Peer                       | GD/VIDOES/TUTORIAL       |     | ICT   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|----------------------------|--------------------------|-----|-------|--|--|--|--|
| per unit                                                                                                                                         |                                                                             |             | <b>Discussion/Teaching</b> |                          |     |       |  |  |  |  |
|                                                                                                                                                  | 2                                                                           | 1           | 1/2                        | 1/2                      |     | 1     |  |  |  |  |
|                                                                                                                                                  |                                                                             |             |                            |                          |     |       |  |  |  |  |
| <b>PREAMBLE:</b> To understand the physical structure and behavior of the earth as well as geomagnetic properties of rocks in the Earth's crust. |                                                                             |             |                            |                          |     |       |  |  |  |  |
|                                                                                                                                                  | Unit                                                                        | Hrs P/S     |                            |                          |     |       |  |  |  |  |
| At the end                                                                                                                                       |                                                                             |             |                            |                          |     |       |  |  |  |  |
| CO1: To earth                                                                                                                                    | describe the l                                                              | mportant pl | nysical parameters and     | properties of the planet | Ι   | 6 hrs |  |  |  |  |
| CO2: Imp                                                                                                                                         | art the know                                                                | wledge of   | understanding Gravitat     | tional attraction,       | Π   | 6 hrs |  |  |  |  |
| Gravitatio                                                                                                                                       | nal Theory                                                                  | -           | -                          |                          |     |       |  |  |  |  |
| CO3                                                                                                                                              | Analyse the T                                                               | hermal hist | ory of the Earth.          |                          | III | 6 hrs |  |  |  |  |
| С04 То                                                                                                                                           | C04 To understand the Elastic constants and Elastic process in the IV 6 hrs |             |                            |                          |     |       |  |  |  |  |
| earth.                                                                                                                                           | earth.                                                                      |             |                            |                          |     |       |  |  |  |  |
| CO5 To u                                                                                                                                         | nderstand the                                                               | Theory of   | earth's magnetic field.    |                          | V   | 6 hrs |  |  |  |  |
|                                                                                                                                                  |                                                                             |             |                            |                          |     |       |  |  |  |  |

#### SYLLABUS

#### UNIT – I: SOLAR SYSTEM

The earth and the solar system – Important physical parameters and properties of the planet earth; Stress and Strain, Wave and motion, Seismic waves. Travel time Tables and Velocity – Depth curves – Variation of Density within the Earth.

#### UNIT – II: GRAVITATION

Rotation of the Earth - Gravitational attraction, Gravitational Theory, Measurements of Gravity, Gravity meters - Principles and method of measuring gravity - Gravity anomalies-Local and regional variations.

UNIT - III: THERMAL HISTORY OF EARTH

Thermal history of the Earth. Temperature in the Primitive Earth and the Earth's surface and interior. Thermal conductivity. Generation of heat in the Earth. Heat flow measurements,

#### **UNIT – IV ELASTIC PROPERTIES**

Elastic constants and Elastic process in the earth. Earth's free rotation. Latitude variation. Tides of the Solid earth. Numerical values of Love's numbers. Rigidity of the Earth. Bulk modules in the earth. Poisson's ratio in the Earth, Young's modulus and Lame's constant.

#### UNIT - V: GEOMAGNETISM AND PALAEOMAGNETISM

Geomagnetism and palaeomagnetism-Earth's magnetic field. Origin-Theory of earth's magnetic field. Magneto hydrodymics of the Earth. Magnetic reversals. Polar wandering. Tectonic movements and its relation to palaeomagnetism - Measurement of magnetic properties of rocks.

**BOOKS FOR REFERENCE** 

| UNITS   | TOPIC                                                                                                                                                                                                                                                   | LECTURE HOURS | MODE OF TEACHING                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------|
| Unit I  | The earth and the solar<br>system – Important<br>physical parameters and<br>properties of the planet<br>earth; Stress and Strain,.                                                                                                                      | 3 hrs         | Motivation by asking questions –<br>peer group discussion and by<br>demonstrating through ICT. |
|         | Wave and<br>motion,<br>Seismic waves.<br>Travel time<br>Tables and<br>Velocity –<br>Depth curves<br>– Variation of<br>Density within<br>the Earth                                                                                                       | 3 hrs         | Lecture & Tutorial                                                                             |
| Unit II | Rotation of<br>the Earth -<br>Gravitational<br>attraction,<br>Gravitational<br>Theory,<br>Measurements<br>of Gravity,<br>Gravity<br>meters –                                                                                                            | 3 hrs         | Motivation by asking questions –<br>peer group discussion and by<br>demonstrating through ICT. |
|         | Rotation of<br>the Earth -<br>Gravitational<br>attraction,<br>Gravitational<br>Theory,<br>Measurements<br>of Gravity,<br>Gravity<br>meters -<br>Principles and<br>method of<br>measuring<br>gravity -<br>Gravity<br>anomalies-<br>Local and<br>regional | 3 hrs         | Lecture & Tutorial                                                                             |

|          | variations                                                                                                                                                                                                                                                                                                         |       |                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------|
| Unit III | Thermal history of the<br>Earth. Temperature in the<br>Primitive Earth and the<br>Earth's surface and<br>interior.,                                                                                                                                                                                                | 3 hrs | Motivation by asking questions –<br>peer group discussion and by<br>demonstrating through ICT. |
|          | . Thermal onductivity.<br>Generation of heat in the<br>Earth. Heat flow<br>measurements,                                                                                                                                                                                                                           | 3 hrs | Lecture & Tutorial                                                                             |
| Unit IV  | Elastic constants and<br>Elastic process in the<br>earth. Earth's free<br>rotation. Latitude<br>variation. Tides of the<br>Solid earth. Numerical<br>values of Love's numbers.<br>Rigidity of the Earth. Bulk<br>modules in the earth.<br>Poisson's ratio in the<br>Earth, Young's modulus<br>and Lame's constant. | 6 hrs | Motivation by asking questions –<br>peer group discussion and by<br>demonstrating through ICT. |
| Unit V   | Geomagnetism and<br>palaeomagnetism-Earth's<br>magnetic field. Origin-<br>Theory of earth's magnetic<br>field. Magneto<br>hydrodymics of the Earth.<br>Magnetic reversals. Polar<br>wandering. Tectonic<br>movements and its relation<br>to palaeomagnetism -<br>Measurement of magnetic<br>properties of rocks.   | 6 hrs | Motivation by asking questions –<br>peer group discussion and by<br>demonstrating through ICT. |

| Course<br>Outcome<br>s | Programme Outcomes (POs) |      |      |      |      |      | Programme Specific Outcomes (PSOs) |      |      |      |     |  |
|------------------------|--------------------------|------|------|------|------|------|------------------------------------|------|------|------|-----|--|
| (COs)                  | PO 1                     | PO 2 | PO 3 | PO 4 | PO 5 | PSO1 | PSO2                               | PSO3 | PSO4 | PSO5 |     |  |
| CO1                    | 3                        | 4    | 3    | 3    | 3    | 3    | 4                                  | 4    | 3    | 3    | 3.3 |  |
| CO2                    | 3                        | 3    | 4    | 4    | 3    | 3    | 3                                  | 3    | 3    | 4    | 3.3 |  |
| CO3                    | 3                        | 4    | 3    | 3    | 3    | 4    | 3                                  | 4    | 3    | 3    | 3.3 |  |

| CO4                | 3 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 3   | 3.3 |
|--------------------|---|---|---|---|---|---|---|---|---|-----|-----|
| CO5                | 4 | 3 | 4 | 4 | 4 | 3 | 4 | 4 | 4 | 3   | 4.0 |
| Mean Overall Score |   |   |   |   |   |   |   |   |   | 3.5 |     |

**Result:** The Score for this Course is **3.5** (High

| Re                                   | lationship) |                                                                                   |         |          |         |           |  |
|--------------------------------------|-------------|-----------------------------------------------------------------------------------|---------|----------|---------|-----------|--|
| Mapping                              | 1-20%       |                                                                                   | 21-40%  | 41-60%   | 61-80%  | 81-100%   |  |
| Scale                                | 1           |                                                                                   | 2       | 3        | 4       | 5         |  |
| Relation                             | 0.0-1.0     |                                                                                   | 1.1-2.0 | 2.1-3.0  | 3.1-4.0 | 4.1-5.0   |  |
| Quality                              | Very Poor   |                                                                                   | Poor    | Moderate | High    | Very High |  |
| Mean Score of COs =<br>To            | SOs         | Mean Overall Score of COs = <u>Total of Mean</u><br><u>Score</u> Total No. of COs |         |          |         |           |  |
| BLOOM'S TAXANOMY                     |             |                                                                                   | TERNAL  | EXTERNAL |         |           |  |
| K1:REMEMBERING/RE                    | CALLING.    |                                                                                   | 20%     | 20%      |         |           |  |
| K2:UNDERSTANDING /<br>COMPREHENSION. |             |                                                                                   | 20%     | 20%      |         |           |  |
| K3:APPLICATION AND<br>ANALYSIS.      |             |                                                                                   | 30%     | 30%      |         |           |  |
| K4:SYNTHESIS AND<br>EVALUATION.      |             |                                                                                   | 30%     |          | 30%     |           |  |

Course Designer :Dr. Mrs. SAROJA

Department of PHYSICS

# Programme : B.Sc.Part IV: SKILL BASEDSemester : VHours : 2 P/W 30 Hrs P/SSub. Code : U22SEP2Credits : 2TITLE OF THE PAPER: PROGRAMMING WITH C

| Pedagogy                             | Hours                                                                                                | Lecture       | Peer Teaching       | GD/VIDOES/TUTORIAL |      | ICT     |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------|---------------|---------------------|--------------------|------|---------|--|--|--|--|
|                                      | 2                                                                                                    | 1             | 1                   | _                  |      | -       |  |  |  |  |
| <b>PREAMBLE:</b>                     | <b>PREAMBLE:</b> To understand thebasics and concepts involved in programming language. To emphasize |               |                     |                    |      |         |  |  |  |  |
| logical thinking                     | logical thinking and to develop programming skill.                                                   |               |                     |                    |      |         |  |  |  |  |
| -                                    |                                                                                                      |               |                     |                    |      |         |  |  |  |  |
|                                      |                                                                                                      | COUR          | SF OUTCOME          |                    | Unit | Hrs D/S |  |  |  |  |
| At the and of th                     | a comoct                                                                                             | courthe stude | se ou reome         |                    | Om   | 1115175 |  |  |  |  |
| At the end of th                     | ie semest                                                                                            | er, the stude | nts will be able to | )                  |      |         |  |  |  |  |
| CO1: define th                       | e basics o                                                                                           | of programm   | ing language        |                    | Ι    | 6       |  |  |  |  |
| CO2: understan                       | nd the co                                                                                            | ncept of inp  | ut and output oper  | rations            | II   | 6       |  |  |  |  |
| CO3: describe                        | decision                                                                                             | making and    | branching           |                    | III  | 6       |  |  |  |  |
|                                      |                                                                                                      | U             | C                   |                    |      |         |  |  |  |  |
| CO4: discuss t                       | he use de                                                                                            | cision makii  | ng and looping      |                    | IV   | 6       |  |  |  |  |
|                                      |                                                                                                      |               | 0 10                |                    |      |         |  |  |  |  |
| CO5: describe arrays and strings V 6 |                                                                                                      |               |                     |                    |      |         |  |  |  |  |
|                                      | 2                                                                                                    | C             |                     |                    |      |         |  |  |  |  |
|                                      |                                                                                                      |               |                     |                    |      |         |  |  |  |  |

#### SYLLABUS

#### Unit I : CONSTANTS, VARIABLES, DATA TYPES AND OPERATORS

Basic structure of C Program - Character Set – C tokens-Keywords and identifiers, Constants, Variables, Data types - Declaration of Variables - Assigning values to variables -Defining Symbolic Constants -Arithmetic Operators - Relational, Logical, Assignment, Increment and Decrement, and Conditional operators - Arithmetic Expressions - Precedence of Arithmetic operators

#### Unit II: MANAGING INPUT AND OUTPUT OPERATIONS

Managing input and output Operations- Reading a character-Writing a character- Formatted inputformatted output.

#### Unit III : DECISION MAKING AND BRANCHING

Decision making with IF statement- Simple IF, IF-ELSEstatements - ELSE - IF Ladder - Switch statement.

#### Unit IV : DECISION MAKING AND LOOPING

Introduction - WHILE, DO and FOR Statements - Jumps in Loops.

#### Unit V: ARRAYS AND STRINGS

Arrays - One dimension & Two dimensions - Declaration and initialization of one and two dimensional arrays -Declaring and initializing string variables - String handling functions.

#### LIST OF PROGRAMS

- 1 Program for temperature conversion From °C to °F or °Fto °C or to use any scientific formula Simple type.
- 2 To reverse the digits of the given number.
- 3 To find the solution of a quadratic equation (Else-if ladder).
- 4 To find the largest of given three numbers (Nested if else)
- 5 To find the grade of the students (Switch statement)

- 6 To find the sum of digits of a given number (While)
- 7 To find the multiplication table (Do While)
- 8 To find the factorial of a given number (For)
- 9 To sort the given numbers in ascending or descending order (1D Array)
- 10 To find addition and subtraction of matrices (2D Array)

#### **TEXT BOOK:**

 Programming in ANSI C - E.Balagurusamy, 6<sup>th</sup> Edition -Tata Mc GrawHill Education Pvt. Ltd. Unit – I : Ch. 1(Sec.1.8. Ch. 2 – 2.2. – 2.6., 2.10.,2.11.)

Unit – II : **Ch. 3**(Sec. 3.1. – 3.7., 3.10., 3.12., Ch. 4 – 4.2. – 4.5.) Unit – III : **Ch.5**(Sec. 5.1. – 5.4., 5.6. – 5.9.)

Unit – IV :**Ch.6**(Sec. 6.1. – 6.5.)

Unit – V : Ch.7& 8(Sec. 7.1. – 7.6., 8.3., 8.4., 8.8.)

#### **REFERENCE BOOKS :**

1.Programming Language C with Practicals - AnanthiSheshasaayee& G.Sheshasaayee, Edition - 2001 (2nd Print)

2.Programming in C – KamthaneAshok.N, 2<sup>nd</sup> Edition – 2013, Pearson Education 3.Programming in C – P. RadhaGanesan& S.Ramasamy – Edition - 2004,

Scitech Publications

| UNITS  | TOPIC                                                                                                                                                                                                                  | LECTURE | MODE OF                 |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|
|        |                                                                                                                                                                                                                        | HOURS   | TEACHING                |
|        | Basic structure of C Program - Character Set –<br>C tokens-Keywords and identifiers, Constants,<br>Variables, Data types - Declaration of Variables<br>- Assigning values to variables -Defining<br>Symbolic Constants | 2       | Lecture , peer teaching |
|        | Declaration of Variables - Assigning values to variables -Defining Symbolic Constants                                                                                                                                  | 2       | Lecture , peer teaching |
| UNIT I | <ol> <li>Program for temperature conversion -<br/>From °C to °F or °Fto °C or to use any<br/>scientific formula – Simple type.</li> <li>To reverse the digits of the given<br/>number.</li> </ol>                      |         |                         |
|        | Arithmetic Operators - Relational, Logical,<br>Assignment, Increment and Decrement, and                                                                                                                                | 2       | Lecture, peer teaching  |

|          | Conditional operators - Arithmetic Expressions<br>- Precedence of Arithmetic operators                                                                                   |   |                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------|
|          | Managing input and output Operations                                                                                                                                     | 2 | Lecture , peer teaching |
| UNIT II  | Reading a character-Writing a character                                                                                                                                  | 2 | Lecture , peer teaching |
|          | Formatted input- formatted output                                                                                                                                        | 2 | Lecture , peer teaching |
|          | Decision making with IF statement- Simple IF                                                                                                                             | 2 | Lecture , peer teaching |
|          | IF-ELSEstatements                                                                                                                                                        | 2 | Lecture, peer teaching  |
| UNIT III | ELSE - IF Ladder - Switch statement<br>1 To find the solution of a quadratic<br>equation (Else-if ladder).                                                               | 2 | Lecture , peer teaching |
|          | 2 To find the largest of given three numbers (Nested if else)                                                                                                            |   |                         |
|          | Introduction – WHILE statement                                                                                                                                           | 2 | Lecture, peer teaching  |
|          | <ol> <li>To find the grade of the students<br/>(Switch statement)</li> <li>To find the sum of digits of a given<br/>number (While)</li> </ol>                            |   |                         |
| UNIT IV  | DO and FOR Statements                                                                                                                                                    | 2 | Lecture , peer teaching |
|          | While)                                                                                                                                                                   |   |                         |
|          | 2 To find the factorial of a given number (For)                                                                                                                          |   |                         |
|          | Jumps in Loops                                                                                                                                                           | 2 | Lecture, peer teaching  |
|          | Arrays - One dimension & Two dimensions                                                                                                                                  | 2 | Lecture , peer teaching |
| UNIT V   | <ul> <li>Declaration and initialization of one and two dimensional arrays.</li> <li>1 To sort the given numbers in ascending or descending order (1D – Array)</li> </ul> | 2 | Lecture , peer teaching |
|          | 2 To find addition and subtraction of matrices (2D – Array)                                                                                                              |   |                         |
|          | Declaring and initializing string variables -<br>String handling functions.                                                                                              | 2 | Lecture , peer teaching |

| Course             | Programme Outcomes (POs) |    |    |    | Programme Specific Outcomes |        |     |      | Mean |     |       |
|--------------------|--------------------------|----|----|----|-----------------------------|--------|-----|------|------|-----|-------|
| Outcome            |                          |    |    |    |                             | (PSOs) | )   |      |      |     | score |
| s                  | PO                       | PO | PO | PO | PO                          | PSO    | PSO | PSO  | PSO  | PSO | s of  |
| (COs)              | 1                        | 2  | 3  | 4  | 5                           | 1      | 2   | 3    | 4    | 5   | Cos   |
| CO1                | 3                        | 3  | 3  | 3  | 4                           | 4      | 3   | 3    | 3    | 4   | 3.3   |
| CO2                | 3                        | 4  | 3  | 3  | 3                           | 4      | 3   | 3    | 3    | 4   | 3.3   |
| CO3                | 3                        | 3  | 4  | 3  | 4                           | 4      | 3   | 3    | 3    | 4   | 3.4   |
| CO4                | 3                        | 3  | 3  | 3  | 3                           | 4      | 3   | 3    | 3    | 4   | 3.2   |
| CO5                | 3                        | 3  | 3  | 3  | 3                           | 4      | 3   | 3    | 3    | 4   | 3.2   |
| Mean Overall Score |                          |    |    |    |                             |        |     | 3.28 |      |     |       |

Result: The Score for this Course is 3.28 (High Relationship)

| Mapping        | 1-20%     | 21-40%  | 41-60%                      | 61-80%  | 81-100%   |  |
|----------------|-----------|---------|-----------------------------|---------|-----------|--|
| Scale          | 1         | 2       | 3                           | 4       | 5         |  |
| Relation       | 0.0-1.0   | 1.1-2.0 | 2.1-3.0                     | 3.1-4.0 | 4.1-5.0   |  |
| Quality        | Very Poor | Poor    | Moderate                    | High    | Very High |  |
| Mean Score of  | COs =     |         | Mean Overall Score of COs = |         |           |  |
| Total of Value |           |         | Total of Mean Score         |         |           |  |
| Total No. of P | Os & PSOs |         | Total No. of COs            |         |           |  |

| BLOOM'S TAXANOMY                                                             | INTERNAL | EXTERNAL |  |  |  |  |
|------------------------------------------------------------------------------|----------|----------|--|--|--|--|
| K1 – Remembering/Recalling                                                   | 30%      | 30%      |  |  |  |  |
| K2 – Understanding /Comprehension                                            | 30%      | 30%      |  |  |  |  |
| K3 – Application and Analysis                                                | 40%      | 40%      |  |  |  |  |
| Course Designer Dr. M. Mehelelishmi & Dr. C. Selvereni Department of Physics |          |          |  |  |  |  |

Course Designer: Dr.M.Mahalakshmi & Dr.G.Selvarani

Department of Physics

#### **Programme : B. Sc., PHYSICS** Semester : V Sub. Code : U22CP11P TITLE OF THE PAPER: PHYSICS PRACTICAL - III

#### Part III: Core paper Hours : 6 P/W 90 90 Hrs P/S Credits : 3

| Pedagog                                                                                                  | gy Hours                                                           | Demonstration and<br>practical sessions | Peer Teaching       | GD/VIDOES/TUTORIAL     | ІСТ      |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|---------------------|------------------------|----------|--|--|--|--|
|                                                                                                          | 3+3                                                                | 3+3                                     | _                   | -                      | _        |  |  |  |  |
| <b>PREAMBLE:</b> The purpose of the course is to make the students to apply the physics concepts studied |                                                                    |                                         |                     |                        |          |  |  |  |  |
| in mech                                                                                                  | in mechanics, electricity, electromagnetism and optics             |                                         |                     |                        |          |  |  |  |  |
|                                                                                                          | in meenumes, electrony, electroniughetism and optics.              |                                         |                     |                        |          |  |  |  |  |
|                                                                                                          |                                                                    |                                         |                     |                        |          |  |  |  |  |
| COURSE OUTCOME                                                                                           |                                                                    |                                         |                     |                        |          |  |  |  |  |
| At the end of the Semester, the Students will be able to                                                 |                                                                    |                                         |                     |                        |          |  |  |  |  |
| <b>CO1</b> :                                                                                             | Understand                                                         | the theoretical concepts b              | by doing experime   | nts                    |          |  |  |  |  |
| <b>CO2</b> :                                                                                             | Familiarize                                                        | with microscope, spectro                | ometer and ballisti | c galvanometer         |          |  |  |  |  |
| CO3 :                                                                                                    | Understand                                                         | the application side of the             | e experiment        |                        |          |  |  |  |  |
| CO4 : 5                                                                                                  | Study the sp                                                       | bectral and optical propert             | ties of the given m | aterials.              |          |  |  |  |  |
|                                                                                                          | improve the                                                        | e practical skills and know             | leage.              |                        |          |  |  |  |  |
| <u>a No</u>                                                                                              |                                                                    |                                         |                     |                        |          |  |  |  |  |
| S.NO                                                                                                     |                                                                    | EXPERIM                                 | IENT                |                        |          |  |  |  |  |
| 1.                                                                                                       | CALIBRAI                                                           | I ION OF LOW RANGE AN                   | VIMETER USING I     | 3.G.                   |          |  |  |  |  |
| -                                                                                                        | DETEDMI                                                            |                                         |                     |                        |          |  |  |  |  |
| 2.                                                                                                       | DETERMINE THE ABSOLUTE VALUE OF C USING B.G.                       |                                         |                     |                        |          |  |  |  |  |
| 2                                                                                                        |                                                                    |                                         |                     |                        |          |  |  |  |  |
| 3.                                                                                                       | DETERMINE THE SELF INDUCTANCE OF THE COIL BY MAXWELL'S BRIDGE.     |                                         |                     |                        |          |  |  |  |  |
| 4                                                                                                        |                                                                    |                                         |                     |                        |          |  |  |  |  |
| 4.                                                                                                       | 4. DETERMINE THE SELF INDUCTANCE OF THE COIL BY ANDERSON'S BRIDGE. |                                         |                     |                        |          |  |  |  |  |
| 5                                                                                                        | DETERMIN                                                           | NE THE VOLING'S MODI                    |                     | TERIAL BY SUBJECTING I |          |  |  |  |  |
| 5.                                                                                                       | LINIEODM DENDING DV KOINEC'S METHOD                                |                                         |                     |                        |          |  |  |  |  |
|                                                                                                          |                                                                    |                                         |                     |                        |          |  |  |  |  |
| 6                                                                                                        | DETERMIN                                                           | NE THE PADILIS OF CUP                   | VATURE OF THE       | CONVEX I ENS BY NEWTO  | N'S PING |  |  |  |  |
| 0.                                                                                                       | METHOD                                                             | ALTHE KADIUS OF CUK                     | VATURE OF THE       | CONVEX LENS DI INEWIC  |          |  |  |  |  |
| 7                                                                                                        |                                                                    |                                         |                     |                        |          |  |  |  |  |
| 7.                                                                                                       | DETERMINE THE REFRACTIVE INDEX OF WATER BY NEWTON'S KING METHOD.   |                                         |                     |                        |          |  |  |  |  |
| 8                                                                                                        | DETERMIN                                                           | NE THE REER ACTIVE IN                   | DEX OF GLASS F      | AND NEWTON'S RING METH | OD       |  |  |  |  |
| 0.<br>10                                                                                                 | DETERMIN                                                           | NE THE CAUCHY'S CON                     | STANT BY SPECT      | ROMETER                | 00       |  |  |  |  |
| 10.                                                                                                      |                                                                    |                                         |                     |                        |          |  |  |  |  |
| 11                                                                                                       | i-d curve B                                                        | Y SPECTROMETER.                         |                     |                        |          |  |  |  |  |
| 12                                                                                                       | I-I' CURVE                                                         | BY SPECTROMETER                         |                     |                        |          |  |  |  |  |
| 14                                                                                                       |                                                                    |                                         |                     |                        |          |  |  |  |  |
| 13                                                                                                       | 13 DETERMINE THE RESOLVING POWER OF THE PRISM BY SPECTROMETER      |                                         |                     |                        |          |  |  |  |  |
|                                                                                                          |                                                                    |                                         |                     |                        |          |  |  |  |  |

**Programme : B.Sc** 

**Part III: Core** 

## Semester: VIHours: 4 P/W 60 Hrs P/SSub. Code: U22CP12Credits : 4TITLE OF THE PAPER: DIGITAL ELECTRONICS AND COMMUNICATION

|                                                                                                                                                                                                                               |       | In DIGITIE | LLLCINOINC    |                    | 11011 |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---------------|--------------------|-------|-----|--|
|                                                                                                                                                                                                                               | Hours | Lecture    | Peer Teaching | GD/ Vedos/Tutorial |       | ICT |  |
| Pedagogy                                                                                                                                                                                                                      | 4     | 2          | -             | 1                  |       | 1   |  |
| <b>PREAMBLE</b> to understand the fundamental knowledge of digital principles namely the number systems, basic and universal logic circuits, working of multivibrators and flipflops and application of operational amplifier |       |            |               |                    |       |     |  |
| COURSE OUTCOMEUnitAt the end of the Semester, the students will be able toHrs P/S                                                                                                                                             |       |            |               |                    |       |     |  |
| <b>CO 1:</b> define the different types of number systems and enhance their skills in conversion of number systems                                                                                                            |       |            |               |                    |       | 12  |  |
| <b>CO 2:</b> explain the basic and universal logic gates and relates the truth tables                                                                                                                                         |       |            |               |                    |       | 12  |  |
| CO 3: simplify the logic expressions using Boolean laws and Kmap                                                                                                                                                              |       |            |               |                    |       | 12  |  |
| CO 4understand the working of multivibrators and flipflops IV                                                                                                                                                                 |       |            |               |                    |       | 12  |  |
| <b>CO 5:</b> describe the principle and types of modulation                                                                                                                                                                   |       |            |               |                    |       | 12  |  |

#### SYLLABUS

#### UNIT- I: NUMBER SYSTEM

Number systems-Binary-Decimal conversion-binary addition- 1's and 2's complement – (subtraction only) double complement -binary multiplication-octal numbers-Decimal to octal-Hexa decimal numbers-Binary coded decimals

#### UNIT- II: LOGIC GATES AND BOOLEAN ALGEBRA

Digital circuits-Logic gate-Binary concept-Positive logic and negative logic system-Basic logic gates-AND, OR, NOT gates -Characteristics of logic gate-NOR, NAND, Exclusive OR gate - Boolean algebra-De-Morgan's laws -universal building block.

#### UNIT- III: KARNAUGH MAP AND BINARY ADDERS

Two variable map-Three variable map-Four Variable map-Minterm-Maxterm-Truth table from Karnaugh map- Don't care conditions- Product -of-sums simplifications - Half adder-Full adder-Encoder-Decimal-to-BCD Encoder-Decoders-BCD-to-decimal decoder.

#### UNIT- IV: TIMER AND FLIP FLOP

555 Timer-Monostable Multivibrator-Astablemultivibrator-Frequency divider-Logic gate flip flop-R-S flip flop-Clocked R-S Flip flop-J-K flip flop-J-K master slave flip flop-D-flip flop-T-Flip flop.

#### UNIT-V- MODULATION AND DEMODULATION

Modulation – Types – Amplitude Modulation – Modulated power output – Frequency Modulation – Expression for frequency modulated voltage – FM Receiver – Transmission of Radio waves – AM Receiver – Characteristic of a receiver – Demodulation – FM Transmitter- PAM- PCM PFM -PTM - PPM - PWM.

#### ANALOG ELECTRONICS AND DIGITAL ELECTRONICS – G.JOSE ROBIN &A.UBALDRAJ, Indira Publication First Edition: May 2003. UNIT: I Chapter 10 : (10.01-10.19) UNIT: II Chapter 11A & 11B ; 11.01-11.1711.28-11.39,\ UNIT: III Chapter 7C &8 : Page No : 389-408 421-425 438-442 UNIT: IV Chapter 9 : Page No: 454-478

- ANALOG ELECTRONICS AND DIGITAL ELECTRONICS G.JOSE ROBIN & A.UBALDRAJ, Indira Publication First Edition: May 2008. UNIT-V : Chapter 5 : Page No : 249-262, 264-275, 279-280
- 3.Electronic Communications- Dennis Roddy, John Coolen Fourth Edition PEARSON UNIT 5: Chapter 11

#### **REFERENCE BOOKS:**

- 1. Elements of Solid state electronics A. Ambrose & Vincent Devaraj, Mera Publication, IV Edition, 1993
- 2. Digital Principles and Applications- Albert Paul Malvino&Donald P. Leach Tata Mc Graw Hill Publishing Ltd., sevenh Edition ,2011
- 3. Digital Electronics -G.K.KHARATE, OXFORD University press 2017
- 4. Digital Fundamentals V VIJAYENDRAN, S. Viswanathan Pvt. Ltd., 2012

#### 5. Hand Book of Electronics- -Gupta S.L, Kumar V, 20th edition- Pragati Prakashan Publications.

WebResourses:

- 1. https://www.cuemath.com/numbers/number-systems/
- 2. https://www.researchgate.net/publication/343361651 Chapter Two Logic Gates
- 3. <u>https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d</u>
- 4. https://www.toppr.com/guides/physics/communication-systems/modulation-and-demodulation/
- 5. <u>https://www.javatpoint.com/simplification-of-boolean-expressions-using-karnaugh-map</u>
- 6. <u>https://www.electronicsforu.com/technology-trends/learn-electronics/555-timer-working-specifications</u>

| UNITS    | TOPIC                                                                                       | LECTURE HOURS | MODE OF TEACHING                               |
|----------|---------------------------------------------------------------------------------------------|---------------|------------------------------------------------|
|          | Number systems-Binary-Decimal conversion-binary addition-                                   | 4             | Lecture ,Group discussion<br>ICT               |
| I INIT I | 1's and 2's complement – (subtraction<br>only) double complement -binary<br>multiplication- | 4             | Lecture ICT<br>and,Assignment                  |
|          | octal numbers-Decimal to octal-<br>Hexadecimal numbers-Binary coded<br>decimals             | 4             | Lecture, Group<br>discussion and<br>Assignment |
| UNIT II  | Digital circuits-Logic gate-Binary                                                          | 4             | Lecture and ICT<br>Assignment                  |
|          |                                                                                                                                                                                                   |   | 1                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------|
|          | concept-Positive logic and negative<br>logic system-Basic logic gates-AND,<br>OR, NOT gates -                                                                                                     |   |                                      |
|          | Characteristics of logic gate-NOR,<br>NAND, Exclusive OR gate -                                                                                                                                   | 4 | Lecture, Group<br>discussion and ICT |
|          | Boolean algebra-De-Morgan's laws -<br>universal building block.                                                                                                                                   | 4 | Lecture ,ICTand<br>Assignment        |
|          | Two variable map-Three variable map-<br>Four Variable map-Minterm-Maxterm-<br>Truth table from Karnaugh map- Don't<br>care conditions- Product -of-sums<br>simplifications -                      | 4 | Lecture ,ICTand<br>Assignment        |
| UNIT III | Minterm-Maxterm-Truth table from<br>Karnaugh map- Don't care conditions-<br>Product -of-sums simplifications -                                                                                    | 4 | Lecture, ICT and Assignment          |
|          | Half adder-Full adder- Encoder-<br>Decimal-to-BCD Encoder-Decoders-<br>BCD-to-decimal decoder.                                                                                                    | 4 | Lecture ICTand Seminar               |
|          | 555 Timer-Monostable Multivibrator-<br>Astablemultivibrator-Frequency<br>divider-                                                                                                                 | 6 | Lecture & ICT                        |
| UNIT IV  | Logic gate flip flop-R-S flip flop-<br>Clocked R-S Flip flop-J-K flip flop-J-K<br>master slave flip flop-D-flip flop-T-Flip<br>flop.                                                              | 6 | Lecture & ICT                        |
|          | Modulation – Types – Amplitude<br>Modulation – Modulated power output<br>– Frequency Modulation – Expression<br>for frequency modulated voltage – FM<br>Receiver – Transmission of Radio<br>waves | 6 | Lecture & ICT                        |
| V        | AM Receiver – Characteristic of a<br>receiver – Demodulation – FM<br>Transmitter- PAM- PCM PFM -PTM -<br>PPM - PWM.                                                                               | 6 | Lecture , ICT& Group<br>Discussion   |

| Course<br>Outcomes<br>(Cos) | Programme Outcomes (POs) |     |     |     | Programme Specific Outcomes<br>(PSOs) |      |      |      | mes  | Mean<br>scores of<br>Cos |     |
|-----------------------------|--------------------------|-----|-----|-----|---------------------------------------|------|------|------|------|--------------------------|-----|
|                             | PO1                      | PO2 | PO3 | PO4 | PO5                                   | PSO1 | PSO2 | PSO3 | PSO4 | PSO5                     |     |
| CO1                         | 4                        | 4   | 3   | 4   | 4                                     | 4    | 3    | 4    | 4    | 4                        | 3.9 |
| CO2                         | 4                        | 3   | 4   | 3   | 4                                     | 4    | 3    | 4    | 4    | 4                        | 3.7 |
| CO3                         | 4                        | 4   | 4   | 4   | 3                                     | 4    | 3    | 4    | 4    | 4                        | 3.8 |
| CO4                         | 4                        | 3   | 4   | 3   | 4                                     | 4    | 4    | 3    | 3    | 4                        | 3.6 |
| CO5                         | 4                        | 4   | 3   | 3   | 4                                     | 4    | 3    | 4    | 4    | 4                        | 3.7 |
| Mean Overall Score          |                          |     |     |     |                                       |      |      |      | 3.74 |                          |     |

Result: The Score for this Course is 3.74 (High Relationship)

| Mapping                                                            | 1-20%     | 21-40%  |  | 41-60%             | 61-80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81-100%                  |
|--------------------------------------------------------------------|-----------|---------|--|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Scale                                                              | 1         | 2       |  | 3                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                        |
| Relation                                                           | 0.0-1.0   | 1.1-2.0 |  | 2.1-3.0            | 3.1-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1-5.0                  |
| Quality                                                            | Very Poor | Poor    |  | Moderate           | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Very High                |
| Mean Score of COs = <u>Total Values</u><br>Total No. of Pos & PSOs |           |         |  | n Overall Score of | $COs = \frac{Total of M}{Total Notal No$ | lean scores<br>o. of COs |

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 30%      | 30%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 30%      | 30%      |
| K3 (APPLICATION and ANALYSIS)    | 40%      | 40%      |

**Course Designers: 1.**DR.N.NAGARANI 2.DR.G.KRISHNA BAMA Programme : B.Sc Semester : VI Sub. Code : U22CP13

# Part III: Core Hours : 4 P/W 60 Hrs P/S Credits : 4

#### TITLE OF THE PAPER: SOLID STATE PHYSICS

|                                                                                             | IIIDD (                                                                                        |                  |                       | Етпісісь                        |           |         |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|-----------------------|---------------------------------|-----------|---------|--|
| Pedagogy                                                                                    | Hours                                                                                          | Lecture          | Peer Teaching         | GD/VIDOES/TUTORIAL              | ICT       |         |  |
|                                                                                             | 4                                                                                              | 2                | 1                     |                                 | 1         |         |  |
| <b>PREAMBLE:</b>                                                                            |                                                                                                |                  |                       |                                 |           |         |  |
| To prom                                                                                     | note an un                                                                                     | derstanding of   | f the basics of cryst | allography                      |           |         |  |
| To deve                                                                                     | lop an und                                                                                     | derstanding of   | the unique propert    | ies and characteristics of cond | uctivity, |         |  |
| supercon                                                                                    | nductivity                                                                                     | , magnetic an    | d dielectric based m  | naterials.                      |           |         |  |
| To acqu                                                                                     | aint the st                                                                                    | udent with the   | eir types and applic  | ations.                         |           |         |  |
|                                                                                             |                                                                                                |                  |                       |                                 |           |         |  |
|                                                                                             |                                                                                                | COUR             | SE OUTCOME            |                                 | Unit      | Hrs P/S |  |
| At the end of the                                                                           | At the end of the Semester, the Students will be able to                                       |                  |                       |                                 |           |         |  |
| CO 1: Conceptu                                                                              | <b>CO 1</b> : Conceptually explain the classification schemes that are used to categorize 1 12 |                  |                       |                                 |           |         |  |
| engineering mate                                                                            | erials and                                                                                     | describe how     | and why defects in    | n materials greatly affect      |           |         |  |
| engineering prop                                                                            | perties and                                                                                    | l limit their us | e in service          |                                 |           |         |  |
| CO 2: understan                                                                             | d concise                                                                                      | ly and effective | vely resistivity and  | conductivity using basic        | 2         | 12      |  |
| relations, gain in                                                                          | nportant c                                                                                     | onceptual and    | l operational unders  | standing of different types of  |           |         |  |
| conduction mate                                                                             | erials                                                                                         |                  |                       |                                 |           |         |  |
| CO3 : Complete                                                                              | understa                                                                                       | nding about m    | agnetic materials a   | nd superconductors, their       | 3         | 12      |  |
| basic theories, types and applications.                                                     |                                                                                                |                  |                       |                                 |           |         |  |
| <b>CO4</b> : Acquaint complete knowledge of dielectric materials, with their types and 4 12 |                                                                                                |                  |                       |                                 |           |         |  |
| applications.                                                                               |                                                                                                |                  |                       |                                 |           |         |  |
| CO5 : Acquire k                                                                             | <b>CO5</b> : Acquire knowledge of biomaterials, ceramics and nano materials, with their512     |                  |                       |                                 |           |         |  |
| preparation and                                                                             | applicatio                                                                                     | ns.              |                       |                                 |           |         |  |
|                                                                                             |                                                                                                |                  |                       |                                 |           |         |  |

# **SYLLABUS**

#### UNIT I: ELEMENTARY CRYSTALLOGRAPHY

Different types of chemical bonds (Ionic, Covalent, Metallic, Dispersion, dipole and Hydrogen bond) – Crystal structure (sc, bcc, fcc, hcp-upto packing factor) – Crystal imperfections – Point defects – Line defects – Surface defects – Volume defects

#### **UNIT II: CONDUCTING MATERIALS**

Introduction – Atomic interpretation of ohm's law – Relaxation time & electrical conductivity –Electrical and thermal conductivity – Different types of conduction materials: Low resistivity conducting materials (properties, examples) – High resistivity conducting materials (properties examples)

#### **UNIT-III : MAGNETIC MATERIALS & SUPER CONDUCTING MATERIALS**

Hysteresis – Explanation of Hysteresis cure on the basis of domain theory- Hard and soft materials – Applications of Soft magnetic materials - Applications of hard magnetic materials (different types of hard magnetic materials)

Introduction – Explanation of the occurrence of Super conductivity (BCS theory) – general properties of super conductors – Types of super conductors (Type I & Type II) Applications of superconductor.

#### **UNIT-IV : DIELECTRIC MATERIALS**

Dielectrics – Fundamental definitions in dielectrics – Various polarization mechanisms in dielectrics – Internal field (Clausius – Mosotti relation)- Dielectric breakdown.

#### **UNIT - V: MODERN MATRIALS**

Biomaterials- metals and alloys- polymers- ceramics-applications-nanometerials- synthesis – applications.

#### **TEXT BOOKS:**

UNIT I: 2.3,3.6,3.9,3.9.1,3.9.3,3.9.4, Material Science : Dr. M. Arumugam, 3<sup>rd</sup> revised edition,Reprint 2010. Anuradha Publications.

UNIT II: 5.1,5.2,5.3.2,5.13, Material Science : Dr. M. Arumugam, 3<sup>rd</sup> revised edition, Reprint 2010. Anuradha Publications.

UNIT III: 7.8,7.9,8.1,8.2,8.3,8.5,8.7, Material Science : Dr. M. Arumugam, 3<sup>rd</sup> revised edition, Reprint 2010. Anuradha Publications.

UNIT IV: 6.1,6.2,6.3,6.6,6.7,6.9 Material Science : Dr. M. Arumugam, 3<sup>rd</sup> revised edition,Reprint 2010. Anuradha Publications.

UNIT V: 11.6,11.6(i, ii, iii), 11.13.3

Material Science : Dr. M. Arumugam, 3<sup>rd</sup> revised edition, Reprint 2010. Anuradha Publications.
6.7.1,6.3,6.3.1,
Material Science : P.K. Palanisamy, 1st Print, 2004, Scitech Publications.

#### **REFERENCES:**

1.Solid State Physics- S.O.Pillai,

2. Material Science : V. Rajendran, A. marikani II print, 2004. Tata McGraw Hill Publishing com. Ltd., New Delhi

| UNITS           | TOPIC                                       | LECTURE | MODE OF TEACHING       |  |  |  |  |  |  |  |
|-----------------|---------------------------------------------|---------|------------------------|--|--|--|--|--|--|--|
|                 |                                             | HOURS   |                        |  |  |  |  |  |  |  |
| UNIT I          | UNIT I                                      |         |                        |  |  |  |  |  |  |  |
| Different type  | s of chemical bonds -Ionic bond-Covalent    | 4       | 3 hours Lecture        |  |  |  |  |  |  |  |
| bond -Metallic  | c, Dispersion, dipole and Hydrogen bond     |         | and 1 Discussion       |  |  |  |  |  |  |  |
| Crystal structu | re - sc, bcc, fcc,hcp (upto packing factor) | 4       | 3 hours Lecture        |  |  |  |  |  |  |  |
| -               |                                             |         | and 1Discussion        |  |  |  |  |  |  |  |
| Crystal imperf  | ections – Point defects-Line defects        | 4       | 3 hours Lecture        |  |  |  |  |  |  |  |
| Surface defect  | s-Volume defects                            |         | and 1Discussion        |  |  |  |  |  |  |  |
| UNIT II         |                                             |         |                        |  |  |  |  |  |  |  |
| Introduction to | o conducting materials                      | 2       | 2 hours Lecture        |  |  |  |  |  |  |  |
| Atomic interpr  | retation of ohm's law-Relaxation time &     | 3       | 2 hours Lecture and 1  |  |  |  |  |  |  |  |
| electrical cond | luctivity                                   |         | Discussion             |  |  |  |  |  |  |  |
| Electrical and  | thermal conductivity                        | 3       | 2 hours Lecture and 1  |  |  |  |  |  |  |  |
|                 |                                             |         | Discussion             |  |  |  |  |  |  |  |
| Different type  | s of conduction materials: Low resistivity  | 4       | <b>3 hours Lecture</b> |  |  |  |  |  |  |  |
| conducting ma   | terials (properties, examples) – High       |         | and 1Discussion        |  |  |  |  |  |  |  |
| resistivity con | ducting materials (properties examples)     |         |                        |  |  |  |  |  |  |  |
| UNIT III        |                                             |         |                        |  |  |  |  |  |  |  |
| Hysteresis      |                                             | 3       | 2 hours Lecture and    |  |  |  |  |  |  |  |
| Explanation of  | f Hysteresis cure on the basis of domain    |         | 1Discussion            |  |  |  |  |  |  |  |
| theory-Hard and | nd soft materials                           |         |                        |  |  |  |  |  |  |  |
| Applications of | f Soft and hard magnetic materials          | 2       | 2 hours Lecture        |  |  |  |  |  |  |  |
|                 |                                             |         | and Discussion         |  |  |  |  |  |  |  |
| Introduction to | super conducting materials                  | 1       | 1 hour Lecture         |  |  |  |  |  |  |  |

| Explanation of the occurrence of Super conductivity                               | 2 | 2 hours Lecture<br>and Discussion   |
|-----------------------------------------------------------------------------------|---|-------------------------------------|
| BCS theory- general properties of super conductors                                | 2 | 2 hours Lecture                     |
| Types of super conductors (Type I & Type II) -<br>Applications of superconductor. | 2 | 2 hours Lecture<br>and Discussion   |
| UNIT IV                                                                           |   |                                     |
| Introduction to dielectric materials                                              | 2 | 2 hours Lecture                     |
| Fundamental definitions in dielectrics                                            | 2 | 2 hours Lecture<br>and Discussion   |
| Various polarization mechanisms in dielectrics                                    | 3 | 2 hours Lecture and 1<br>Discussion |
| Internal field (Clausius – Mosotti relation)                                      | 3 | 2 hours Lecture and 1<br>Discussion |
| Dielectric breakdown                                                              | 2 | 2 hours Lecture                     |
| UNIT V                                                                            |   |                                     |
| Biomaterials- metals and alloys- polymers                                         | 4 | 3 hours Lecture<br>and 1Discussion  |
| ceramics-applications                                                             | 4 | 3 hours Lecture<br>and 1 Discussion |
| Nanometerials- synthesis – applications                                           | 4 | 3 hours Lecture<br>and 1 Discussion |

| Course             | Programme Outcomes (POs) |     |     |     | Programme Specific Outcomes (PSOs) |      |      |      | SOs) | Mean |        |
|--------------------|--------------------------|-----|-----|-----|------------------------------------|------|------|------|------|------|--------|
| Outcomes           |                          |     |     |     |                                    |      |      |      |      |      | Scores |
| (COs)              |                          |     |     |     |                                    |      |      |      |      |      | of     |
|                    |                          |     |     |     |                                    |      |      |      |      |      | COs    |
|                    | PO1                      | PO2 | PO3 | PO4 | PO5                                | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |        |
| CO1                | 3                        | 4   | 3   | 4   | 3                                  | 3    | 4    | 3    | 3    | 5    | 3.5    |
| CO2                | 5                        | 3   | 4   | 3   | 4                                  | 3    | 3    | 4    | 3    | 4    | 3.6    |
| CO3                | 3                        | 3   | 3   | 4   | 3                                  | 3    | 5    | 4    | 3    | 3    | 3.4    |
| CO4                | 3                        | 3   | 4   | 3   | 3                                  | 3    | 4    | 4    | 3    | 4    | 3.4    |
| CO5                | 4                        | 3   | 3   | 4   | 4                                  | 3    | 3    | 4    | 4    | 3    | 3.5    |
| Mean Overall score |                          |     |     |     |                                    |      |      |      |      | 3.48 |        |

Result: The Score for this Course is 3.48 (High Relationship)

| Mapping           | 1-20%                                                   | 21-40%                 | 41-60%          | 61-80%                                       | 81-100%                             |
|-------------------|---------------------------------------------------------|------------------------|-----------------|----------------------------------------------|-------------------------------------|
| Scale             | 1                                                       | 2                      | 3               | 4                                            | 5                                   |
| Relation          | 0.0-1.0                                                 | 1.1-2.0                | 2.1-3.0         | 3.1-4.0                                      | 4.1-5.0                             |
| Quality           | Very Poor                                               | Poor                   | Moderate        | High                                         | Very High                           |
| Mean Score of COs | $s = \frac{\text{Total of V}}{\text{Total No. of Pos}}$ | <u>alue</u><br>s& PSOs | Mean Overall Sc | ore of COs = $\frac{\text{Tot}}{\text{Tot}}$ | al of Mean Score<br>otal No. of COs |

#### ASSESSMENT RUBRICS

| BLOOM'S       | INTERNAL | EXTERNAL |
|---------------|----------|----------|
| TAXANOMY      |          |          |
| KNOWLEDGE     | 30%      | 30%      |
| UNDERSTANDING | 30%      | 30%      |
| APPLY         | 40%      | 40%      |

Course Designer: Dr. A.BEULAH MARY, & Dr. P. N,NIRMALA, Assistant Professor

Programme :B.Sc., PhysicsSemester :VISub. Code :U22CP15

#### Part III : Core Hours : 4 HrsP/W 60Hrs/P/S Credits :4

#### TITLE OF THE PAPER : OPTO ELECTRONICS

| Pedagogy                                                                                            | Hours                                | Lecture        | Peer Teaching                    | <b>GD/VIDEOS/TUT</b>  | ORIAL       | ICT            |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------|----------------|----------------------------------|-----------------------|-------------|----------------|--|
|                                                                                                     | 4                                    | 2              | -                                | 1                     |             | 1              |  |
| Preamble:                                                                                           |                                      |                |                                  |                       |             |                |  |
| The scope of the                                                                                    | his course                           | e is to provid | des an insight into the physica  | l principles of opera | tion of las | sers and their |  |
| applications in                                                                                     | various a                            | areas of scie  | ence and industry. It also prov  | vides fundamentals c  | of nonlinea | ar optics and  |  |
| interaction of li                                                                                   | ght                                  |                |                                  |                       |             |                |  |
| COURSE OU                                                                                           | ГСОМЕ                                |                |                                  |                       | Unit        | Hrs P/S        |  |
| On the successf                                                                                     | ful comple                           | etion of the c | ourse students will able to      |                       |             |                |  |
| CO1 . Underst                                                                                       |                                      |                | a of LED and LCD and instru      |                       | 1           | 12             |  |
| COI: Underst                                                                                        | and the ba                           | asic knowled   | ge of LED and LCD and instru     | mentation involved    |             |                |  |
| CO2 :acquire c                                                                                      | omplete a                            | bout the ope   | ration and construction of laser | S                     | 2           | 12             |  |
| CO3 : Familiar                                                                                      | rize with w                          | arious optoe   | lectronics such as Photo transis | stors, photo          | 3           | 12             |  |
| diodesand its re                                                                                    | diodesand its real time applications |                |                                  |                       |             |                |  |
| CO4 : understand basic principle of optical fibre412                                                |                                      |                |                                  |                       |             |                |  |
| <b>CO5</b> : learn and practice the techniques used by an optical phenomenon so that these can 5 12 |                                      |                |                                  |                       |             |                |  |
| be applied to ac                                                                                    | tual field                           | studies        |                                  |                       |             |                |  |

#### **UNIT I : LIGHT SOURCES**

Introduction – Light emitting diode (LED) -Structure of LED– LEDmaterials – LCDCharacteristics and action of LCD – Principle, Construction, Working – Advantages& Disadvantages

# UNIT II : LASER

Laser operation - characteristics of laser - types of lasers-Semiconductor laser diode- spatial Emission pattern of laser- current Vs output power characteristics of a laser -laser chirp

# **UNIT III :PHOTO DETECTOR**

Photo detector- Introduction- Characteristics of Photo detectors- PN junction Photo detector-PIN Photo diode- Avalanche Photo diode- Phototransistor-BIT-error rate

# UNIT IV :OPTICAL FIBRE

Introduction – Principle of optical fibre – Propagation of light waves in an optical fibre – Acceptance angle and acceptance cone of a fibre – Numerical aperture.

# UNIT V :CLASSIFICATION OPTICAL FIBRE

Fibres – classifications-Steped indexfibre, Graded fibre multimode fibre – Plastic fibres – Advantages : fibre optic switches, bypass switches, other optical switches, optical Logic gates

# TEXT BOOKS

- Optical Fibres and Fibre Optic Communication Systems Subir Kumar Sarkar Revised IV Edition 2010. Unit 1 - 9.1,9.2,9.2.2, 9.2.3
- 2. Modern Physics- R Murugeshan, Kiruthiga Sivaprasath18e edition 2021. Unit 1 - 34.5
- Optical Fibres and Fibre Optic Communication Systems Subir Kumar Sarkar Revised IV Edition 2010. Unit 2 - 9.3.1, 9.3.2, 9.3.3, 9.3.4, 9.3.6, 9.3.10
- 4. Optical Fibres and Fibre Optic Communication Systems SubirKumar Sarkar Revised IV Edition 2010. Unit 3 - 10.1,10.2,10.6,10.7,10.8,10.9, 10.10 Unit 4 - 2.2,2.4,2.5 Unit 5 - 3.1,3.2,3.5, 3.6, 14.2, 14.3, 14.4, 14.5

# **REFERENCE BOOKS**

- 1. Opto Electronics Wilson & Hawker, Prentice Hall of India2004.
- 2. Optoelectronics A.Ubald Raj, G,Jose Robin, First Edition: June 2010
- Semiconductor physics and Optoelectronics P. K. Palanisamy, SCITECH Publication, Chennai2002.
- 4. Optical fibres and Fibre Optic Communication Sabir Kumar Sarkar IV Revised Edition2003.

# WEB REFERENCES

- 1. <u>Physics of Light and Optics | Download book (freebookcentre.net)</u>
- 2. <u>Free Books on Modern Physics: Laser books : 1- Fundamentals of Light Sources and Lasers</u> (onlinephysicsbooks.blogspot.com)

| UNITS                         | TOPIC                                      | LECTURE     | MODE OF TEACHING                 |  |  |  |  |  |
|-------------------------------|--------------------------------------------|-------------|----------------------------------|--|--|--|--|--|
| UNIT I: LIGHT SOURCES (12Hrs) |                                            |             |                                  |  |  |  |  |  |
| Introduction                  | – Light emitting diode                     | 6           | 5 hour Lecture                   |  |  |  |  |  |
| (LED) -Stru                   | cture of LED– LEDmaterials                 |             | and1 hour Discussion and ICT     |  |  |  |  |  |
| LCDCharac                     | teristics and action of LCD –              | 6           | 5 hours Lecture                  |  |  |  |  |  |
| Principle, C                  | onstruction, Working –                     |             | and 1 hour Discussion and Quiz   |  |  |  |  |  |
| Advantages                    | & Disadvantages                            |             |                                  |  |  |  |  |  |
| UNIT II : L                   | ASER(12Hrs)                                |             |                                  |  |  |  |  |  |
| Laser operat                  | ion - characteristics of laser -           | 4           | 2 hours lecture 2 hours ICT &    |  |  |  |  |  |
| types of lase                 | ers                                        |             | Discussion                       |  |  |  |  |  |
| Semiconduc                    | tor laser diode- spatial                   | 4           | 3 hour lecture                   |  |  |  |  |  |
| Emission pa                   | ttern of laser                             |             | 1 hour ICT&Discussion            |  |  |  |  |  |
| current Vs c                  | output power characteristics               | 4           | 3 hour lecture                   |  |  |  |  |  |
| of a laser -la                | iser chirp                                 |             | 1 hour ICT&Discussion            |  |  |  |  |  |
| UNIT III :P                   | HOTO DETECTOR (12Hrs)                      | 1           |                                  |  |  |  |  |  |
| Photo d                       | letector- Introduction-                    | 4           | 3 hours lecture                  |  |  |  |  |  |
| Characteris                   | tics of Photo detectors                    |             | 1 hour Discussion                |  |  |  |  |  |
| PN junctior                   | n Photo detector– PIN                      | 4           | 3 hours lecture                  |  |  |  |  |  |
| Photo diode                   |                                            |             | 1 hour ICT&Discussion            |  |  |  |  |  |
| Avalanche                     | Photo diode-                               | 4           | 3 hours lecture                  |  |  |  |  |  |
| Phototransi                   | stor-BIT-error rate                        |             | 1 hour ICT&Discussion            |  |  |  |  |  |
| UNITIV :0                     | PTICAL FIBRE (12Hrs)                       |             |                                  |  |  |  |  |  |
| Introduction                  | – Principle of optical fibre               | 6           | 5 hours lecture and 1 hour ICT   |  |  |  |  |  |
| – Propagati                   | on of light waves in an                    | _           | & discussion                     |  |  |  |  |  |
| optical fibre                 | C                                          |             |                                  |  |  |  |  |  |
| Acceptance                    | angle and acceptance cone                  | 6           | 5 hours lecture and 1 hour ICT & |  |  |  |  |  |
| of a fibre –                  | Numerical aperture                         |             | discussion                       |  |  |  |  |  |
| UNIT V :Cl                    | LASSIFICATION OPTICAL                      | FIBRE (12Hr | s)                               |  |  |  |  |  |
| Fibres                        | <ul> <li>classifications-Steped</li> </ul> | 6           | 5 hours lecture and 1 hour ICT&  |  |  |  |  |  |
| indexfibre,                   | Graded fibre multimode fibre               |             | discussion                       |  |  |  |  |  |
| Plastic fibre                 | s – Advantages : fibre optic               | 6           | 5 hours lecture and 1 hour ICT&  |  |  |  |  |  |
| switches, by                  | pass switches, other optical               |             | discussion                       |  |  |  |  |  |
| switches, o                   | ptical Logic gates                         |             |                                  |  |  |  |  |  |

| Course<br>Outcomes | Progra | amme ( | Dutcom | nes (POs | )   | Programme Specific Outcomes (PSOs) |      |      |      | Mean<br>scores of |     |
|--------------------|--------|--------|--------|----------|-----|------------------------------------|------|------|------|-------------------|-----|
| (Cos)              | PO1    | PO2    | PO3    | PO4      | PO5 | PSO1                               | PSO2 | PSO3 | PSO4 | PSO5              | Cos |
| CO1                | 4      | 4      | 3      | 4        | 3   | 4                                  | 4    | 3    | 4    | 3                 | 3.6 |
| CO2                | 4      | 3      | 4      | 3        | 3   | 4                                  | 3    | 4    | 3    | 3                 | 3.4 |
| CO3                | 4      | 4      | 3      | 4        | 4   | 4                                  | 4    | 4    | 3    | 4                 | 3.8 |
| CO4                | 4      | 3      | 3      | 3        | 3   | 4                                  | 3    | 3    | 3    | 3                 | 3.2 |
| CO5                | 3      | 4      | 4      | 3        | 4   | 3                                  | 4    | 4    | 4    | 3                 | 3.6 |
| Mean Overall Score |        |        |        |          |     |                                    |      |      |      | 3.52              |     |

Result: The Score for this Course is 3.52 (High Relationship)

| Mapping                                                                                     | 1-20%     | 21-40%  |  | 41-60%   | 61-80%  | 81-100%                 |
|---------------------------------------------------------------------------------------------|-----------|---------|--|----------|---------|-------------------------|
| Scale                                                                                       | 1         | 2       |  | 3        | 4       | 5                       |
| Relation                                                                                    | 0.0-1.0   | 1.1-2.0 |  | 2.1-3.0  | 3.1-4.0 | 4.1-5.0                 |
| Quality                                                                                     | Very Poor | Poor    |  | Moderate | High    | Very High               |
| Mean Score of $COs = $<br>Total No. of Pos & PSOsMean Overall Score of $COs = $<br>Total To |           |         |  |          |         | ean scores<br>o. of COs |

#### ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY            | INTERNAL | EXTERNAL |
|-----------------------------|----------|----------|
| REMEMBERING/RECALLING       | 30%      | 30%      |
| UNDERSTANDING/COMPREHENSION | 30%      | 30%      |
| APPLICATION and ANALYSIS    | 40%      | 40%      |

Course DesignerDr. A. BEULAH MARY&Dr.P.N. NIRMALA Assistant Professor, Department of Physics.

#### PART III :DSEC- II Elective Hours : 4 P/W, 60 Hrs P/S Credits : 4

# TITLE OF THE PAPER : NUCLEAR PHYSICS

| Pedagogy          | Hours               | Peer teaching       | TUTORI                 | ICT            |            |  |  |  |  |
|-------------------|---------------------|---------------------|------------------------|----------------|------------|--|--|--|--|
|                   |                     |                     |                        | AL             |            |  |  |  |  |
|                   | 4                   | 1                   | 1                      | 1              | 1          |  |  |  |  |
| PREAMBLE          | PREAMBLE :          |                     |                        |                |            |  |  |  |  |
| The purpose of    | f this course is t  | o give an introduc  | ctory details about th | e properties a | ind        |  |  |  |  |
| stability of nuc  | cleus. It gives b   | rief information a  | bout nuclear models    | ,radio activit | y, nuclear |  |  |  |  |
| reactions, nucl   | ear detectors, pa   | article accelerator | s, cosmic rays and e   | lementary pa   | rticles.   |  |  |  |  |
|                   | COURS               | FOUTCOME            |                        | UNIT           | Hrs P/S    |  |  |  |  |
| At the e          | nd of the Semes     | ter. the students v | will be able to        | UIII           | 1113175    |  |  |  |  |
|                   |                     |                     |                        | 1              | 10         |  |  |  |  |
| NUCLEI            | FROPERTIE           | S AND SIKUCI        | UKE OF                 | 1              | 12         |  |  |  |  |
| Know the pror     | perties of nucleu   | understand bin      | ding energy            |                |            |  |  |  |  |
| nuclear compo     | sition . nuclear    | forces . analyse li | auid drop model        |                |            |  |  |  |  |
| UNIT 2 CO2        | - RADIOACTI         | IVITY               |                        | 2              | 12         |  |  |  |  |
| Know properti     | es of alpha, beta   | a , gamma rays, u   | nderstand alpha,       |                |            |  |  |  |  |
| beta decay, pr    | operties of neut    | rino, uses of radio | o isotopes,            |                |            |  |  |  |  |
| determine age     | of earth and ma     | itter.              |                        |                |            |  |  |  |  |
| UNIT 3 CO3        | – NUCLEAR I         | REACTIONS           |                        | 3              | 12         |  |  |  |  |
| Know kinemat      | tics of nuclear re  | eaction, differenti | ate nuclear fusion     |                |            |  |  |  |  |
| and nuclear fis   | sion, understan     | d working of vari   | ous reactors,          |                |            |  |  |  |  |
| calculate Q va    | lue of nuclear re   | eaction             |                        | 4              | 10         |  |  |  |  |
| UNIT 4 CO4-       | - NUCLEAK D<br>Tods | DETECTORS AN        | ND PARTICLE            | 4              | 12         |  |  |  |  |
| Know neutron      | Sources prope       | rties nuclear det   | ectors narticle        |                |            |  |  |  |  |
| accelerators u    | nderstand the w     | orking principle of | of detectors and       |                |            |  |  |  |  |
| accelerators.     |                     | orking principle (  |                        |                |            |  |  |  |  |
|                   |                     |                     |                        |                |            |  |  |  |  |
| UNIT 5 CO5-       | COSMIC RA           | YS AND ELEMI        | ENTARY                 | 5              | 12         |  |  |  |  |
| PARTICLES         |                     |                     |                        |                |            |  |  |  |  |
| Know about co     | osmic rays , orig   | gin of cosmic rays  | s, understand          |                |            |  |  |  |  |
| altitude, latitud |                     |                     |                        |                |            |  |  |  |  |
| elementary par    |                     |                     |                        |                |            |  |  |  |  |
|                   |                     |                     |                        |                |            |  |  |  |  |
|                   |                     |                     |                        |                |            |  |  |  |  |
|                   |                     |                     |                        |                |            |  |  |  |  |

#### **SEMESTER- VI DISCIPLINE SPECIFIC ELECTIVE COURSE (DSEC) - II** NUCLEAR PHYSICS 4Hrs/week

#### Code: EP63

Credit:4

#### **UNIT I: Properties and structure of Nuclei**

General properties of nucleus- binding energy – BE/A curve – theories of nuclear composition -Nuclear forces -characteristics -Meson theory of nuclear forces - Yukava Potential – liquid drop model.

#### UNIT II: Radio Activity Fundamental laws of radio activity -

Properties of alpha, beta and gamma rays -range of alpha particle - Geiger and Nuttal method of experimental measurement of range of alpha particle - neutrino theory of beta decay – K - electron capture - nuclear isomers- Mossabauer effect - Radio carbon dating

#### **UNIT III: Nuclear Reactions**

Artificial transmutation - Kinematics of nuclear reaction (Q value equation for nuclear reaction) - types of nuclear reaction -Nuclear fission - atom bomb -nuclear reactors - uses - Nuclear fusion - hydrogen bomb-fusion reactor -plasma confinement : Magnetic confinement.

#### **UNIT IV: Nuclear Detectors and Particle Accelerators**

Detectors: Geiger – Muller Counter - Wilson cloud chamber – bubble chamber - Particle accelerators: cyclotron - synchrocyclotron- betatron

#### **UNIT V: Cosmic Rays and Elementary Particles**

Cosmic rays: latitude effect - azimuth effect- altitude effect - primarycosmic rays secondary cosmic rays -Van Allen belt- origin of cosmic rays - Elementary particles : Introduction- elementary particles -particles and antiparticles .

# **Books for Study:**

1. Modern physics by R. Murugeshan, Kiruthigasivaprasath, S.Chand& Co., New Delhi, Eighteenth Edn., 2018.

Unit – I : page no. (324-328, 330 – 333, 340-341)

Unit – II : page no. (388, 389, 393, 401, 403, 407, 408, 416)

Unit – III : page no. (443, 449 - 451, 455, 458 - 460)

Unit – IV : page no. ( 358-364, 377-384)

Unit – V : page no. (464-466, 468-469, 471-473, )

2. Atomic and Nuclear Physics by N. Subrahmanyam and Brijlal, S Chand &Co., NewDelhi (1996).

3. Nuclear Physics by Tayal D.C., Himalaya Publishing House, Mumbai(2006).

4. Nuclear Physics by R.C.Sharma, K.Nath& Co., Meerut (2000)

5. Nuclear Physics by Irving Kaplan, Narosa Publishing house, New Delhi.

# **Books for Reference** :

1. Nuclear Physics by R.R.Roy and B.P.Nigam, New Age International (P) Ltd., NewDelhi(1997).

2. Fundamentals of Elementary Particle Physics by Longo, McGraw-Hill.

| UNITS    | TOPIC                                         | LECTURE | MODE OF  |
|----------|-----------------------------------------------|---------|----------|
|          |                                               | HOURS   | TEACHING |
| UNIT - I | General properties of nucleus                 | 2       | L,P      |
|          | Binding energy, BE/A curve                    | 2       | L,T      |
|          | Theories of nuclear composition               | 2       | L,I      |
|          | Nuclear forces                                | 2       | P,T      |
|          | Meson theory of nuclear forces, Yukava        | 2       | I,P      |
|          | potential                                     |         |          |
|          | Liquid drop model                             | 2       | I, T     |
|          |                                               |         |          |
| UNIT-II  | Properties of alpha, beta and gamma rays      | 2       | P, I     |
|          | Range of alpha particles, Geiger-Nuttal       | 2       | L, T     |
|          | experiment                                    |         |          |
|          | Neutrino theory of beta decay                 | 2       | I, P     |
|          | K – electron capture, nuclear isomers         | 2       | I, T     |
|          | Mossabauer effect                             | 2       | L,T      |
|          | Radio carbon dating                           | 2       | L,P      |
|          |                                               |         |          |
| UNIT-III | Artificial transmutation                      | 2       | P,T      |
|          | Kinematics of nuclear reaction                | 2       | L,P      |
|          | Types of nuclear reaction                     | 2       | I, T     |
|          | Nuclear fission, atom bomb, nuclear reactor   | 2       | L,T      |
|          | Nuclear fusion, hydrogen bomb, fusion reactor | 2       | I,P      |
|          | Plasma confinement – magnetic confinement     | 2       | L,I      |
|          |                                               |         |          |
| UNIT-IV  | Geiger – Muller counter                       | 2       | L,T      |
|          | Wilson cloud chamber                          | 2       | I, P     |
|          | Bubble chamber                                | 2       | I,T      |
|          | Cyclotron                                     | 2       | L,P      |
|          | Synchrocyclotron                              | 2       | I, P     |
|          | Betatron                                      | 2       | L, T     |
|          |                                               |         |          |
| UNIT-V   | Cosmic rays, latitude effect                  | 2       | L,T      |
|          | Azimuthal effect, altitude effect             | 2       | P,I      |
|          | Primary cosmic rays, secondary cosmic rays    | 2       | Р,Т      |
|          | Vanallen belt, origin of cosmic rays          | 2       | L,P      |
|          | Elementary particles                          | 2       | L,I      |
|          | Particles and anti particles                  | 2       | I,T      |
|          | •                                             |         |          |

| Course | Programme outcomes Programme specific outcomes M |         |         |         |         |           |          |          | Mean     |      |        |
|--------|--------------------------------------------------|---------|---------|---------|---------|-----------|----------|----------|----------|------|--------|
| s      | PO<br>1                                          | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PSO<br>1  | PSO<br>2 | PSO<br>3 | PSO<br>4 | PSO5 | scores |
| CO1    | 5                                                | 4       | 3       | 3       | 3       | 5         | 4        | 4        | 3        | 3    | 3.7    |
| CO2    | 5                                                | 4       | 4       | 3       | 4       | 5         | 4        | 3        | 3        | 3    | 3.8    |
| CO3    | 4                                                | 4       | 4       | 4       | 4       | 4         | 4        | 3        | 3        | 3    | 3.7    |
| CO4    | 4                                                | 4       | 3       | 3       | 3       | 4         | 4        | 4        | 3        | 3    | 3.5    |
| CO5    | 4                                                | 4       | 4       | 3       | 3       | 4         | 4        | 4        | 4        | 3    | 3.7    |
|        |                                                  |         |         | Mea     | n overa | all score |          |          |          |      | 3.68   |

Result : The Score for this course is 3.68 - High

| <b>BLOOM'S TAXANOMY</b> | INTERNAL | EXTERNAL |
|-------------------------|----------|----------|
| KNOWLEDGE               | 50%      | 50%      |
| UNDERSTANDING           | 30%      | 30%      |
| APPLY                   | 20%      | 20%      |

Course Designer :Dr.J.S.P.CHITRA, Department of PHYSICS

Programme :B.Sc PHYSICS Semester : VI Sub code : U22DSP2B

#### PART III :DSEC- II Elective Hours : 4 P/W, 60 Hrs P/S Credits : 4

# TITLE OF THE PAPER : NANO PHYSICS

| Pedagogy         | Hours                                                        | Peer teaching        | TUTORI                | ICT     |         |  |  |
|------------------|--------------------------------------------------------------|----------------------|-----------------------|---------|---------|--|--|
|                  | 4                                                            | 1                    | 1                     | AL<br>1 | 1       |  |  |
|                  | •                                                            | 1                    | 1                     | -       | -       |  |  |
| PREAMBLE         | :                                                            | wladaa in nana m     | atoriala              |         |         |  |  |
| • 10 01          | eate the basic kin                                           |                      |                       |         |         |  |  |
| • To u           | • To understand the scientific perspective of nanomaterials. |                      |                       |         |         |  |  |
| To id            | lentify the technic                                          | jues suitable for na | nomaterial synthesis. |         |         |  |  |
| To kr            | now the significat                                           | nce of nanomateria   | ls                    | 1       |         |  |  |
|                  | COURS                                                        | E OUTCOME            |                       | UNIT    | Hrs P/S |  |  |
| At the en        | nd of the Semes                                              | ter, the students w  | vill be able to       |         |         |  |  |
| CO1              |                                                              |                      |                       | 1       | 12      |  |  |
| Know the histo   | ory of nano tecl                                             | nnology, understa    | nd synthesis of       |         |         |  |  |
| oxide nano par   | rticles, develop                                             | skills in synthesis  | of nano particles     |         |         |  |  |
| CO2              | •                                                            | 2                    | •                     | 2       | 12      |  |  |
| Know super la    | ttice, understand                                            | d preparation of q   | uantum nano           |         |         |  |  |
| structure,differ | rentiate quantun                                             | n well laser, quan   | tum cascade laser,    |         |         |  |  |
| quantum wire,    | quantum dot, a                                               | nalyse application   | n of quantum dots.    |         |         |  |  |
| CO3              |                                                              |                      |                       | 3       | 12      |  |  |
| Know discove     | ry of nano tubes                                             | s, classify types of | f carbon nano         |         |         |  |  |
| tubes,synthesiz  | ze carbon nano                                               | tubes                |                       |         |         |  |  |
| CO4              |                                                              |                      |                       | 4       | 12      |  |  |
| Know nano cr     | ystalline soft ma                                            | aterial, understan   | d theoretical back    |         |         |  |  |
| ground of perm   | nanent magnetic                                              | e material, discuss  | s quantum cellular    |         |         |  |  |
| automata         |                                                              |                      |                       |         |         |  |  |
| CO5              |                                                              |                      |                       | 5       | 12      |  |  |
| Know about cl    | hemistry and en                                              | vironment, under     | stand applications    |         |         |  |  |
| of nano techno   |                                                              |                      |                       |         |         |  |  |
| technology       |                                                              |                      |                       |         |         |  |  |
|                  |                                                              |                      |                       |         |         |  |  |
|                  |                                                              |                      |                       |         |         |  |  |
|                  |                                                              |                      |                       |         |         |  |  |
|                  |                                                              |                      |                       |         |         |  |  |

#### **SYLLABUS**

#### **UNIT I: Nanomaterials**

History of Nanotechnology- Nanostructures- synthesis of oxide nano particlesSynthesis of semiconductor nano particles- Synthesis of metallic nano particles

#### **UNIT II: Quantum Hetero structure**

Super lattice- preparation of Quantum nanostructure- Quantum well laserQuantum cascade laser-Quantum wire- Quantum dot- Application of Quantum dots.

#### **UNIT III: Carbon Nanotubes**

Discovery of Nanotubes- Carbon Allotropes- Types of carbon NanotubesGraphene sheet to a single walled nanotube- Electronic structure of Carbon Nanotubes- Synthesis of Carbon Nanotube.

#### **UNIT IV : Nanocrystalline soft material**

Nanocrystalline soft material- Permanent magnet material- Theoretical background- Super paramagnetism- Coulomb blockade-Quantum cellular Automata.

#### **UNIT V: Application of Nanotechnology**

Chemistry and Environment – Energy applications of nanotechnologyInformation and Communication- Heavy industry-Consumer goodsNanomedicine - Medical application of Nanotechnology

#### **Text Book:**

1. Text book of Nanoscience and Nanotechnology – B. S. Moorthy, P. Sankar, Baldev Raj, B.

B. Rath and James Murdy University Press – IIM

2. Nanophysics, Sr. Geradin Jayam, Holy Cross College, Nagercoil (2010)

#### **Reference:**

- 1. 'Nanoscience and Nanotechnology: Fundamentals to Frontiers'
- 2. M.S. Ramachandra Rao, Shubra Singh, Wiley India pvt. Ltd., New Delhi. (2013).
- 3. 'Nano the Essentials' T. Pradeep, Tata Mc.Graw Hill company Ltd (2007)
- 4. 'The Chemistry of Nano materials : Synthesis, Properties and Applications', Volume 1 C.

N. R. Rao, A. Mu<sup>-</sup>ller, A. K. Cheetham, , Germany (2004).

| UNITS    | TOPIC                                     | LECTURE | MODE OF |
|----------|-------------------------------------------|---------|---------|
| UNIT - I | History of nano technology                | 2       | LP      |
|          | Nano structure                            | 2       | L.T     |
|          | Synthesis of oxide nano particles         | 2       | L.I     |
|          | Synthesis of semiconductor nano particles | 3       | P.T.I   |
|          | Synthesis of metallic nano particles      | 3       | I.P.T   |
|          |                                           |         | -,-,-   |
| UNIT-II  | Super lattice                             | 2       | P, I    |
|          | Preparation of quantum nano structure     | 2       | L, T    |
|          | Quantum well laser                        | 2       | I, P    |
|          | Quantum cascade laser                     | 2       | I, T    |
|          | Quantum wire, quantum dots                | 2       | L,T     |
|          | Applications of quantum dots              | 2       | L,P     |
|          |                                           |         |         |
| UNIT-III | Discovery of nano tubes                   | 2       | P,T     |
|          | Carbon allotropes                         | 2       | L,P     |
|          | Types of carbon nano tubes                | 2       | I, T    |
|          | Grapheme sheet to single walled nano tube | 2       | L,T     |
|          | Electronic structure of carbon nano tubes | 2       | I,P     |
|          | Synthesis of carbon nano tubes            | 2       | L,I     |
|          |                                           |         |         |
| UNIT-IV  | Nano crystalline soft material            | 2       | L,T     |
|          | Permanent magnetic material               | 2       | I, P    |
|          | Theoretical back ground                   | 2       | I,T     |
|          | Super paramagnetism                       | 2       | L,P     |
|          | Coulomb blockade                          | 2       | I,P     |
|          | Quantum cellular Automata                 | 2       | L, T    |
|          |                                           |         |         |
| UNIT-V   | Chemistry and environment                 | 2       | L,T     |
|          | Energy applications of nano technology    | 2       | P,I     |
|          | Information and communication             | 2       | Р,Т     |
|          | Heavy industry- consumer goods            | 2       | L,P     |
|          | Nano medicine                             | 2       | L,I     |
|          | Medical applications of nano technology   | 2       | I,T     |
|          |                                           |         |         |

| Course | Programme outcomes Programme specific outcomes M |         |         |         |         |           |          |          |          | Mean |        |
|--------|--------------------------------------------------|---------|---------|---------|---------|-----------|----------|----------|----------|------|--------|
| s      | PO<br>1                                          | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PSO<br>1  | PSO<br>2 | PSO<br>3 | PSO<br>4 | PSO5 | scores |
| CO1    | 5                                                | 4       | 3       | 3       | 3       | 5         | 4        | 4        | 3        | 3    | 3.7    |
| CO2    | 5                                                | 4       | 4       | 3       | 3       | 5         | 4        | 3        | 3        | 3    | 3.7    |
| CO3    | 4                                                | 4       | 4       | 4       | 4       | 4         | 4        | 3        | 3        | 3    | 3.7    |
| CO4    | 4                                                | 4       | 3       | 3       | 3       | 4         | 4        | 4        | 3        | 3    | 3.5    |
| CO5    | 4                                                | 4       | 4       | 3       | 3       | 4         | 4        | 4        | 3        | 3    | 3.6    |
|        |                                                  |         |         | Mea     | n overa | all score |          |          |          |      | 3.64   |

Result : The Score for this course is 3.64 - High

| <b>BLOOM'S TAXANOMY</b> | INTERNAL | EXTERNAL |
|-------------------------|----------|----------|
| KNOWLEDGE               | 50%      | 50%      |
| UNDERSTANDING           | 30%      | 30%      |
| APPLY                   | 20%      | 20%      |

Course Designer : Dr.J.S.P.CHITRA, Department of PHYSICS

Programme : B.Sc Physics Semester : VI Sub. Code : U22DSP3A

Part III: DSEC -III Elective Hours : 4 hrs/W (60 Hrs P/S) Credits: 4

# TITLE OF THE PAPER: SPECTROSCOPY

| Pedagogy                                                                                                                                                                                                                                                                      | Pedagogy Hours Lecture Peer Teaching GD/VIDOES/TUTORIAL ICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                        |                                                             |          |                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------|-----------------|--|--|--|
|                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                        |                                        |                                                             | 1        |                 |  |  |  |
| <b>PREAMBLE:</b> Ac higher studies (Pos                                                                                                                                                                                                                                       | <b>PREAMBLE:</b> Acquire knowledge and understanding of the basics of spectroscopy and apply it in their higher studies (Post graduate).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                        |                                                             |          |                 |  |  |  |
| At the end of the S                                                                                                                                                                                                                                                           | COURSE OUTCOME       Unit       Hrs P/S         At the end of the Semester, the Students will be able to       Unit       Hrs P/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                        |                                                             |          |                 |  |  |  |
| CO1: understand Microwave Spectroscopy in detail with the knowledge of classification of molecules                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                        |                                                             |          | 12              |  |  |  |
| <b>CO2</b> : analyze the molecule as harmo                                                                                                                                                                                                                                    | e theory of the theory of theo | of Infra red s<br>an anharmor            | pectroscopy with<br>nic oscillator.    | the vibrating diatomic                                      | II       | 12              |  |  |  |
| CO3: understand classical and quant                                                                                                                                                                                                                                           | and anal<br>tum effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | yze Raman<br>ets.                        | Spectroscopy in a                      | detail with the knowledge of                                | III      | 12              |  |  |  |
| CO4: understand<br>Vibrational coarse                                                                                                                                                                                                                                         | the elect<br>structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ronic spectr<br>e: Progressic            | oscopy<br>ons – Frank-Cond             | on principle                                                | IV       | 12              |  |  |  |
| <b>CO5</b> : explain the and double beam).                                                                                                                                                                                                                                    | e construc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion and wo                              | rking of IR spect                      | rophotometer ( Single beam                                  | V        | 12              |  |  |  |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | SYLLAB                                 | JUS                                                         |          | ·               |  |  |  |
| To understand mo                                                                                                                                                                                                                                                              | lecular sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ectroscopy                               | and the instrumer                      | nt techniques                                               |          |                 |  |  |  |
| Unit I: Microwav<br>Rotation of molect<br>of Spectral lines –                                                                                                                                                                                                                 | <b>e Spectr</b><br>ules – Cla<br>Effect of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oscopy<br>assification of<br>Isotopic Su | of molecules – Ro<br>bstitution, Techn | otation spectra of diatomic m<br>iques and Instrumentation. | olecules | s – Intensities |  |  |  |
| Unit II: Infrared Spectroscopy<br>I.R. Spectroscopy – Vibrating diatomic molecules – Simple Harmonic Oscillator - anharmonic oscillator –<br>Diatomic vibrating rotator – IR Spectrum of HCl - Interaction of rotations and vibrations – Vibration of<br>Polyatomic molecules |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                        |                                                             |          |                 |  |  |  |
| Unit III: Raman<br>Raman effect: Dis<br>rotational Raman<br>Raman spectra – R<br>determination from                                                                                                                                                                           | Unit III: Raman Spectroscopy<br>Raman effect: Discovery – Quantum theory of Raman effect – Classical theory of Raman Effect –Pure<br>rotational Raman Spectra- Linear molecules – Raman Spectrum of symmetric top molecules - Vibrational<br>Raman spectra – Rule of mutual exclusion, Polarization of light and the Raman Effect - Structure<br>determination from IR and Raman spectroscopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                        |                                                             |          |                 |  |  |  |

#### **Unit IV: Electronic spectroscopy**

Vibrational coarse structure: Progressions – Frank-Condon principle – Dissociation energy and Dissociation products – Rotational Fine Structure of Electronic Vibration Transitions - Fortrat diagram – Predissociation

#### **Unit V: Instrumentation**

Instrumentation and Techniques in Infrared spectroscopy – Sources – monochromators – Sample cells – Detectors – Single beam Infra red spectrometer – Double beam Infra red spectrometer

#### **Book For Study :**

1. Molecular structure and spectroscopy - G. Aruldhas, PHI Learning Pvt. Ltd, India.

Unit 1. Chapter 6 (6.1, 6.11, 6.2 – 6.6, 6.8, 6.14)

Unit 2. Chapter 7 (7.4, 7.5, 7.11, 7.11.1)

Unit 3. Chapter 8 (8.1 -8.5, 8.10, 8.12)

Unit 4. Chapter 9 (9.2, 9.4, 9.6, 9.7, 9.8, 9.9, 9.10)

Unit 5. Chapter 7 (7.16)

#### **Book For Reference:**

- 1. Hand book of Analytical Instruments -R.S. Khandpur, Tata MC Grow Hill Ltd
- 2. Fundamentals of Molecular Spectroscopy Colin N Banwell Elaine- M Mccash Fifth Edition

| UNITS    | TOPIC                     | LECTURE HOURS             |   | MODE OF TEACHING           |
|----------|---------------------------|---------------------------|---|----------------------------|
|          | Rotation of molecules -   | - Classification of       | 4 | Lecture, ICT               |
|          | molecules –               |                           |   |                            |
|          | Rotation spectra of diat  | omic molecules –          | 5 | GD, Lecture                |
| Unit I   | Intensities of Spectral l | ines – Effect of Isotopic |   |                            |
|          | Substitution,             |                           |   |                            |
|          | Techniques and Instrum    | nentation – Chemical      | 3 | Teaching (chalk and talk), |
|          | analysis by Microwave     | spectroscopy.             |   | Videos                     |
|          | I.R. Spectroscopy – Vil   | brating diatomic          | 5 | Lecture                    |
|          | molecules – Simple Ha     | rmonic Oscillator -       |   |                            |
| Unit II  |                           |                           |   |                            |
|          | anharmonic oscillator -   | - Diatomic vibrating      | 4 | Teaching (chalk and talk), |
|          | rotator – IR Spectrum o   | of HCl -                  |   | video                      |
|          | Interaction of rotations  | and vibrations –          | 3 | GD, ICT                    |
|          | Vibration of Polyatomi    | c molecules               |   |                            |
|          | Raman effect: Discover    | ry - Quantum theory of    | 4 | Lecture                    |
|          | Raman effect – Classic    | al theory of Raman        |   |                            |
|          | Effect                    |                           |   |                            |
| Unit III | Pure rotational Raman     | Spectra- Linear           | 3 | GD                         |
|          | molecules – Raman Sp      | ectrum of symmetric top   |   |                            |
|          | molecules -               |                           |   |                            |
|          | Vibrational Raman spe     | ctra – Rule of mutual     | 3 | Teaching (chalk and talk), |
|          | exclusion, Polarization   | of light and the Raman    |   | GD                         |

|         | Effect -                                                                                                |   |                                       |
|---------|---------------------------------------------------------------------------------------------------------|---|---------------------------------------|
|         | Structure determination from IR and Raman spectroscopy.                                                 | 2 | Lecture, ICT                          |
| Unit IV | Vibrational coarse structure: Progressions –<br>Frank-Condon principle                                  | 4 | ICT, GD                               |
|         | Dissociation energy and Dissociation products –<br>Rotational Fine Structure of Electronic<br>Vibration | 5 | Teaching (chalk and talk),<br>Lecture |
|         | Transitions - Fortrat diagram – Pre dissociation                                                        | 3 | Lecture, Video                        |
|         | Instrumentation and Techniques in Infrared spectroscopy                                                 | 3 | Lecture, ICT                          |
| Unit V  | Sources – monochromators – Sample cells –<br>Detectors – Single beam Infra red spectrometer<br>–        | 6 | Lecture, Teaching (chalk and talk)    |
|         | Double beam Infra red spectrometer                                                                      | 3 | GD, Videos                            |

| Course<br>outcome | Programme outcomes |    |    |     |         | Programme specific outcomes |     |     |     | mes  | Mean<br>scores |
|-------------------|--------------------|----|----|-----|---------|-----------------------------|-----|-----|-----|------|----------------|
| S                 | PO                 | PO | PO | PO  | PO      | PSO                         | PSO | PSO | PSO | PSO5 |                |
|                   | 1                  | 2  | 3  | 4   | 5       | 1                           | 2   | 3   | 4   |      |                |
| CO1               | 5                  | 4  | 3  | 3   | 3       | 4                           | 4   | 4   | 3   | 3    | 3.6            |
| CO2               | 5                  | 4  | 4  | 3   | 4       | 4                           | 4   | 3   | 3   | 3    | 3.7            |
| CO3               | 4                  | 4  | 4  | 4   | 4       | 4                           | 4   | 3   | 3   | 3    | 3.7            |
| CO4               | 4                  | 4  | 3  | 3   | 3       | 4                           | 4   | 4   | 3   | 3    | 3.5            |
| CO5               | 4                  | 4  | 4  | 3   | 3       | 4                           | 4   | 4   | 4   | 3    | 3.7            |
|                   |                    |    |    | Mea | n overa | all score                   |     |     |     |      | 3.64           |

# Result: The Score for this Course is 3.64 (High Relationship)

| Mapping          | 1-20%                                  | 21-40%                     | 41-60%           | 61-80%                                       | 81-100%                             |
|------------------|----------------------------------------|----------------------------|------------------|----------------------------------------------|-------------------------------------|
| Scale            | 1                                      | 2                          | 3                | 4                                            | 5                                   |
| Relation         | 0.0-1.0                                | 1.1-2.0                    | 2.1-3.0          | 3.1-4.0                                      | 4.1-5.0                             |
| Quality          | Very Poor                              | Poor                       | Moderate         | High                                         | Very High                           |
| Mean Score of CO | Ds = <u>Total of</u><br>Total No. of I | <u>Value</u><br>Pos & PSOs | Mean Overall Sco | ore of COs = $\frac{\text{Tot}}{\text{Tot}}$ | al of Mean Score<br>otal No. of COs |

| BLOOM'S TAXANOMY    | INTERNAL | EXTERNAL |
|---------------------|----------|----------|
| K1(Remembering /    | 40%      | 40%      |
| Recalling)          |          |          |
| K2 (Understanding / | 30%      | 30%      |
| comprehension)      |          |          |
| K3 (Application and | 30%      | 30%      |
| analysis)           |          |          |

# Course Designer: S V Meenakshi

# **Department of Physics.**

Programme : B.Sc Physics Semester : VI Sub. Code : U22DSP3B Part III: DSEC -III Elective Hours : 4 hrs/W (60 Hrs P/S) Credits: 4

#### TITLE OF THE PAPER: PROBLEMS SOLVING SKILLS IN PHYSICS

| Pedagogy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours                                                                                                                                   | Lecture                       | Pedagogy Hours Lecture Peer Teaching GD/VIDOES/TUTORIAL ICT |               |                |                                                                          |         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|---------------|----------------|--------------------------------------------------------------------------|---------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 2 1                                                                                                                                   |                               |                                                             |               |                | 1                                                                        |         |  |  |
| <b>PREAMBLE:</b> Ac in attending compo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>PREAMBLE:</b> Acquire knowledge and understanding of the basics skills of solving problems and apply in attending competitive exams. |                               |                                                             |               |                |                                                                          |         |  |  |
| At the end of the S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Semester,                                                                                                                               | COURS<br>the Student          | <b>E OUTCOME</b> s will be able to                          |               |                | Unit                                                                     | Hrs P/S |  |  |
| <b>CO1</b> : understand to recollect the cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and deverses and dev                         | elop the skil<br>ng theories. | l in solving probl                                          | ems in Mech   | anics and also | Ι                                                                        | 12      |  |  |
| CO2: analyze and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d solve th                                                                                                                              | ne problems                   | in Thermal Physi                                            | ics.          |                | II                                                                       | 12      |  |  |
| <b>CO3</b> : solve the p corresponding theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | roblems :<br>ories.                                                                                                                     | in Electricit                 | y and Magnetism                                             | and also will | discuss the    | III                                                                      | 12      |  |  |
| CO4: understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and solv                                                                                                                                | e problems                    | in Quantum Mecl                                             | hanics        |                | IV                                                                       | 12      |  |  |
| <b>CO5</b> : explain the problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | general                                                                                                                                 | concepts in                   | Physics and math                                            | ematics by se | olving         | V                                                                        | 12      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         |                               | SYLLAB                                                      | SUS           |                |                                                                          | L       |  |  |
| <b>Objective:</b><br>To understand the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | method t                                                                                                                                | o solve the                   | problems quickly                                            | and correctly | у.             |                                                                          |         |  |  |
| <ul> <li>Unit 1: Problems in Mechanics</li> <li>Newton laws of motion for various systems (1, 2 and 3 dimension), Conservation laws and collisions, Rotational mechanics, central force, Harmonic oscillator, special relativity</li> <li>Unit II: Problems in Thermal Physics</li> <li>Kinetic theory- MB distribution-Laws of thermodynamics–Ideal Gas law-Various Thermodynamic process- Entropy calculation for various process-Heat engine-TS and PV diagram-Free energies various relations</li> <li>Unit III: Problems in Electricity &amp; Magnetism</li> <li>Electrostatics- calculation of Electrostatic quantities for various configurations- Conductors, Magneto statics- Calculation of Magnetic quantities for various configuration, Electromagnetic induction, Poynting vector, Electromagneticwaves.</li> <li>Unit IV: Problems in Quantum mechanics</li> <li>Origin of Quantum mechanics- Fundamental Principles of Quantum mechanics- potential wells and hormanic actillator.</li> </ul> |                                                                                                                                         |                               |                                                             |               |                | ollisions,<br>namic<br>ies various<br>Magneto<br>on, Poynting<br>lls and |         |  |  |
| Unit V: Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s in Gene                                                                                                                               | eral Physics                  | & Mathematics                                               |               |                |                                                                          |         |  |  |

Plotting the graphs for various elementary and composite functions-Elasticity-Viscosity and surface tension- fluids-Buoyancy-pressure-Bernoulli's theorem-applications-waves and oscillations, Errors and propagation of errors.

#### Text book for reference:

1. Mechanics(in SI units) by Charles Kittel, Walter D knight etc. (Berkeley Physics course-volume 1), Tata McGraw Hill publication ,second edition.

- 2. Thermal physics by S.C.Garg, RM Bansal &CK Ghosh. (Tata McGraw Hill Publications), 1st edition.
- 3. Electricity & magnetism(in SI units) by E.M.Purcell, Tata Mcgraw hill Publication, 2nd Edition.
- 4. Quantum mechanics by N.Zettili, Wiley Publishers, second edition.
- 5. Introduction to quantum mechanics by David. J.Griffith, Pearson Publications, second edition.

| UNITS    | TOPIC                                                                                                                                                         | LECTURE HOURS                                                                                                            |    | MODE OF TEACHING       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----|------------------------|
| Unit I   | Newton laws of motion<br>(1, 2 and 3 dimension),<br>collisions, Rotational m<br>Harmonic oscillator, sp                                                       | for various systems<br>Conservation laws and<br>nechanics, central force,<br>ecial relativity                            | 12 | Peer teaching, GD, ICT |
| Unit II  | Kinetic theory- MB dis<br>thermodynamics–Ideal<br>Thermodynamic process<br>for various process-Hea<br>diagram-Free energies                                   | tribution-Laws of<br>Gas law-Various<br>ss- Entropy calculation<br>at engine-TS and PV<br>various relations              | 12 | Peer teaching, GD, ICT |
| Unit III | Electrostatics- calculati<br>quantities for various co<br>Conductors,Magneto st<br>Magnetic quantities for<br>Electromagnetic induct<br>Electromagneticwaves. | on of Electrostatic<br>onfigurations-<br>atics- Calculation of<br>various configuration,<br>ion, Poynting vector,        | 12 | Peer teaching, GD, ICT |
| Unit IV  | Origin of Quantum med<br>Principles of Quantum<br>wells and harmonic osc                                                                                      | chanics- Fundamental<br>mechanics- potential<br>illator- Hydrogen atom.                                                  | 12 | Peer teaching, GD, ICT |
| Unit V   | Plotting the graphs for<br>composite functions-El<br>surface tension- fluids-<br>Bernoulli's theorem-ap<br>oscillations, Errors and                           | various elementary and<br>asticity-Viscosity and<br>Buoyancy-pressure-<br>plications-waves and<br>propagation of errors. | 12 | Peer teaching, GD, ICT |

| Course<br>outcome | Р       | rograr  | nme o   | utcom   | es      | Pro       | gramme   | e specifi | c outcoi | mes  | Mean<br>scores |
|-------------------|---------|---------|---------|---------|---------|-----------|----------|-----------|----------|------|----------------|
| S                 | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PSO<br>1  | PSO<br>2 | PSO<br>3  | PSO<br>4 | PSO5 |                |
| CO1               | 5       | 4       | 3       | 3       | 3       | 4         | 4        | 4         | 3        | 3    | 3.6            |
| CO2               | 5       | 4       | 4       | 3       | 4       | 4         | 4        | 3         | 3        | 3    | 3.7            |
| CO3               | 4       | 4       | 4       | 4       | 4       | 4         | 4        | 3         | 3        | 3    | 3.7            |
| CO4               | 4       | 4       | 3       | 3       | 3       | 4         | 4        | 4         | 3        | 3    | 3.5            |
| CO5               | 4       | 4       | 4       | 3       | 3       | 4         | 4        | 4         | 4        | 3    | 3.7            |
|                   |         |         |         | Mea     | n overa | all score |          |           |          |      | 3.64           |

# **Result:** The Score for this Course is 3.64 (High Relationship)

| Mapping          | 1-20%                                  | 21-40%                     | 41-60%          | 61-80%                       | 81-100%                              |  |
|------------------|----------------------------------------|----------------------------|-----------------|------------------------------|--------------------------------------|--|
| Scale            | 1                                      | 2                          | 3               | 4                            | 5                                    |  |
| Relation         | 0.0-1.0                                | 1.1-2.0                    | 2.1-3.0         | 3.1-4.0                      | 4.1-5.0                              |  |
| Quality          | Very Poor                              | Poor                       | Moderate        | High                         | Very High                            |  |
| Mean Score of CO | Ds = <u>Total of</u><br>Total No. of I | <u>Value</u><br>Pos & PSOs | Mean Overall So | core of COs = $\frac{To}{T}$ | tal of Mean Score<br>otal No. of COs |  |
|                  |                                        |                            |                 |                              |                                      |  |

| BLOOM'S TAXANOMY    | INTERNAL | EXTERNAL |
|---------------------|----------|----------|
| K1(Remembering /    | 40%      | 40%      |
| Recalling)          |          |          |
| K2 (Understanding / | 20%      | 20%      |
| comprehension)      |          |          |
| K3 (Application and | 40%      | 40%      |
| analysis)           |          |          |

Course Designer: S V Meenakshi

**Department of Physics.** 

Programme : B.Sc Physics Semester : VI Sub. Code : U22SEP3

#### Part III: Skill –SEC- III Hours : 2 hrs/W (30 Hrs P/S) Credits: 2

#### TITLE OF THE PAPER: PHYSICS FOR COMPETITIVE EXAMS

| Pedagogy                                                     | Hours      | Lecture        | Peer Teaching      | GD/VIDOES/TUTORIAL        | ICT      |          |  |  |
|--------------------------------------------------------------|------------|----------------|--------------------|---------------------------|----------|----------|--|--|
|                                                              | 2 1 1      |                |                    |                           |          |          |  |  |
| PREAMBLE: Le                                                 | arn the s  | skill of time  | management in      | solving problems and answ | vering n | nultiple |  |  |
| choice questions                                             |            |                |                    |                           |          |          |  |  |
|                                                              |            |                |                    |                           |          |          |  |  |
|                                                              |            | COURS          | E OUTCOME          |                           | Unit     | Hrs P/S  |  |  |
| At the end of the S                                          | emester,   | the Student    | s will be able to  |                           |          |          |  |  |
| CO1: develop the                                             | e method   | of attending   | g multiple choice  | questions in mechanics,   |          |          |  |  |
| properties of matte                                          | er         |                |                    |                           | Ι        | 6        |  |  |
|                                                              |            |                |                    |                           |          |          |  |  |
| CO2: enhance the                                             | e skill in | solving pro    | blems and answer   | ring multiple choice      |          |          |  |  |
| questions in physic                                          | CS         |                |                    |                           | II       | 6        |  |  |
| CO3: understand                                              | and anal   | lyze the tricl | ks in attending mo | ore questions (multiple   |          |          |  |  |
| choice) in a short i                                         | nterval o  | f time.        |                    |                           | III      | 6        |  |  |
|                                                              |            |                |                    |                           |          |          |  |  |
| <b>CO4</b> : apply the k                                     | nowledg    | e of physics   | in solving proble  | ems.                      |          |          |  |  |
|                                                              | -          |                | • •                |                           | IV       | 6        |  |  |
|                                                              |            |                |                    |                           |          |          |  |  |
| <b>CO5</b> : develop the                                     | exams      |                |                    |                           |          |          |  |  |
| core action and confidence of autonaming competitive examis. |            |                |                    |                           |          | 6        |  |  |
|                                                              |            |                |                    |                           |          |          |  |  |
|                                                              |            |                |                    |                           |          |          |  |  |
| SYLLABUS                                                     |            |                |                    |                           |          |          |  |  |

#### **Objective:**

To apply the knowledge of physics in answering multiple choice questions and solving problems in physics.

#### Unit – I : Mechanics and properties of matter

Laws of motion – friction – work, power, energy – conservation of energy and momentum – elas and inelastic collisions – projectile motion – circular motion – centripetal and centrifugal forces – mechan of rigid bodies – moment of inertia – conservation of angular momentum – gravitation – planets and satelli - cosmic rays & the universe- elasticity.

Hydrostatics – principles of buoyancy and pressure in fluid – surface tension – flow of liquids viscosity.

#### Unit – II : Heat and sound

Thermal expansion – calorimetry and change of state – thermodynamics – isothermal, adiabat isobaric, isochoric processes – laws of thermodynamics – reversible and irreversible processes – entropy

transmission of heat – conduction, convection and radiation – black body radiations – J-K effect – liquefacti of gases.

Simple harmonic motion – damped and forced oscillations – progressive waves – beats- stationa waves in a string – Doppler effect – acoustics – ultrasonic waves.

#### **Unit – III : Electricity and electromagnetism**.

Electric field and potential – capacitors and dielectrics – electric current and circuits – thermo electric – magnetic effect of current.

Magnetic materials – hysteresis – energy loss – electromagnetic induction – self and mutual inductand – AC circuits – series and parallel resonances – transformer.

# **Unit IV : Optics and Electronics**

Reflection, refraction and dispersion – aberration and optical instruments – interference of light interference in thin films- Fresnel and Fraunhofer diffraction – resolving power – polarization – doul refraction – optical activity – principle of fibre optic communication – NA – step index and graded index fibre – characteristics of laser.

Intrinsic and extrinsic semiconductors – junction diodes – pnp and npn transistors – FE JFET,MOSFET- rectifiers – amplifiers – oscillators – modulation and demodulation – OP – AMPS – Boole identities – De Morgan's laws – logic gates.

#### **Unit – V : Modern Physics**

Electron – band theory of solids – structure of atom – X-rays – photoelectric effect – wave mechan – nuclear structure – nuclear radiations – particle accelerators – radioactivity – nuclear fission and fusior nuclear reactors.

Different crystal systems – bonding in crystals - crystal imperfections – classification of sur conductors - applications.

Relativity – reference systems – Galilean invariance and conservation laws – Michelson – Morl experiment – postulates of special theory of relativity – Lorentz transformation – length contraction – til dilation – variation of mass with velocity – mass – energy equivalence. Book For Study :

Material: Prepared by the Department of Physics

| UNITS   | TOPIC                                                                                                                                                                                                                                                                                      | LECTURE HOURS                                                                                                                                                                                                                                                                                                                  |   | MODE OF TEACHING |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|
| Unit I  | Rotation of molecules -<br>– Laws of motion – fri<br>– conservation of ener<br>and inelastic collisions<br>motion – centripetal<br>mechanics of rigid bo<br>conservation of angula<br>planets and satellites -<br>elasticity.<br>Hydrostatics –<br>pressure in fluid – surfa<br>viscosity. | <ul> <li>Classification of molecu<br/>ction – work, power, ener<br/>gy and momentum – elas<br/>– projectile motion – circu<br/>and centrifugal forces<br/>dies – moment of inertia<br/>r momentum – gravitatior<br/>cosmic rays &amp; the univers</li> <li>principles of buoyancy a<br/>ce tension – flow of liquid</li> </ul> | 6 | Lecture & GD     |
| Unit II | Thermal expansion – ca<br>– thermodynamics – iso<br>isochoric processes –<br>reversible and irrevers                                                                                                                                                                                       | lorimetry and change of sta<br>othermal, adiabatic, isobar<br>laws of thermodynamics<br>ible processes – entropy                                                                                                                                                                                                               | 6 | Lecture & GD     |

|          | transmission of heat – conduction, convection a<br>radiation – black body radiations – J-K effect<br>liquefaction of gases.<br>Simple harmonic motion – damped a<br>forced oscillations – progressive waves – bea<br>stationary waves in a string – Doppler effect<br>acoustics – ultrasonic waves.                                                                                                                                                                                                                                                                                                                                                                                   |   |                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------|
| Unit III | Electric field and potential – capacitors a<br>dielectrics – electric current and circuits – there<br>electricity – magnetic effect of current.<br>Magnetic materials – hysteresis – energy lo<br>– electromagnetic induction – self and mutu<br>inductances – AC circuits – series and paral<br>resonances – transformer.                                                                                                                                                                                                                                                                                                                                                            | 6 | Lecture & GD                       |
| Unit IV  | Reflection, refraction and dispersion – aberrati<br>and optical instruments – interference of light<br>interference in thin films- Fresnel and Fraunhor<br>diffraction – resolving power – polarization – doul<br>refraction – optical activity – principle of fibre op<br>communication – NA – step index and graded ind<br>fibres – characteristics of laser.<br>Intrinsic and extrinsic semiconductors<br>junction diodes – pnp and npn transistors – FE<br>JFET,MOSFET- rectifiers – amplifiers – oscillate<br>– modulation and demodulation – OP – AMPS<br>Boolean identities – De Morgan's laws – logic gat                                                                     | 6 | Lecture, GD                        |
| Unit V   | Electron – band theory of solids – structure of ato<br>– X-rays – photoelectric effect – wave mechanics<br>nuclear structure – nuclear radiations – partie<br>accelerators – radioactivity – nuclear fission a<br>fusion – nuclear reactors.<br>Different crystal systems – bonding<br>crystals - crystal imperfections – classification<br>super conductors - applications.<br>Relativity – reference systems –<br>Galilean invariance and conservation laws –<br>Michelson – Morley experiment – postulates of<br>special theory of relativity – Lorentz<br>transformation – length contraction – time<br>dilation – variation of mass with velocity –<br>mass – energy equivalence | 6 | Lecture, Teaching (chalk and talk) |

| Course | Progra   | Programme Outcomes (Pos) and Programme Specific Outcomes |    |    |    |     |      |         |       |             |         |
|--------|----------|----------------------------------------------------------|----|----|----|-----|------|---------|-------|-------------|---------|
| Outcom | n (PSOs) |                                                          |    |    |    |     |      |         |       | Mean scores |         |
| es     |          |                                                          |    |    |    |     |      |         |       |             | of COs  |
| (Cos)  | РО       | PO                                                       | РО | PO | PO | PSO | PSO  | PSO     | PSO   | PSO         | Mean CO |
|        | 1        | 2                                                        | 3  | 4  | 5  | 1   | 2    | 3       | 4     | 5           |         |
|        |          |                                                          |    |    |    |     |      |         |       |             |         |
| CO1    | 3        | 2                                                        | 3  | 4  | 4  | 3   | 2    | 4       | 3     | 3           | 3.09    |
| CO2    | 4        | 2                                                        | 3  | 4  | 4  | 4   | 2    | 4       | 3     | 4           | 3.39    |
| CO3    | 4        | 2                                                        | 3  | 4  | 4  | 4   | 2    | 4       | 3     | 4           | 3.39    |
| CO4    | 4        | 2                                                        | 3  | 4  | 4  | 4   | 2    | 4       | 3     | 4           | 3.39    |
| CO5    | 3        | 4                                                        | 3  | 4  | 4  | 3   | 4    | 2       | 2     | 4           | 3.29    |
|        |          |                                                          |    |    |    |     | Mean | Overall | Score | of COs      | 3.31    |

Result: The Score for this Course is 3.36 (High Relationship)

| Mapping  | 1-20%     | 21-40%  | 41-60%   | 61-80%  | 81-100%   |
|----------|-----------|---------|----------|---------|-----------|
| Scale    | 1         | 2       | 3        | 4       | 5         |
| Relation | 0.0-1.0   | 1.1-2.0 | 2.1-3.0  | 3.1-4.0 | 4.1-5.0   |
| Quality  | Very Poor | Poor    | Moderate | High    | Very High |

| BLOOM'S             | INTERNAL | EXTERNAL |
|---------------------|----------|----------|
| TAXANOMY            |          |          |
| K1(Remembering /    | 40%      | 40%      |
| Recalling)          |          |          |
| K2 (Understanding / | 20%      | 20%      |
| comprehension)      |          |          |
| K3 (Application and | 40%      | 40%      |
| analysis)           |          |          |

Course Designer: Mrs. S V Meenakshi

**Department of Physics** 

# Programme : B. Sc.,Part III: Core paperSemester : VIHours : 6 P/W 90 Hrs P/SSub. Code : U22CP14PCredits : 5TITLE OF THE PAPER: PHYSICS PRACTICAL - IV

| Pedagogy | Hours                                                                                                            | Lab             | Peer     | GD/VIDOES/TUTORIAL | ICT |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------|-----------------|----------|--------------------|-----|--|--|--|--|
|          |                                                                                                                  | Experimentation | Teaching |                    |     |  |  |  |  |
|          | 3+3                                                                                                              | 3+3             | -        | -                  | -   |  |  |  |  |
| PREAMB   | <b>PREAMBLE:</b> The purpose of the <i>course</i> is to make the students to construct electronic circuits using |                 |          |                    |     |  |  |  |  |

Diodes, transistors and ICs and study their behavior. To make the students to know the applications of electronic components like diodes, transistors and IC's.

#### **COURSE OUTCOME**

At the end of the Semester, the Students will be able to

**CO1**: Construct electronic circuits using logic gates & ICs

**CO2**: Study the characteristics Transister and FET.

CO3: Construct dual power supply.

CO4: Understand the theoretical concepts by doing experiments

**CO5**: Understand applications of ICs by doing experiments

| S.NO | EXPERIMENT                                        |
|------|---------------------------------------------------|
| 1.   | LOGIC GATES USING DISCRETE COMPONENT.             |
| 2.   | STUDY OF TRANSISTOR CHARACTERITICS – CE MODE      |
| 3.   | DESIGN AND STUDY OF HALF AND FULL WAVE RECTIFIER. |
| 4.   | STUDY OF FET CHARACTERITICS – CS MODE.            |
| 5.   | STUDY OF HARTLEY OSCILLATOR USING TRANSISTORS.    |
| 6.   | STUDY OF COLPITT'S OSCILLATOR USING TRANSISTORS.  |
| 7.   | STUDY OF ASTABLE MULTIVIBRATOR USING TRANSISTORS. |
| 8.   | VERIFICATION OF IC's.                             |
| 10.  | NAND AS A UNIVERSAL BUILDING BLOCK.               |
| 11.  | NOR AS A UNIVERSAL BUILDING BLOCK                 |
| 12   | DESIGN AND STUDY OF DUAL POWER SUPPLY.            |

Course Designer : Dr. Mrs. SANTHI.

Department of PHYSICS

#### Part III : Allied Paper 1 Hours : 4 HrsP/W 60 Hrs/P/S Credits : 3

#### TITLE OF THE PAPER : ALLIED PHYSICS - I (T)

| Pedagogy                                                                              | Hours       | Lecture       | Peer Teaching     | GD/VIDEOS/TUTORIAL             |            | ICT     |
|---------------------------------------------------------------------------------------|-------------|---------------|-------------------|--------------------------------|------------|---------|
|                                                                                       | 4           | 2             | -                 | 1                              |            | 1       |
| Preamble:                                                                             |             |               |                   |                                |            |         |
| The scope of this                                                                     | s course is | s to understa | nd the concept of | strength of materials, viscou  | is propert | ties o  |
| liquids, heat tra                                                                     | ansforma    | tion from or  | e place to anothe | er, converting heat to do meel | hanical w  | ork and |
| basic properties                                                                      | s of light  | such as inte  | rference and diff | raction and polarisation.      |            |         |
| <b>COURSE OUT</b>                                                                     | COME        |               |                   |                                | Unit       | Hrs P/S |
| On the successful completion of the course students will able to                      |             |               |                   |                                |            |         |
| CO1: underst                                                                          | and the v   | arious mod    | lulus involved i  | n the materials and apply      | 1          | 12      |
| the knowledge                                                                         | e to prac   | tical applic  | ations            |                                |            |         |
| CO2 : explain t                                                                       | he conce    | pt behind flo | ow of liquids due | e to viscous forces            | 2          | 12      |
| CO3 understa                                                                          | nd how      | heat is tran  | smitted due to p  | process of conduction,         | 3          | 12      |
| convection an                                                                         | d radiat    | tion and atr  | nospheric pollu   | tion                           |            |         |
| <b>CO4</b> : understand various thermodynamic laws and the concept of entropy 4 12    |             |               |                   |                                |            | 12      |
| <b>CO5</b> : know the concepts of interference, diffraction and polarisation and 5 12 |             |               |                   |                                |            | 12      |
| its uses in pra                                                                       | ctical ap   | plications    |                   |                                |            |         |
|                                                                                       |             |               |                   |                                |            |         |

# **UNIT I : PROPERTIES OF MATTER**

Introduction- Elasticity-Different moduli of elasticity – Bending of beams – Expression for the bending moment –Uniform bending of a beam- Measurement of young'smodulus by bending of a beam-non-uniformbending (pin & microscope) - uniform (optical lever & telescope) and- Torsion of a body -Expression for torque per unit twist – work done in twisting a wire – Torsional oscillations of a body (only)

# UNIT II : VISCOSITY

Introduction-Viscous force – Co-efficient of viscosity –Streamline flow-Turbulent flow-Reynold's number-Poiseuille's method for determining co-efficient of viscosity of a liquid and comparison of Viscosities- Poiseuille's method for determining co-efficient of viscosity of a liquid (variable pressure head) – Equation of continuity--Bernoulli's theorem – Statement and proof – Applications-Venturimeter

# UNIT III : HEAT (CONDUCTION, CONVECTION AND RADIATION)

Conduction (definition) - Thermal conductivity - coefficientofthermalconductivity – Determination of thermal conductivity by Lee's disc method - Convection (definition) -convection in the atmosphere-Green House Effect-Atmospheric Pollution-Radiation (definition) - Stefan's Law(statement) -determination of Stefan's constant by filament heating method

# **UNITIV : THERMODYNAMICS**

Zeroth Law of thermodynamics(statement only) – First, second and third law of thermodynamics (statement only) – Heat engine- Carnot's engine and Carnot's cycle – Efficiency of a Carnot's engine – Entropy – Change of entropy in a Carnot's cycle

# UNIT V :OPTICS

Interference (Definition)– conditions for maxima and minima –Stoke's law- Air wedge– Experiment to measure the diameter of thin film –Diffraction (Definition) – Fresnel diffraction -Fraunhofer diffraction –Plane transmission diffraction grating- determination of wavelength of light using transmission grating- Polarization (Definition) - Double Refraction-Uniaxial crystal

# TEXT BOOKS

1. Properties of Matter - R.Murugesan-S.Chand& company Pvt.Limited Revised edition 2012

UNIT 1 : Chapter 1 - 1.1, 1.2, 1.14, 1.15, 1.20, 1.21, 1.9, 1.12, 1.13

UNIT II : Chapter 2 & 4 - 2.1, 2.2, 2.5, 2.7, 4.1, 4.4, 4.4 (ii)

2. Thermal Physics - R.Murugesan – For Madurai Kamaraj University B.Sc., Ancillary Physics II Semester (2011)

UNIT III : Chapter III, IV & V – 3.1, 3.2, 4.1, 4.2, 4.5, 4.6, 5.1, 5.2, 5.3

UNIT IV : Chapter VII - 7.1, 7.2, 7.5, 7.6

# 3. Allied Physics I & II - R.Murugesan -S.Chand & company Pvt.Limited Revised and enlarged edition 2010

UNIT IV : 3.15, 3.16, 3.17, 3.18

UNIT V: Chapter VI: 6.2, 6.5, 6.8, 6.10, 6.11, 6.12, 6.14

#### **REFERENCE BOOKS**

- 1. Properties of matter Brijlal and Subramanyam Eurasia Publishing co., New Delhi, III Edition1983
- 2. Element of properties of matter D.S.Mathur S.Chand & Company Ltd,New Delhi, 10<sup>th</sup> Edition1976
- Heat and Thermodynamics–Brijlal& Subramanyam, S.Chand & Co, 16<sup>th</sup> Edition2005
- 4. Heat and Thermodynamics– D.S. Mathur, SultanChand & Sons, 5<sup>th</sup> Edition2014.
- 5. Optics and Spectroscopy –R.Murugeshan, S.Chand and co., New Delhi, 6<sup>th</sup> Edition2008.
- A text book of Optics Subramanyam and Brijlal, S. Chand and co.. New Delhi, 22<sup>nd</sup> Edition2004.
- 7. Optics Sathyaprakash, Ratan Prakashan Mandhir, New Delhi, VII<sup>th</sup> Edition1990.

#### WEB REFERENCES

- 1. <u>Properties Of Matter.Pdf eBook and Manual Free download (thebookee.net)</u>
- 2. <u>Thermal and Statistical Physics</u> | Download book (freebookcentre.net)

| UNITS           | TOPIC                                | LECTURE | MODE OF TEACHING                      |
|-----------------|--------------------------------------|---------|---------------------------------------|
| UNIT I: PRC     | PERTIES OF MATTER (12 Hrs)           | ΠΟΟΚΒ   |                                       |
| Elasticity-Int  | roduction- Different moduli of       |         | 1 hour Lecture                        |
| elasticity – B  | ending of beams                      | 2       | and 1 hour Discussion and ICT         |
| Expression for  | br the bending moment –Uniform       | _       | 1 hours Lecture                       |
| bending of a    | beam                                 | 2       | and 1 hour Discussion and Ouiz        |
| Measurement     | of young'smodulus by bending         |         | 2 hours Lecture                       |
| of a beam-      | non-uniformbending (pin &            | 3       | 1 hour ICT& Discussion, Problem       |
| microscope) -   | uniform (optical lever &             |         | solving                               |
| telescope)      |                                      |         |                                       |
| Torsion of a l  | oody -Expression for torque per unit |         | 2 hours Lecture                       |
| twist – work    | done in twisting a wire              | 3       | 1 hour ICT                            |
| Torsional osc   | illations of a body                  | 2       | 1 hour Lecture                        |
|                 |                                      |         | 1 hour ICT& Discussion                |
| UNIT II : VI    | SCOSITY (12 Hrs)                     |         |                                       |
| Introduction    | -Viscous force – Co-efficient of     | 2       | 2 hours lecture & Discussion          |
| viscosity –S    | treamline flow-Turbulent flow-       |         |                                       |
| Reynold's n     | umber                                |         |                                       |
| Poiseuille's    | method for determining co-           | 3       | 2 hour lecture                        |
| efficient of y  | viscosity of a liquid and            |         | 1 hour ICT&Discussion                 |
| comparison      | of Viscosities                       |         |                                       |
| Poiseuille's    | method for determining co-           | 2       | 1 hour lecture                        |
| efficient of y  | viscosity of a liquid (variable      | _       | 1 hour ICT&Discussion                 |
| nressure he     | ad)                                  |         |                                       |
| Equation of     | antinuity Dornoulli's theorem        | 3       | 2 hours lecture & 1 hour Discussion   |
| Statement       | and proof                            | 5       | 2 hours rectared a nour Discussion    |
| - Statement     |                                      | 2       | the sume le struce                    |
| Applications-   | venturimeter                         | 2       | 1 hours lecture                       |
| UNIT III · H    | FAT (CONDUCTION CONVECTIO            |         | TION (12 Hrs)                         |
| Conduction (    | definition) Thermal conductivity     |         | 2 hours lecture                       |
| coefficientoft  | hermalconductivity – Determination   | -       | 1 hour ICT 1 hour Discussion and      |
| of thermal co   | nductivity by Lee's disc method      |         | Ouiz                                  |
| Convection (    | lefinition) -convection in the       | 3       | 2 hours lecture                       |
| atmosphere-(    | Green House Effect-Atmospheric       | 5       | 1 hour ICT&Discussion                 |
| Pollution       | free House Effect / Minospherie      |         | i nour re ræbiseussion                |
| Radiation       | (definition) - Stefan's Law-         | 5       | 3 hours lecture                       |
| determination   | of Stefan's constant by filament     | -       | 1 hour ICT & 1 hourDiscussion         |
| heating metho   | od                                   |         |                                       |
| UNITIV : T      | HERMODYNAMICS (12Hrs)                |         |                                       |
| Zeroth Law of   | of thermodynamics – First, second    | 3       | 2 hours lecture                       |
| and third law   | of thermodynamics                    |         | 1 hour Discussion and ICT             |
| Heat engine-    | Carnot's engine and Carnot's cycle – | 5       | 4 hours lecture                       |
| Efficiency of   | a Carnot's engine                    |         | 1 hour Discussion and ICT             |
|                 |                                      | 4       | 2 h                                   |
| Entropy – C     | Change of entropy in a Carnot's      | 4       | 5 nours lecture                       |
| cycle           |                                      |         | 1 Hour Discussion and Problem solving |
| UNIT V : O      | PTICS (12 Hrs)                       |         |                                       |
| Interference    | Definition)- conditions for maxima   | 3       | 2 hours lecture                       |
| and minima -    | Stoke's law                          |         | 1 hour Discussion                     |
| Air wedge–E     | xperiment to measure the diameter of | 3       | 2 hours lecture                       |
| thin film - thi | ckness of a thin wire                |         | 1 hour Discussion and ICT             |

| Diffraction (Define<br>Fraunhofer diffraction<br>grating- determine<br>using transmission | nition) – Fresnel<br>ction - Theory of<br>aation of waveler<br>n grating | diffraction -<br>transmission<br>ngth of light | 3 | 2 hours lecture<br>1 hour Discussion and ICT |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|---|----------------------------------------------|
| Polarization                                                                              | (Definition)                                                             | -Double                                        | 3 | 2 hours lecture                              |
| Refraction-Unia                                                                           | xial crystal                                                             |                                                |   | 1 hour Discussion and ICT                    |

| Course<br>Outcomes | Progra | amme ( | Dutcom | nes (POs | )    | Programme Specific Outcomes (PSOs) |      |      |      | Mean<br>scores of |      |
|--------------------|--------|--------|--------|----------|------|------------------------------------|------|------|------|-------------------|------|
| (Cos)              | PO1    | PO2    | PO3    | PO4      | PO5  | PSO1                               | PSO2 | PSO3 | PSO4 | PSO5              | Cos  |
| CO1                | 3      | 4      | 3      | 4        | 3    | 4                                  | 3    | 4    | 3    | 3                 | 3.4  |
| CO2                | 4      | 3      | 3      | 4        | 3    | 4                                  | 3    | 4    | 3    | 3                 | 3.4  |
| CO3                | 4      | 3      | 3      | 4        | 3    | 4                                  | 4    | 3    | 3    | 4                 | 3.5  |
| CO4                | 4      | 3      | 3      | 3        | 4    | 4                                  | 3    | 3    | 3    | 3                 | 3.3  |
| CO5                | 4      | 3      | 4      | 3        | 4    | 4                                  | 3    | 4    | 3    | 3                 | 3.5  |
|                    |        |        |        |          | Mean | Overall S                          | core |      |      |                   | 3.42 |

Mean Overall Score

Result: The Score for this Course is 3.42 (High Relationship)

| Mapping                                                                             | 1-20%     | 21-40%  |  | 41-60%             | 61-80%                             | 81-100%                  |
|-------------------------------------------------------------------------------------|-----------|---------|--|--------------------|------------------------------------|--------------------------|
| Scale                                                                               | 1         | 2       |  | 3                  | 4                                  | 5                        |
| Relation                                                                            | 0.0-1.0   | 1.1-2.0 |  | 2.1-3.0            | 3.1-4.0                            | 4.1-5.0                  |
| Quality                                                                             | Very Poor | Poor    |  | Moderate           | High                               | Very High                |
| Mean Score of COs = $\frac{\text{Total of Values}}{\text{Total No. of Pos & PSOs}}$ |           |         |  | n Overall Score of | $COs = \frac{Total of M}{Total N}$ | lean scores<br>o. of COs |

#### ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 40%      | 40%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 30%      | 30%      |
| K3 (APPLICATION and ANALYSIS)    | 30%      | 30%      |

Course Designer: Dr. P. INDRA DEVI, Dr. A. BEULAH MARY & Dr.P.N.NIRMALAAssistant Professor, Department of Physics.

Semester : III Sub. Code : U22APMT1

#### Hours : 4 HrsP/W 60 Hrs/P/S Credits : 3

#### TITLE OF THE PAPER : GENERAL PHYSICS – I (T)

| Pedagogy                                                                                             | Hours | Lecture | Peer Teaching | GD/VIDEOS/TUTORIAL |         | ІСТ |  |
|------------------------------------------------------------------------------------------------------|-------|---------|---------------|--------------------|---------|-----|--|
|                                                                                                      | 4     | 2       | -             | 1                  |         | 1   |  |
| Preamble:                                                                                            |       |         |               |                    |         |     |  |
| The scope of this course is to understand the concept of strength of materials, viscous properties o |       |         |               |                    |         |     |  |
| liquids, heat transformation from one place to another, converting heat to do mechanical work and    |       |         |               |                    |         |     |  |
| basic properties of light such as interference and diffraction and polarisation.                     |       |         |               |                    |         |     |  |
| COURSE OUTCOME                                                                                       |       |         |               | Unit               | Hrs P/S |     |  |
| On the successful completion of the course students will able to                                     |       |         |               |                    |         |     |  |
| <b>CO1</b> : understand the various modulus involved in the materials and apply                      |       |         |               |                    | 1       | 12  |  |
| the knowledge to practical applications                                                              |       |         |               |                    |         |     |  |
| <b>CO2</b> : explain the concept behind flow of liquids due to viscous forces                        |       |         |               |                    | 2       | 12  |  |
| CO3 understand how heat is transmitted due to process of conduction,                                 |       |         |               |                    | 3       | 12  |  |
| convection and radiation and atmospheric pollution                                                   |       |         |               |                    |         |     |  |
| CO4 : understand various thermodynamic laws and the concept of entropy                               |       |         |               |                    |         | 12  |  |
| <b>CO5</b> : know the concepts of interference, diffraction and polarisation and                     |       |         |               |                    |         | 12  |  |
| its uses in practical applications                                                                   |       |         |               |                    |         |     |  |

#### **UNIT I : PROPERTIES OF MATTER**

Introduction- Elasticity-Different moduli of elasticity – Bending of beams – Expression for the bending moment –Uniform bending of a beam- Measurement of young'smodulus by bending of a beam-non-uniformbending (pin & microscope) - uniform (optical lever & telescope) - Torsion of a body - Expression for torque per unit twist – work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire (only)

#### **UNIT II : VISCOSITY**

Introduction-Viscous force – Co-efficient of viscosity –Streamline flow-Turbulent flow-Reynold's number- Poiseuille's method for determining co-efficient of viscosity of a liquid and comparison of Viscosities- Poiseuille's method for determining co-efficient of viscosity of a liquid (variable pressure head) – Equation of continuity- -Bernoulli's theorem – Statement and proof – Applications-Venturimeter -Pitot tube

#### UNIT III : HEAT (CONDUCTION, CONVECTION AND RADIATION)

Conduction (definition) - Thermal conductivity - coefficientofthermalconductivity – Determination of thermal conductivity by Lee's disc method - Convection (definition) -convection in the atmosphere-Green House Effect-Atmospheric Pollution-Radiation (definition) - Stefan's Law(statement)-determination of Stefan's constant by filament heating method- Solar constant-Temperature of the Sun

# **UNITIV : THERMODYNAMICS**

Zeroth Law of thermodynamics (statement only) – First, second and third law of thermodynamics (statement only) – Heat engine- Carnot's engine and Carnot's cycle – Efficiency of a Carnot's engine – Entropy – Change of entropy in a Carnot's cycle- change of entropy in conversion of ice into stream

# UNIT V :OPTICS

Interference (Definition)– conditions for maxima and minima –Stoke's law- Air wedge– Experiment to measure the diameter of thin film –Diffraction (Definition) – Fresnel diffraction -Fraunhofer diffraction –Plane transmission diffraction grating- determination of wavelength of light using transmission grating- Polarization (Definition) -Double Refraction-Uniaxial crystal-Nicol Prism

# TEXT BOOKS

1. Properties of Matter-R.Murugesan-S.Chand& company Pvt.Limited Revised edition 2012

UNIT 1 : Chapter 1 - 1.1, 1.2, 1.14, 1.15, 1.20, 1.21, 1.9, 1.12, 1.13

UNIT II : Chapter 2 & 4 - 2.1, 2.2, 2.5, 2.7, 4.1, 4.4, 4.4 (ii,iii)

2. Thermal Physics -R.Murugesan – For Madurai Kmaraj University B.Sc., Ancillary Physics II Semester (2011)

UNIT III : Chapter III, IV & V – 3.1, 3.2, 4.1, 4.2, 4.5, 4.6, 5.1, 5.2, 5.3, 5.4,5.6 UNIT IV : Chapter VII – 7.1, 7.2, 7.5, 7.6, 7.7

3. Allied Physics I & II - R.Murugesan -S.Chand & company Pvt.Limited Revised and enlarged edition 2010

UNIT IV : 3.15, 3.16, 3.17, 3.18

UNIT V: Chapter VI: 6.2, 6.5, 6.8, 6.10, 6.11, 6.12, 6.14, 6.16

#### **REFERENCE BOOKS**

- 1. Properties of matter Brijlal and Subramanyam Eurasia Publishing co., New Delhi, III Edition1983
- 2. Element of properties of matter D.S.Mathur S.Chand & Company Ltd,New Delhi, 10<sup>th</sup> Edition1976
- Heat and Thermodynamics–Brijlal& Subramanyam, S.Chand & Co, 16<sup>th</sup> Edition2005
- 4. Heat and Thermodynamics– D.S. Mathur, SultanChand & Sons, 5<sup>th</sup> Edition2014.
- 5. Optics and Spectroscopy –R.Murugeshan, S.Chand and co., New Delhi, 6<sup>th</sup> Edition2008.
- A text book of Optics Subramanyam and Brijlal, S. Chand and co.. New Delhi, 22<sup>nd</sup> Edition2004.
- 7. Optics Sathyaprakash, Ratan Prakashan Mandhir, New Delhi, VII<sup>th</sup> Edition1990.

#### WEB REFERENCES

- 1. <u>Properties Of Matter.Pdf eBook and Manual Free download (thebookee.net)</u>
- 2. <u>Thermal and Statistical Physics</u> | <u>Download book (freebookcentre.net</u>)

| UNITS                                                                                            | TOPIC                                | LECTURE | MODE OF TEACHING                      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------|---------|---------------------------------------|--|--|--|--|--|
| LINIT L DDC                                                                                      | DEDTIES OF MATTED (12 Has)           | HOUKS   |                                       |  |  |  |  |  |
| UNIT I: PROPERTIES OF MATTER (12 HPS) Electicity Introduction Different moduli of 1 hour Lecture |                                      |         |                                       |  |  |  |  |  |
| elasticity – Be                                                                                  | ending of beams                      | 2       | and 1 hour Discussion and ICT         |  |  |  |  |  |
| Expression for                                                                                   | or the bending moment –Uniform       |         | 1 hours Lecture                       |  |  |  |  |  |
| bending of a l                                                                                   | beam                                 | 2       | and 1 hour Discussion and Quiz        |  |  |  |  |  |
| Measurement                                                                                      | of young'smodulus by bending         |         | 2 hours Lecture                       |  |  |  |  |  |
| of a beam-                                                                                       | non-uniformbending (pin &            | 3       | 1 hour ICT& Discussion, Problem       |  |  |  |  |  |
| microscope) -                                                                                    | uniform (optical lever &             |         | solving                               |  |  |  |  |  |
| telescope)                                                                                       |                                      |         | Alterna Lesterna                      |  |  |  |  |  |
| twist – work                                                                                     | done in twisting a wire              | 3       | 2 nours Lecture<br>1 hour ICT         |  |  |  |  |  |
| Torsional of                                                                                     | cillations of a body <b>Digidity</b> | 2       | 1 hour Lecture                        |  |  |  |  |  |
| modulus of                                                                                       | wire (only)                          | -       | 1 hour ICT& Discussion                |  |  |  |  |  |
|                                                                                                  | SCOSITY (12 Hrs)                     |         |                                       |  |  |  |  |  |
| Introduction                                                                                     | Viscous force Co-efficient of        | 2       | 2. hours lecture & Discussion         |  |  |  |  |  |
| viscosity _9                                                                                     | treamline flow-Turbulent flow        | -       |                                       |  |  |  |  |  |
| Revnold's n                                                                                      | umber                                |         |                                       |  |  |  |  |  |
| Poiseuille's                                                                                     | mothod for determining co            | 3       | 2 hour lecture                        |  |  |  |  |  |
| efficient of x                                                                                   | viscosity of a liquid and            | 5       | 1 hour ICT&Discussion                 |  |  |  |  |  |
| comparison                                                                                       | of Viscosities                       |         |                                       |  |  |  |  |  |
| Poiseuille's                                                                                     | method for determining co-           | 2       | 1 hour lecture                        |  |  |  |  |  |
| efficient of y                                                                                   | viscosity of a liquid (variable      | -       | 1 hour ICT&Discussion                 |  |  |  |  |  |
| nressure he                                                                                      | ad)                                  |         |                                       |  |  |  |  |  |
| Equation of                                                                                      | continuityBernoulli's theorem        | 3       | 2 hours lecture & 1 hour Discussion   |  |  |  |  |  |
| – Statement                                                                                      | and proof                            | -       |                                       |  |  |  |  |  |
| Applications-                                                                                    | Venturimeter Pitot tube              | 2       | 1hours lecture                        |  |  |  |  |  |
| rippileutions                                                                                    |                                      |         | 1 hourICT& Discussion                 |  |  |  |  |  |
| UNIT III : HEAT (CONDUCTION, CONVECTION AND RADIATION) (12 Hrs)                                  |                                      |         |                                       |  |  |  |  |  |
| Conduction (                                                                                     | definition) - Thermal conductivity-  | 4       | 2 hours lecture                       |  |  |  |  |  |
| coefficientoft                                                                                   | hermalconductivity – Determination   |         | 1 hour ICT 1 hour Discussion and      |  |  |  |  |  |
| of thermal co                                                                                    | nductivity by Lee's disc method      |         | Quiz                                  |  |  |  |  |  |
| Convection (                                                                                     | lefinition) -convection in the       | 3       | 2 hours lecture                       |  |  |  |  |  |
| atmosphere-C                                                                                     | breen House Effect-Atmospheric       |         | I hour ICT&Discussion                 |  |  |  |  |  |
| Pollution A                                                                                      | (definition) Stafan's Law            | 5       | 3 hours lecture                       |  |  |  |  |  |
| determination                                                                                    | of Stefan's constant by filament     | 5       | 1 hour ICT & 1 hourDiscussion         |  |  |  |  |  |
| heating meth                                                                                     | od Solar constant. Temperature       |         |                                       |  |  |  |  |  |
| of the Sun                                                                                       | su, solar constant Temperature       |         |                                       |  |  |  |  |  |
| UNITIV : THERMODYNAMICS (12Hrs)                                                                  |                                      |         |                                       |  |  |  |  |  |
| Zeroth Law of                                                                                    | of thermodynamics – First, second    | 3       | 2 hours lecture                       |  |  |  |  |  |
| and third law                                                                                    | of thermodynamics                    |         | 1 hour Discussion and ICT             |  |  |  |  |  |
| Heat engine-                                                                                     | Carnot's cycle –                     | 5       | 4 hours lecture                       |  |  |  |  |  |
| Efficiency of                                                                                    | a Carnot's engine                    |         | 1 hour Discussion and ICT             |  |  |  |  |  |
| Entropy – C                                                                                      | Change of entropy in a Carnot's      | 4       | 3 hours lecture                       |  |  |  |  |  |
| cvcle, chang                                                                                     | e of entropy in conversion of ice    |         | 1 hour Discussion and Problem solving |  |  |  |  |  |
| into stream                                                                                      |                                      |         |                                       |  |  |  |  |  |
| UNIT V : OI                                                                                      | UNIT V: OPTICS (12 Hrs)              |         |                                       |  |  |  |  |  |
| Interference (                                                                                   | Definition)– conditions for maxima   | 3       | 2 hours lecture                       |  |  |  |  |  |
| and minima –                                                                                     | Stoke's law                          |         | 1 hour Discussion                     |  |  |  |  |  |
|                                                                                                  |                                      |         |                                       |  |  |  |  |  |
| Air wedge–Experiment to measure the diameter of thin film - thickness of a thin wire | 3 | 2 hours lecture<br>1 hour Discussion and ICT |
|--------------------------------------------------------------------------------------|---|----------------------------------------------|
| Diffraction (Definition) - Fresnel diffraction -                                     |   | 2 hours lecture                              |
| Fraunhofer diffraction - Theory of transmission                                      | 3 | 1 hour Discussion and ICT                    |
| grating- determination of wavelength of light                                        |   |                                              |
| using transmission grating                                                           |   |                                              |
| Polarization (Definition) -Double                                                    | 3 | 2 hours lecture                              |
| Refraction-Uniaxial crystal, Nicol Prism                                             |   | 1 hour Discussion and ICT                    |

| Course<br>Outcomes | Progra | amme ( | Dutcom | es (POs | 5)   | Programme Specific Outcomes (PSOs) |      |      |      | (PSOs) | Mean<br>scores of |
|--------------------|--------|--------|--------|---------|------|------------------------------------|------|------|------|--------|-------------------|
| (Cos)              | PO1    | PO2    | PO3    | PO4     | PO5  | PSO1                               | PSO2 | PSO3 | PSO4 | PSO5   | Cos               |
| CO1                | 3      | 4      | 3      | 4       | 3    | 4                                  | 3    | 4    | 3    | 3      | 3.4               |
| CO2                | 4      | 3      | 3      | 4       | 3    | 4                                  | 3    | 4    | 3    | 3      | 3.4               |
| CO3                | 4      | 3      | 3      | 4       | 3    | 4                                  | 4    | 3    | 3    | 4      | 3.5               |
| CO4                | 4      | 3      | 3      | 3       | 4    | 4                                  | 3    | 3    | 3    | 3      | 3.3               |
| CO5                | 4      | 3      | 4      | 3       | 4    | 4                                  | 3    | 4    | 3    | 3      | 3.5               |
|                    |        |        |        |         | Mean | Overall S                          | core |      |      |        | 3.42              |

Result: The Score for this Course is 3.42 (High Relationship)

| Mapping         | 1-20%                                         | 21-40%               |     | 41-60%             | 61-80%                               | 81-100%                  |
|-----------------|-----------------------------------------------|----------------------|-----|--------------------|--------------------------------------|--------------------------|
| Scale           | 1                                             | 2                    |     | 3                  | 4                                    | 5                        |
| Relation        | 0.0-1.0                                       | 1.1-2.0              |     | 2.1-3.0            | 3.1-4.0                              | 4.1-5.0                  |
| Quality         | Very Poor                                     | Poor                 |     | Moderate           | High                                 | Very High                |
| Mean Score of C | COs = <u>Total of V</u><br>Total No. of Pos & | <u>alues</u><br>PSOs | Mea | n Overall Score of | $TCOs = \frac{Total of M}{Total Ne}$ | lean scores<br>o. of COs |

## ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 30%      | 30%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 40%      | 40%      |
| K3 (APPLICATION and ANALYSIS)    | 30%      | 30%      |

Course Designer: Dr. P. INDRA DEVI, Dr. A. BEULAH MARY & Dr.P.N.NIRMALAAssistant Professor, Department of Physics.

Semester : II Sub. Code : U22APCT2

#### Hours : 04 HrsP/W 60 Hrs/P/S Credits :3

### TITLE OF THE PAPER : ALLIED PHYSICS – II (T)

| Pedagogy                                                                                      | Hours                                                                                | Lecture        | Peer Teaching       | <b>GD/VIDEOS/TUTORIAL</b>     |           | ІСТ         |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|---------------------|-------------------------------|-----------|-------------|--|--|--|--|--|
|                                                                                               | 4                                                                                    | 3              | -                   | 1                             |           | -           |  |  |  |  |  |
| Preamble:                                                                                     |                                                                                      |                |                     |                               |           |             |  |  |  |  |  |
| The scope of this course is to understand the concepts of resistances, capacitance, amount of |                                                                                      |                |                     |                               |           |             |  |  |  |  |  |
| current that can pass through a conductor using ohms law and its applications, effect of      |                                                                                      |                |                     |                               |           |             |  |  |  |  |  |
| magnetic fiel                                                                                 | d due                                                                                | to current     | and concept         | of resonant frequency i       | n tuning  | g circuits, |  |  |  |  |  |
| construction of                                                                               | of a rectif                                                                          | fier, amplif   | iers and oscillate  | or, basic digital electronics | principle | es through  |  |  |  |  |  |
| logic gates ar                                                                                | nd the l                                                                             | aws gover      | ning them           |                               |           |             |  |  |  |  |  |
| COURSE OU                                                                                     | TCOME                                                                                |                |                     |                               | Unit      | Hrs P/S     |  |  |  |  |  |
| On the success                                                                                | ful comp                                                                             | letion of the  | course students v   | will able to                  |           |             |  |  |  |  |  |
| CO1: underst                                                                                  | and the                                                                              | uses of resi   | istance and capa    | acitance and able to          | 1         | 12          |  |  |  |  |  |
| determine the u                                                                               | ınknown                                                                              | values like    | current, voltage in | n the circuit                 |           |             |  |  |  |  |  |
| CO2 : know ho                                                                                 | w electro                                                                            | ons are eject  | ed from the surfa   | ce of a metal when light is   | 2         | 12          |  |  |  |  |  |
| incident on it a                                                                              | nd its tec                                                                           | hnological a   | pplications         | _                             |           |             |  |  |  |  |  |
| CO3 understan                                                                                 | nd the ba                                                                            | asic concep    | ts of electromag    | gnetic induction and          | 3         | 12          |  |  |  |  |  |
| acquire comp                                                                                  | lete kno                                                                             | wledge abo     | out Alternating     | current                       |           |             |  |  |  |  |  |
| CO4 :explain the                                                                              | he metho                                                                             | ds of biasing  | g transistors & de  | sign of simple amplifier      | 4         | 12          |  |  |  |  |  |
| circuits and to                                                                               | circuits and to develop the ability to analyze and design analog electronic circuits |                |                     |                               |           |             |  |  |  |  |  |
| using discrete of                                                                             | compone                                                                              | nts            |                     |                               |           |             |  |  |  |  |  |
| CO5 :apply kno                                                                                | owledge                                                                              | of number s    | ystems, codes and   | d Boolean algebra to the      | 5         | 12          |  |  |  |  |  |
| analysis and de                                                                               | sign of d                                                                            | igital logic o | circuits.           |                               |           |             |  |  |  |  |  |

# **UNIT I : CURRENT ELECTRICITY**

Ohm's law (Definition) –Kirchoff's laws – Application of Kirchoff's laws to Wheatstone's network – condition for balance - Carey-Foster's bridge – Measurement of specific resistance – Potentiometer – calibration of Voltmeter (low range)-Calibration of ammeter

# **UNIT II : PHOTO ELECTRICITY**

Photo electricity -Laws of photoelectric emission (laws only) – Einstein's photo electric equation – Photoelectric cells – Photo emissive cells – Photoconductive and Photovoltaic cells – Applications of photoelectric cells-Solar cell (Principle, Construction, working)

# UNIT III : ELECTROMAGNETISM

Electromagnetic Induction – Faraday's laws – Lenz law – Self Induction – Mutual Induction – Coefficient ofCoupling-A.C. Circuits – Mean value, RMS value, Peak value (Alternating Current alone) – LCR in series circuit – impedance – resonant frequency – sharpness of resonance.

## **UNIT IV : ANALOG ELECTRONICS**

Formation of PN junction diode – Forward and reverse biasing of a junction diode- V-I Characteristics-Bridge rectifier (construction and working) – Transistor– working of an n-p-n transistor - Characteristics of a Transistor (CE mode) –Common Emitter Transistor Amplifier

## **UNIT V : DIGITAL ELECTRONICS**

Number systems – Decimal – Binary – conversion of one number system to another number system (Decimal & Binary)-Binary addition and subtraction –Laws and theorems of Boolean algebra- De-Morgan;s Theorems - Basic Logic Gates – OR, AND, NOT – The NOR gate – NOR Gate is an universal gate

# **TEXT BOOKS**

1. Electricity and Magnetism - Narayanamurti, Nagarathinam, Lakshminarayan- The National Publishing Co., 3<sup>rd</sup> revised edition 1994

UNIT I – Chapter VII -7.3

2. Electricity and Magnetism R.Murugesan -S.Chand & company Pvt.Limited 10th edition 2017

UNIT I – Chapter -VI – 6.6, 6.7, 6.8

3. Modern Physics R.Murugesan, Kiruthiga Sivaprasath -S.Chand & company Pvt.Limited 18e edition 2019

UNIT II- Chapter -VI& XXXIV - 6.1,6.4, 6.5, 6.6, 34.6

4. Electricity and Magnetism R.Murugesan -S.Chand & company Pvt.Limited 10th edition 2019

UNIT III – Chapter – XI& XIII – 11.1,11.3,11.15,11.19,13.1,13.3

5. Electricity and electronics – R. Murugesan, For Madurai Kamaraj university B.Sc., Ancillary Physics III Semester (2007)

UNIT IV – Chapter –IV - 4.1,4.2,4.3, 4.7, 4.9, 4.10, 4.12, 4.14

UNIT V- Chapter - V-5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15,

# **REFRENCE BOOKS**

- 1. ElectricityandMagnetism–R.Murugesan,S.chand&co,2001.
- 2. ModernPhysics–R.Murugesan,S.chand&co,1998.
- 3. Basic Electronics B.L. Theraja, S. chand & co,2003.

## WEB REFRENCES

- 1. Free Basic Electronics Books Download | Ebooks Online Textbooks (freebookcentre.net)
- 2. <u>20+ Electricity Books for Free! [PDF] | InfoBooks.org</u>

| UNITS | TOPIC | LECTURE | MODE OF TEACHING |
|-------|-------|---------|------------------|
|       |       |         |                  |

|                                                | HOURS      |                                                    |
|------------------------------------------------|------------|----------------------------------------------------|
| UNIT I : CURRENT ELECTRICITY(1 2 Hrs)          |            |                                                    |
| Ohm's law (Definition) – Kirchoff's laws       | 3          | 2 hours Lecture<br>And1 hour Discussion            |
| Application of Kirchoff's laws to              | 3          | 2 hours Lecture                                    |
| Wheatstone's network – condition for           |            | and 1 hour Discussion and problem                  |
| Carey-Foster's bridge measurement of           | 3          | 2 hours Lecture                                    |
| specific resistance                            | 5          | 1 hour ICT and Discussion                          |
| Potentiometer – calibration of Voltmeter (low  | 3          | 2 hours Lecture                                    |
| range)-Calibration of ammeter                  | 5          | 1 hour ICT and Discussion                          |
| UNIT II : PHOTO ELECTRICITY (12 Hrs)           |            |                                                    |
| Photo electricity -Laws of photoelectric       | 4          | 3 hours lecture                                    |
| emission                                       | •          | 1 hourICT& Discussion                              |
| Einstein's photo electric equation –           | 4          | 3 hours lecture                                    |
| Photoelectric cells – Photo emissive cells     |            | 1 hourICT& Discussion                              |
| Photoconductive and Photovoltaic cells -       | 4          | 3 hours lecture                                    |
| Applications of photoelectric cells-Solar cell |            | 1 hourICT&Discussion                               |
| (Principle, Construction, working)             |            |                                                    |
| UNIT III: ELECTROMAGNETISM (12 Hrs             | 3)         |                                                    |
| Electromagnetic Induction – Faraday's          | 2          | 1 hour lecture                                     |
| laws – Lenz law                                |            | 1 hour Discussion and Quiz                         |
| Self Induction- Mutual Induction-              | 3          | 2 hours lecture                                    |
| Coefficient ofCoupling                         |            | 1 hour ICT&Discussion                              |
| A.C. Circuits – Mean value, RMS                | 3          | 2 hours lecture                                    |
| value, Peak value (Alternating                 |            | 1 hour ICT&Discussion                              |
| Current alone)                                 |            |                                                    |
| LCR in series circuit – impedance – resonant   | 4          | 2 hours lecture                                    |
| trequency – sharpness of resonance.            |            | I nour IC I & Discussion I nour<br>Problem colving |
| UNIT IV · ANALOG ELECTRONICS (12 Hr            | <b>c</b> ) | r tobletit solving                                 |
| Formation of PN junction diode Forward         | s)<br>2    | 1 hour lecture                                     |
| and reverse biasing of a junction diode        | 2          | 1 hour Discussion and ICT                          |
| V-I Characteristics-Bridge rectifier           | 3          | 2 hours lecture                                    |
| v-i Characteristics-Druge rectifici            | 5          | 1 hour Discussion and ICT                          |
| Transistor working of an n-n-n transistor -    | 3          | 2 hours lecture                                    |
| Characteristics of a Transistor (CE mode)      | 5          | 1 hour Discussion and                              |
| Characteristics of a Transistor (CE mode)      |            | problem solving                                    |
| Common Emitter Transistor Amplifier            | 4          | 3 hours lecture                                    |
|                                                |            | 1 hour Discussion and                              |
|                                                |            | problem solving                                    |
| UNIT V : DIGITAL ELECTRONICS (12Hrs)           |            |                                                    |
| Number systems – Decimal – Binary              | 2          | 1hours lecture                                     |
|                                                |            | 1 hour Discussion                                  |
| conversion of one number system to another     |            | 3 hours lecture                                    |
| number system (Decimal & Binary)Binary         | 4          | 1 hour Discussion and ICT                          |
| addition and subtraction                       |            |                                                    |
| Laws and theorems of Boolean algebra- De-      |            | 2 hours lecture                                    |

| Morgan;s Theorems                       | 3 | 1 hour Discussion             |
|-----------------------------------------|---|-------------------------------|
| Basic Logic Gates - OR, AND, NOT        |   | 2 hours lecture               |
| The NOR gate – NOR Gate is an universal | 3 | 1 hour Discussion and problem |
| gate                                    |   | solving                       |

| Course<br>Outcomes | Progra | amme ( | Dutcom | nes (POs | )    | Programme Specific Outcomes (PSOs) |      |      |      | Mean<br>scores of |      |
|--------------------|--------|--------|--------|----------|------|------------------------------------|------|------|------|-------------------|------|
| (Cos)              | PO1    | PO2    | PO3    | PO4      | PO5  | PSO1                               | PSO2 | PSO3 | PSO4 | PSO5              | Cos  |
| CO1                | 4      | 3      | 3      | 3        | 4    | 4                                  | 3    | 3    | 4    | 3                 | 3.4  |
| CO2                | 4      | 3      | 4      | 3        | 3    | 4                                  | 3    | 3    | 3    | 3                 | 3.3  |
| CO3                | 4      | 3      | 3      | 4        | 3    | 4                                  | 3    | 4    | 3    | 4                 | 3.5  |
| CO4                | 4      | 4      | 3      | 4        | 3    | 4                                  | 3    | 3    | 4    | 4                 | 3.6  |
| CO5                | 3      | 4      | 4      | 3        | 3    | 4                                  | 3    | 4    | 4    | 3                 | 3.5  |
|                    |        |        |        |          | Mean | Overall S                          | core |      |      |                   | 3 46 |

Result: The Score for this Course is 3.46 (High Relationship)

| Mapping         | 1-20%                                         | 21-40%                   |     | 41-60%             | 61-80%                              | 81-100%                  |
|-----------------|-----------------------------------------------|--------------------------|-----|--------------------|-------------------------------------|--------------------------|
| Scale           | 1                                             | 2                        |     | 3                  | 4                                   | 5                        |
| Relation        | 0.0-1.0                                       | 1.1-2.0                  |     | 2.1-3.0            | 3.1-4.0                             | 4.1-5.0                  |
| Quality         | Very Poor                                     | Poor                     |     | Moderate           | High                                | Very High                |
| Mean Score of C | COs = <u>Total of V</u><br>Cotal No. of Pos & | V <u>alues</u><br>z PSOs | Mea | n Overall Score of | $TCOs = \frac{Total of M}{Total N}$ | lean scores<br>o. of COs |

## ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 40%      | 40%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 30%      | 30%      |
| K3 (APPLICATION and ANALYSIS)    | 30%      | 30%      |

Course Designer: Dr. P. INDRA DEVI, Dr. A. BEULAH MARY & Dr. P.N.NIRMALA, Assistant Professor, Department of Physics.

Programme : B.Sc., Maths Semester : IV Part III : Allied Paper II Hours : 04 HrsP/W 60 Hrs/P/S

### Credits :3

## TITLE OF THE PAPER : GENERAL PHYSICS – II (T)

| Pedagogy                                                                                      | Hours                                                                                    | Lecture        | Peer Teaching       | GD/VIDEOS/TUTORIAL            |          | ICT         |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------|---------------------|-------------------------------|----------|-------------|--|--|--|--|--|
|                                                                                               | 4                                                                                        | 3              | -                   | 1                             |          | -           |  |  |  |  |  |
| Preamble:                                                                                     |                                                                                          |                |                     |                               |          |             |  |  |  |  |  |
| The scope of this course is to understand the concepts of resistances, capacitance, amount of |                                                                                          |                |                     |                               |          |             |  |  |  |  |  |
| current that                                                                                  | current that can pass through a conductor using ohms law and its applications, effect of |                |                     |                               |          |             |  |  |  |  |  |
| magnetic fiel                                                                                 | ld due                                                                                   | to current     | and concept         | of resonant frequency i       | n tuning | g circuits, |  |  |  |  |  |
| construction of                                                                               | of a recti                                                                               | fier, amplif   | iers and oscillate  | or, basic digital electronics | principl | es through  |  |  |  |  |  |
| logic gates an                                                                                | nd the l                                                                                 | aws gover      | ning them           |                               |          |             |  |  |  |  |  |
| <b>COURSE OU</b>                                                                              | TCOME                                                                                    | 2              |                     |                               | Unit     | Hrs P/S     |  |  |  |  |  |
| On the success                                                                                | ful comp                                                                                 | letion of the  | course students v   | will able to                  |          |             |  |  |  |  |  |
| CO1 : underst                                                                                 | tand the                                                                                 | uses of res    | istance and capa    | acitance and able to          | 1        | 12          |  |  |  |  |  |
| determine the u                                                                               | inknown                                                                                  | values like    | current, voltage in | n the circuit                 |          |             |  |  |  |  |  |
| CO2 : know ho                                                                                 | w electro                                                                                | ons are eject  | ed from the surfa   | ce of a metal when light is   | 2        | 12          |  |  |  |  |  |
| incident on it a                                                                              | nd its tec                                                                               | hnological a   | pplications         |                               |          |             |  |  |  |  |  |
| CO3 understan                                                                                 | nd the ba                                                                                | asic concep    | ts of electromag    | gnetic induction and          | 3        | 12          |  |  |  |  |  |
| acquire comp                                                                                  | lete kno                                                                                 | wledge abo     | out Alternating     | current                       |          |             |  |  |  |  |  |
| CO4 :explain t                                                                                | he metho                                                                                 | ds of biasing  | g transistors & de  | sign of simple amplifier      | 4        | 12          |  |  |  |  |  |
| circuits and to                                                                               | circuits and to develop the ability to analyze and design analog electronic circuits     |                |                     |                               |          |             |  |  |  |  |  |
| using discrete of                                                                             | compone                                                                                  | nts            |                     |                               |          |             |  |  |  |  |  |
| CO5 :apply know                                                                               | owledge                                                                                  | of number s    | ystems, codes and   | d Boolean algebra to the      | 5        | 12          |  |  |  |  |  |
| analysis and de                                                                               | sign of d                                                                                | igital logic o | circuits.           |                               |          |             |  |  |  |  |  |

## **UNIT I : CURRENT ELECTRICITY**

Ohm's law (Definition) –Kirchoff's laws – Application of Kirchoff's laws to Wheatstone's network – condition for balance - Carey-Foster's bridge – Measurement of specific resistance – Potentiometer – calibration ofVoltmeter (low range)-Calibration of ammeter

## **UNIT II : PHOTO ELECTRICITY**

Photo electricity -Laws of photoelectric emission (laws only) – Einstein's photo electric equation – Photoelectric cells – Photo emissive cells – Photoconductive and Photovoltaic cells – Applications of photoelectric cells-Solar cell (Principle, Construction, working)

# UNIT III : ELECTROMAGNETISM

Electromagnetic Induction – Faraday's laws – Lenz law – Self Induction – Mutual Induction – Coefficient ofCoupling-A.C. Circuits – Mean value, RMS value, Peak value (Alternating Current alone) – LCR in series circuit – impedance – resonant frequency – sharpness of resonance.

## **UNIT IV : ANALOG ELECTRONICS**

Formation of PN junction diode – Forward and reverse biasing of a junction diode- V-I Characteristics-Bridge rectifier (construction and working) – Transistor– working of an n-p-n transistor - Characteristics of a Transistor (CE mode) –Common Emitter Transistor Amplifier-Hartley oscillator

# **UNIT V : DIGITAL ELECTRONICS**

Number systems - Decimal - Binary - conversion of one number system to another number

system (Decimal & Binary)-Binary addition and subtraction – Laws and theorems of Boolean algebra- De-Morgan;s Theorems - Basic Logic Gates – OR, AND, NOT – The NOR gate – NOR Gate is an universal gate- The NAND gate – NAND Gate is an universal gate

# TEXT BOOKS

- Electricity and Magnetism Narayanamurti, Nagarathinam, Lakshminarayan- The National Publishing Co., 3<sup>rd</sup> revised edition 1994 UNIT I – ChapterVII -7.3
- 2. Electricity and Magnetism R.Murugesan -S.Chand & company Pvt.Limited 10th edition 2017

UNIT I – Chapter -VI – 6.6, 6.7, 6.8

3. Modern Physics R.Murugesan, Kiruthiga Sivaprasath -S.Chand & company Pvt.Limited 18e edition 2019

UNIT II- Chapter -VI& XXXIV - 6.1,6.4, 6.5, 6.6, 34.6

4. Electricity and Magnetism R.Murugesan -S.Chand & company Pvt.Limited 10th edition 2019

UNIT III – Chapter – XI& XIII – 11.1,11.3,11.15,11.19,13.1,13.3

5. Electricity and electronics – R. Murugesan, For Madurai Kamaraj university B.Sc., Ancillary Physics III Semester (2007)

UNIT IV – Chapter – IV - 4.1,4.2,4.3, 4.7, 4.9, 4.10, 4.12, 4.14, 4.15

UNIT V– Chapter – V –5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17

# **REFRENCE BOOKS**

- 1. ElectricityandMagnetism–R.Murugesan,S.chand&co,2001.
- 2. ModernPhysics-R.Murugesan,S.chand&co,1998.
- 3. Basic Electronics B.L. Theraja, S. chand & co,2003.

# WEB REFRENCES

- 1. Free Basic Electronics Books Download | Ebooks Online Textbooks (freebookcentre.net)
- 2. <u>20+ Electricity Books for Free! [PDF] | InfoBooks.org</u>

| UNITS | TOPIC | LECTURE | MODE OF TEACHING |
|-------|-------|---------|------------------|
|       |       | HOURS   |                  |

| UNIT I : CURRENT ELECTRICITY(1 2 Hrs)          |     |                                         |
|------------------------------------------------|-----|-----------------------------------------|
| Ohm's law (Definition) – Kirchoff's laws       | 3   | 2 hours Lecture<br>And1 hour Discussion |
| Application of Kirchoff's laws to              | 3   | 2 hours Lecture                         |
| Wheatstone's network – condition for           |     | and 1 hour Discussion and problem       |
| balance                                        |     | solving                                 |
| Carey-Foster's bridge -measurement of          | 3   | 2 hours Lecture                         |
| specific resistance                            |     | 1 hour ICT and Discussion               |
| Potentiometer – calibration ofVoltmeter (low   | 3   | 2 hours Lecture                         |
| range)-Calibration of ammeter                  |     | 1 hour ICT and Discussion               |
| UNIT II : PHOTO ELECTRICITY (12 Hrs)           |     |                                         |
| Photo electricity -Laws of photoelectric       | 4   | 3 hours lecture                         |
| emission                                       |     | 1 hourICT& Discussion                   |
| Einstein's photo electric equation –           | 4   | 3 hours lecture                         |
| Photoelectric cells – Photo emissive cells     |     | 1 hourICT& Discussion                   |
| Photoconductive and Photovoltaic cells –       | 4   | 3 hours lecture                         |
| Applications of photoelectric cells-Solar cell |     | 1 hourICT&Discussion                    |
| (Principle, Construction, working)             |     |                                         |
| UNIT III : ELECTROMAGNETISM (12 Hrs            | 5)  |                                         |
| Electromagnetic Induction – Faraday's          | 2   | 1 hour lecture                          |
| laws – Lenz law                                |     | 1 hour Discussion and Quiz              |
| Self Induction – Mutual Induction –            | 3   | 2 hours lecture                         |
| Coefficient of Coupling                        |     | 1 hour ICT&Discussion                   |
| A.C. Circuits – Mean value, RMS                | 3   | 2 hours lecture                         |
| value, Peak value (Alternating                 |     | 1 hour ICT&Discussion                   |
| Current alone)                                 |     |                                         |
| LCR in series circuit – impedance – resonant   | 4   | 2 hours lecture                         |
| frequency – sharpness of resonance.            |     | 1 hour ICT&Discussion 1 hour            |
|                                                |     | Problem solving                         |
| UNIT IV : ANALOG ELECTRONICS (12 Hr            | rs) |                                         |
| Formation of PN junction diode – Forward       | 2   | 1 hour lecture                          |
| and reverse biasing of a junction diode        |     | 1 hour Discussion and ICT               |
| V-I Characteristics-Bridge rectifier           | 3   | 2 hours lecture                         |
|                                                |     | 1 hour Discussion and ICT               |
| Transistor- working of an n-p-n transistor -   | 3   | 2 hours lecture                         |
| Characteristics of a Transistor (CE mode )     |     | 1 hour Discussion and                   |
|                                                |     | problem solving                         |
| Common Emitter Transistor Amplifier -          | 4   | 3 hours lecture                         |
| Hartley Oscillator                             |     | 1 hour Discussion and                   |
|                                                |     | problem solving                         |
| UNIT V : DIGITAL ELECTRONICS (12Hrs)           | 1   |                                         |
| Number systems – Decimal – Binary              | 2   | 1hours lecture                          |
|                                                |     | 1 hour Discussion                       |
| conversion of one number system to another     |     | 3 hours lecture                         |
| number system (Decimal & Binary) Binary        | 4   | 1 hour Discussion and ICT               |
| addition and subtraction                       |     |                                         |
| Laws and theorems of Boolean algebra- De-      |     | 2 hours lecture                         |

| Morgan;s Theorems                         | 3 | 1 hour Discussion             |
|-------------------------------------------|---|-------------------------------|
| Basic Logic Gates - OR, AND, NOT The      |   | 2 hours lecture               |
| NOR gate – NOR Gate is an universal gate- | 3 | 1 hour Discussion and problem |
| The NAND gate – NAND Gate is an           |   | solving                       |
| universal gate                            |   |                               |

| Course<br>Outcomes | Programme Outcomes (POs) |     |     |     | Programme Specific Outcomes (PSOs) |      |      |      | (PSOs) | Mean<br>scores of |     |
|--------------------|--------------------------|-----|-----|-----|------------------------------------|------|------|------|--------|-------------------|-----|
| (Cos)              | PO1                      | PO2 | PO3 | PO4 | PO5                                | PSO1 | PSO2 | PSO3 | PSO4   | PSO5              | Cos |
| CO1                | 4                        | 3   | 3   | 3   | 4                                  | 4    | 3    | 3    | 4      | 3                 | 3.4 |
| CO2                | 4                        | 3   | 4   | 3   | 3                                  | 4    | 3    | 3    | 3      | 3                 | 3.3 |
| CO3                | 4                        | 3   | 3   | 4   | 3                                  | 4    | 3    | 4    | 3      | 4                 | 3.5 |
| CO4                | 4                        | 4   | 3   | 4   | 3                                  | 4    | 3    | 3    | 4      | 4                 | 3.6 |
| CO5                | 3                        | 4   | 4   | 3   | 3                                  | 4    | 3    | 4    | 4      | 3                 | 3.5 |
| Mean Overall Score |                          |     |     |     |                                    |      |      |      | 3 46   |                   |     |

Result: The Score for this Course is 3.46 (High Relationship)

| Mapping                                                               | 1-20%     | 21-40%  |     | 41-60%             | 61-80%                             | 81-100%                  |
|-----------------------------------------------------------------------|-----------|---------|-----|--------------------|------------------------------------|--------------------------|
| Scale                                                                 | 1         | 2       |     | 3                  | 4                                  | 5                        |
| Relation                                                              | 0.0-1.0   | 1.1-2.0 |     | 2.1-3.0            | 3.1-4.0                            | 4.1-5.0                  |
| Quality                                                               | Very Poor | Poor    |     | Moderate           | High                               | Very High                |
| Mean Score of COs = <u>Total of Values</u><br>Total No. of Pos & PSOs |           |         | Mea | n Overall Score of | $COs = \frac{Total of M}{Total N}$ | lean scores<br>o. of COs |

### ASSESSMENT RUBRICS

| BLOOM'S TAXANOMY                 | INTERNAL | EXTERNAL |
|----------------------------------|----------|----------|
| K1 (REMEMBERING/RECALLING)       | 30%      | 30%      |
| K2 (UNDERSTANDING/COMPREHENSION) | 40%      | 40%      |
| K3 (APPLICATION and ANALYSIS)    | 30%      | 30%      |

Course Designer: Dr. P. INDRA DEVI, Dr. A. BEULAH MARY & Dr. P.N.NIRMALA, Assistant Professor, Department of Physics.

Programme : B.Sc., Chemistry Semester : II Sub. Code : U22APCP Part III : Allied Physics Lab Hours : 03 HrsP/W 45Hrs/P/S Credits :3

## TITLE OF THE PAPER : ALLIED PHYSICS PRACTICAL

| Pedagogy                                                                                            | Hours                                                             | Lecture         | Peer Teaching        | GD/VIDEOS/TUTORIAL                 | ICT                      |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------|----------------------|------------------------------------|--------------------------|--|
|                                                                                                     | 3                                                                 | 2               | -                    | 1                                  | -                        |  |
| Preamble:                                                                                           |                                                                   |                 |                      |                                    |                          |  |
| The course prov                                                                                     | ides hand                                                         | s on training i | in Physics experim   | ents relevant to the theory learn  | nt in allied courses and |  |
| to develop basic lab skills.                                                                        |                                                                   |                 |                      |                                    |                          |  |
| COURSE OUT                                                                                          | COME                                                              |                 |                      |                                    |                          |  |
| On the successfu                                                                                    | al complet                                                        | tion of the co  | urse students will a | able to                            |                          |  |
| CO1 : use verni                                                                                     | er caliper                                                        | and screw ga    | auge for various me  | easurements                        |                          |  |
| CO 2 : apply the                                                                                    | e concepts                                                        | of Physics re   | elevant to the theor | ry learnt in allied core courses i | n a practical situation  |  |
| CO 3 evaluate various physical properties of materials through experiments                          |                                                                   |                 |                      |                                    |                          |  |
| CO 4 : analyze the basic electrical circuit and to find the unknown value of current and inductance |                                                                   |                 |                      |                                    |                          |  |
| CO 5 :construct                                                                                     | CO 5 :construct logic circuits using universal NAND or NOR gates. |                 |                      |                                    |                          |  |

## Any Twelve Only (For Two Semesters)

- 1. Young's Modulus Uniform Bending (Optic lever) .
- 2. Young's Modulus Non-Uniform Bending (Pin & Microscope).
- 3. Torsion Pendulum Rigidity Modulus
- 4. Coefficient of Viscosity by Poiseullie's method.
- 5. Comparison of coefficient of viscosity of two liquids
- 6. Thickness of a thin wire by Air-Wedge.
- 7. Spectrometer Grating Normal incidence method.
- 8. Potentiometer Calibration of voltmeter.
- 9. LCR Series Resonance Circuit.
- 10. LCR Parallel Resonance Circuit.
- 11. Junction and Zener diode V-I Characteristics.
- 12. Logic gates OR, AND, NOT (Using discrete components).
- 13. Verification of Ohm's law
- 14. NOR as an universal gate

# **For Ancillary Physics Examination Marks Allotment PPA Practical Examination :**

#### External examination is at the end of II semester (Chemistry ) IV semester (Maths).

| Exam Duration  | - 3 Hrs | 5 |
|----------------|---------|---|
| Internal Marks | - 40    |   |
| External Marks | - 60    |   |
| Total Marks    | - 100   |   |

#### **Internal Marks:**

| Record     | - 10 Marks        |
|------------|-------------------|
| Viva voce  | - 10 Marks        |
| Model Exam | - <u>20 Marks</u> |
| Total      | - <u>40 Marks</u> |

#### **ExternalMarks:**

External Exam - 60 Marks

#### **TEXT BOOKS**

- 3. Ouseph, C. C., Rao, U. J. and Vijayendran, V., 2010, "Practical Physics and Electronics", First Edition, S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai.
- 4. Subrahmanyam, S. V., Malakondaiah, K. and Narasimhamurthy, Y., 2011, "Experiments in Electronics", Second Edition, McMillan Publishers India Limited, New Delhi.

#### **REFERENCE BOOKS**

- 6. Arora, C. L., 2012, "B.Sc. Practical Physics", Twentieth Edition, S. Chand & Company Limited, New Delhi.
- 7. Kakani, S. L. and Shubhra, K., 2015, "Applied Physics Theory and Practicals", Second Edition, Viva Books Pvt. Ltd., New Delhi.
- 8. Kakani, S. L. and Shubhra, K., 2011, "Engineering Practical Physics", First Edition, CBS Publishers Pvt. Ltd., New Delhi.
- 9. Manjeet, S. and Anita, D., 2011, "Applied Physics Theory and Experiments", Third Edition, Vayu Education of India, New Delhi.
- 10. Srivasta, A. and Shukla, R. K., 2018, "Practical Physics", Second Edition, New Age International Pvt. Ltd., New Delhi.

#### WEB REFERENCES

- 1. Practical Applied Physics-I | Aminotes
- 2. General Physics Laboratory Experiments: Video Lectures | CosmoLearning Physics

Course Designer: Dr. P. INDRA DEVI, Dr. A. BEULAH MARY& Dr. P.N.NIRMALA, Assistant Professor

Programme : B.Sc., Maths Semester : IV Sub. Code : U22APMP Part III : Allied Physics Lab Hours : 03 HrsP/W 45Hrs/P/S Credits :3

### TITLE OF THE PAPER : GENERAL PHYSICS PRACTICAL

| Pedagogy                                                                                                   | Hours       | Lecture         | Peer Teaching        | <b>GD/VIDEOS/TUTORIAL</b>          | ICT                      |  |  |
|------------------------------------------------------------------------------------------------------------|-------------|-----------------|----------------------|------------------------------------|--------------------------|--|--|
|                                                                                                            | 3           | 2               | -                    | 1                                  | -                        |  |  |
| Preamble:                                                                                                  |             |                 |                      |                                    |                          |  |  |
| The course prov                                                                                            | ides hands  | s on training i | in Physics experim   | ents relevant to the theory learn  | nt in allied courses and |  |  |
| to develop basic lab skills.                                                                               |             |                 |                      |                                    |                          |  |  |
| <b>COURSE OUT</b>                                                                                          | COME        |                 |                      |                                    |                          |  |  |
| On the successful                                                                                          | il complet  | tion of the co  | urse students will a | ble to                             |                          |  |  |
| CO1 : use verni                                                                                            | ier caliper | and screw ga    | uge for various me   | easurements                        |                          |  |  |
| CO 2 : apply the                                                                                           | e concepts  | of Physics re   | elevant to the theor | y learnt in allied core courses in | n a practical situation  |  |  |
| CO 3 evaluate various physical properties of materials through experiments                                 |             |                 |                      |                                    |                          |  |  |
| <b>CO 4</b> : analyze the basic electrical circuit and to find the unknown value of current and inductance |             |                 |                      |                                    |                          |  |  |
| CO 5 :construct                                                                                            | logic circ  | uits using uni  | versal NAND or N     | IOR gates.                         |                          |  |  |

#### Any Twelve Only (For Two Semesters)

- 1. Young's Modulus Uniform Bending (Optic lever).
- 2. Young's Modulus Non-Uniform Bending (Pin & Microscope).
- 3. Torsion Pendulum Rigidity Modulus
- 4. Coefficient of Viscosity by Poiseullie's method.
- 5. Comparison of coefficient of viscosity of two liquids
- 6. Thickness of a thin wire by Air-Wedge.
- 7. Spectrometer Grating Normal incidence method.
- 8. Potentiometer Calibration of voltmeter.
- 9. LCR Series Resonance Circuit.
- 10. LCR Parallel Resonance Circuit.
- 11. Junction and Zener diode V-I Characteristics.
- 12. Logic gates OR, AND, NOT (Using discrete components).
- 13. Verification of Ohm's law
- 14. NOR as an universal gate

## For Ancillary Physics Examination Marks Allotment

#### **<u>PPA</u>** Practical Examination :

External examination is at the end of II semester (Chemistry ) IV semester (Maths).

| Exam Duration  | - 3 Hrs |  |
|----------------|---------|--|
| Internal Marks | - 40    |  |
| External Marks | - 60    |  |
| Total Marks    | - 100   |  |

#### **Internal Marks:**

| Record     | - | 10 Marks |
|------------|---|----------|
| Viva voce  | - | 10 Marks |
| Model Exam | - | 20 Marks |
| Total      | - | 40 Marks |

#### ExternalMarks:

External Exam - 60 Marks

#### **TEXT BOOKS**

- 5. Ouseph, C. C., Rao, U. J. and Vijayendran, V., 2010, "Practical Physics and Electronics", First Edition, S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai.
- 6. Subrahmanyam, S. V., Malakondaiah, K. and Narasimhamurthy, Y., 2011, "Experiments in Electronics", Second Edition, McMillan Publishers India Limited, New Delhi.

#### **REFERENCE BOOKS**

- 11. Arora, C. L., 2012, "B.Sc. Practical Physics", Twentieth Edition, S. Chand & Company Limited, New Delhi.
- 12. Kakani, S. L. and Shubhra, K., 2015, "Applied Physics Theory and Practicals", Second Edition, Viva Books Pvt. Ltd., New Delhi.
- 13. Kakani, S. L. and Shubhra, K., 2011, "Engineering Practical Physics", First Edition, CBS Publishers Pvt. Ltd., New Delhi.
- 14. Manjeet, S. and Anita, D., 2011, "Applied Physics Theory and Experiments", Third Edition, Vayu Education of India, New Delhi.
- 15. Srivasta, A. and Shukla, R. K., 2018, "Practical Physics", Second Edition, New Age International Pvt. Ltd., New Delhi.

#### WEB REFERENCES

- 1. Practical Applied Physics-I | Aminotes
- 2. General Physics Laboratory Experiments: Video Lectures | CosmoLearning Physics

Course Designer: Dr. P. INDRA DEVI, Dr. A. BEULAH MARY& Dr. P.N.NIRMALA, Assistant Professor

## VALUE ADDED COURSES FOR OTHER MAJOR

Programme: B.sc./B.A./B.com./BBA. Semester : III Sub. Code : VAP1

Hours : 2 Hrs/W, 30Hrs/S Credits : 2

## TITLE : RENEWABLE ENERGY SOURCES

## **COURSE OBJECTIVES**

After completion of the course, the students will be able to

CO1 : understand the need of renewable energy sourcesCO2 : acquire the knowledge of different types of renewable energy sourcesCO3 : understand the concept of renewable energy sources and their applicationsCO4 : develop biogas plant at the minimal scale

## **Unit I: Introduction**

Difference between renewable energy sources and non-renewable energy sources-need of renewable energy sources

## **Unit II: Solar Energy**

Introduction-solar constant-application of solar energy

## **Unit III: Tidal Energy**

Introduction-basic principles of tidal power-advantages and limitations of tidal power

## **Unit IV: Wind Energy**

Introduction-wind energy conversion-wind energy collector

## **Unit V: Bio-mass energy**

Introduction-biomass conversion-advantages of anerobic digestion

## **Text Book:**

Non conventional energy sources - G.D. Rai – IV Edition,

IX Print, 2001,Khanna publishers, Delhi

## Value Added course for B.Sc Physics

Programme : B.Sc

Hours : 2Hrs / W , 30 Hrs/S

Semester : IV Sub . Code :

#### Credit : 2

#### **Title : Agricultural Physics**

Scope:. To impart basic knowledge about physics related to agriculture and plant growth.

## Unit I: Basic concepts of Physics

Importance of physics related to agriculture- physical laws – Brownian movement – Tyndoll effect-– Adhesion and Cohesion properties – hydrostatic pressure- Surface tension relevant to agriculture

#### Unit II: Soil physics

Physical properties of soils - Soil moisture movement – physical classification of soil moisture - thermal properties of soils- heat capacity – heat conductivity –specific heat - factors affecting soil temperature - measurement of soil temperature- management of extreme soil temperatures.

Unit III: Nanophysics in agriculture

Nano particles definition – physical properties of nanoparticles – natural nanoparticles - working principles of Transmission Electron microscope –Scanning Electron Microscope - their applicationsrelated to agriculture– application of nanotechnology in modern agricultural practices

## Unit IV: Soil Water Movement

Water flow in saturated and unsaturated soils– capillary movement of water in soil andplant –tortuosity of water insoils –Poiseuille's law, Darcy's law; hydraulic conductivity, permeability and fluidity, measurement of hydraulic conductivity in saturated and unsaturated soils.

## Unit V: Physical constraints in agriculture and instrumentation

Soil constraints – impermeability of soil – compaction methods – causes and effects of soil compaction – types of soil compaction - Soil physics as a factor in soil management – measure of soil moisture - Tensiometer- measure of hydrostatic pressure of ground water-Peizometer-measure of soil strength penetrometer

#### TEXT BOOK :

Chinnamuthu, C.R., B.Chandrasekaran and C.Ramasamy, 2007. Nanotechnology Applications in Agriculture. TNAU Offset & Printing Press, Directorate of Open and Distance Learning, TNAU, Coimbatore.

# **REFERENCE BOOK:**

1. William Lambe, T and Robert V. Whitman 1979. Soil Mechanics. Willey Eastern Ltd, New Delhi

HelmutKohnke, 1979. SoilPhysics. TataMcGraw-HillP