SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN (AUTONOMOUS),

MADURAI – 2

DEPARTMENT OF ZOOLOGY

Syllabus

M. Sc. ZOOLOGY (CBCS & OBE)

For students who joined in the Academic year 2022-23

Programme Outcomes (POs)

Upon completion of M. Sc. Programme, students will be able to

- **PO1:** Get enriched by the existing knowledge in their respective disciplines and apply appropriate methodology for research and implementation.
- **PO2:** Develop technology compatible to new perceptions and evolve innovative pedagogy in their discipline.
- **PO3:** Design creative projects and translate it to the present day scenario.
- **PO4**: Evaluate the issues and challenges pertaining to their disciplines and synergize them with the growing needs in their arena.
- **PO5:** Explore the diverse value systems of our nation and contribute towards building an egalitarian society.

Programme Specific Outcomes (PSOs)

Upon completion of M. Sc. Zoology programme, students will be able to

PSO1: Acquire in depth knowledge of basic and advanced areas in Zoology and related fields such as biochemistry, physiology, molecular biology, microbiology, biotechnology, Immunology, Genomics, forensic biology, clinical lab technology, biophysics and biostatistics with interdisciplinary approach.

- **PSO2:** Carryout experimental techniques with proficiency and analyse, apply and solve scientific problems in various areas of Zoology.
- **PSO3**: Develop aptitude and skill in research in different branches of Zoology as well as related disciplines.
- **PSO4**: Acquire skills in Zoology in a global, economic, environment and societal context and to develop personal and key transferable skills such as group work and presentation.
- **PSO5**: Identify, evaluate and apply fundamental concepts of Zoology in designing and developing ideas applicable to the society.
- **PSO6**: Demonstrate awareness for lifelong and professional development towards producing employable candidates in career related to teaching in Zoology, especially in Schools and Colleges.
- **PSO7**: To develop innovative ideas and exhibit skills necessary to initiate unique start-ups in the realm of life science.

SRI MEENAKSHI GOVERNMENT ARTS COLLEGE FOR WOMEN (AUTONOMOUS)

MADURAI - 2

Programme : M. Sc. ZOOLOGY

		SEMESTER -	- 1					
Course Type	Course	Title of the Course	Hrs/	Credits	Exam	Marks		
	Code		week		піз	Int	Ext	Total
Core Course - I	P22CZ1	Animal Physiology	6	5	3	25	75	100
Core Course - II	P22CZ2	Environmental Biology	6	5	3	25	75	100
Core Course - III	P22CZ3	Molecular Biology	5	4	3	25	75	100
Core Course - IV	P22CZ4P	Animal Physiology, Environmental Biology and Molecular Biology-Practical	6	3	5	40	60	100
	P22DSZ1A	Clinical Lab Technology						
Discipline Specific			5	4	3	25	75	100
Elective Course - I	P22DSZ1B	Climate Change and Sustainability						
Skill Enhancement Course - I	P22SEZ1	Vectorborne Diseases	2	2	3	25	75	100
	Total		30	23				600
		SEMESTER –	1	L	1			1
Core Course - V	P22CZ5	Applied Microbiology	6	5	3	25	75	100
Core Course - VI	P22CZ6	Biochemistry	6	5	3	25	75	100
Core Course - VII	P22CZ7	Human Genetics	5	3	3	25	75	100
Core Course - VIII	P22CZ8P	Applied Microbiology, Biochemistry and Human	6	3	5	40	60	100

		Genetics - Practical						
	P22DSZ2A	Genomics and Proteomics						
Discipline Specific			5	4	3	25	75	100
Elective Course - II	P22DSZ2B	Computational Biology						
Skill Enhancement	P22SEZ1	Climate Change and Human	2	2	3	25	75	100
Course - II		Health						
	Total		P22SEZ1	22				600

		SEMESTER – III						
Core Course - IX	P22CZ9	Immunology	6	5	3	25	75	100
Core Course - X	P22CZ10	Developmental Biology	6	5	3	25	75	100
Core Course - XI	P22CZ11	Biophysics and Biostatistics	5	4	3	25	75	100
Core Course - XII	P22CZ12P	Immunology, Developmental Biology Biophysics and Biostatistics- Practical	6	4	3	40	60	100
Discipline Specific	P22DSZ3A	Research Methodology and Bio- techniques	5	4	3	25	75	100
Elective Course - III	P22DSZ3B	Economic Zoology						
Non -Major Elective Course	P22NMZ1	Brain and Human Behaviour	2	2	3	25	75	100
Total			20	24				600
	TOLA		30	24				600
	TOLA	SEMESTER – IV	30	24				800
Core Course - XIII	P22CZ13	SEMESTER – IV Animal Biotechnology	30 6	4	3	25	75	100
Core Course - XIII Core Course - XIV	P22CZ13 P22CZ14	SEMESTER – IV Animal Biotechnology Entomology	30 6	24 4 4	3	25 25	75	100
Core Course - XIII Core Course - XIV Core Course - XV	P22CZ13 P22CZ14 P22CZ815	SEMESTER – IV Animal Biotechnology Entomology Biodiversity and Conservation Strategies	30 6 5	24 4 4 4	3 3 3	25 25 25	75 75 75	100 100 100
Core Course - XIII Core Course - XIV Core Course - XV Core Course - XV	P22CZ13 P22CZ14 P22CZ815 P22CZPW	SEMESTER – IV Animal Biotechnology Entomology Biodiversity and Conservation Strategies Project Work	30 6 5 8	24 4 4 5	3 3 -	25 25 25 80	75 75 75 20	100 100 100 100
Core Course - XIII Core Course - XIV Core Course - XV Core Course - XV (Project)	P22CZ13 P22CZ14 P22CZ815 P22CZPW	SEMESTER – IV Animal Biotechnology Entomology Biodiversity and Conservation Strategies Project Work	30 6 5 8	24 4 4 5	3 3 -	25 25 25 80	75 75 75 20	100 100 100 100
Core Course - XIII Core Course - XIV Core Course - XV Core Course - XV (Project)	P22CZ13 P22CZ14 P22CZ815 P22CZPW P22CZPW	SEMESTER - IV Animal Biotechnology Entomology Biodiversity and Conservation Strategies Project Work Forensic Biology	30 6 5 8	24 4 4 5	3 3 -	25 25 25 80	75 75 75 20	100 100 100 100
Core Course - XIII Core Course - XIV Core Course - XV Core Course - XV (Project) Discipline Specific	P22CZ13 P22CZ14 P22CZ815 P22CZPW P22CZPW	SEMESTER – IV Animal Biotechnology Entomology Biodiversity and Conservation Strategies Project Work Forensic Biology	30 6 5 8 5	24 4 4 5 4	3 3 3 -	25 25 25 80 25	75 75 75 20 75	100 100 100 100 100
Core Course - XIII Core Course - XIV Core Course - XV Core Course - XV (Project) Discipline Specific Elective Course - IV	P22CZ13 P22CZ14 P22CZ815 P22CZPW P22CZPW P22DSZ4A	SEMESTER – IV Animal Biotechnology Entomology Biodiversity and Conservation Strategies Project Work Forensic Biology Animal Behaviour	30 6 5 8 5	24 4 4 5 4	3 3 3 -	25 25 25 80 25	75 75 75 20 75	100 100 100 100

COURSE STRUCTURE ABSTRACT FOR

M. Sc. ZOOLOGY

PART	COURSES	TOTAL NO.	HOURS	CREDITS	MARKS
		OF COURSES			
	Core Course	15	86	63	1500
111	Core Project	1	8	5	100
===	Discipline Specific Elective Course	4	20	16	400
111	Non-Major Elective Course	1	2	2	100
	Skill Enhancement Course	2	4	4	200
	Total	23	120	90	2300

Programme	: M. Sc. ZOOLOGY	Course Type : CC- I		
Semester	: I	Hours	: 6/W 90/S	
Subject Code	e : P22CZ1	Credits	: 5	

TITLE OF THE PAPER: ANIMAL PHYSIOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VII	GD/VIDEOS/TUTORIAL			
	6	3	2		1			
PREAMBLE:	PREAMBLE:							
This course	This course provides knowledge and understanding of structure and functions of human							
organ systems and	d awareness to	an diseases						
	COURS	E OUTCOM	Е	Unit	Hrs	Knowledge		
At the end of the S	emester, the S	Students will b	e able to		P/S	Level		
CO1: impart kno	wledge on va	rious types of	f nutrition anddistinguish	ı 1	12	K3		
the heterotrophic	mode of nu	utritional type	s such as Saprotrophic	,				
Parasitic, Holozoi	c nutrition a	nd heterotrop	hs such as decomposer	,				
omnivore, Herbivo	ore and Detrivo	ore and describ	e process of digestion.					
CO2: explain bre	eathing, venti	lation, and un	derstands the process of	f 2	18	K4		
gaseous exchange	e, respiratory	pigments. l	Hemoglobin as oxyger	1				
carrier, respirator	y quotient,	analyse the	reasons for respiratory	7				
problems and ap	ply the know	wledge in car	ring lungs and prevent	t				
respiratory dieases								
CO3: gain know	vledge on th	he structure	and fuctions of heart	, 3	20	K4		
understanding of	composition of	of blood and	role of blood and blood	l				
cells, analyse the c	causes and ap	oplying this w	vith reference to cardiac	;				
diseases.								
CO4: associate	the structure	and function	s of Muscular system	, 4	22	K4		
compare and cont	rast CNS, PN	IS and ANS	and discover the role of	Ĩ				
photo and phonor	eceptors, analy	yse the reason	ns for neuraldiseaes and	l				
apply the knowled	apply the knowledge in preventing muscular, neural phonoand photo							
receptor diseases								
CO5: list the ex	CO5: list the excretory organs in animals and summarise the							
structure and fund	ctions of kidi	ney, understar	nding the mechanism of	f				
urine formation an	d analyse hyp	ertension with	Kidney disorders.					

SYLLABUS

UNIT I:

Feeding and digestion - an overview of nutritional types and feeding mechanisms –Mode of digestion - intracellular and extracellular, mechanism of absorption of carbohydrates, fats, and proteins, defecation.

UNIT II:

Respiration – structure of Lung, external respiration - respiratory movements, breathing, ventilation, process of gaseous exchange, respiratory pigments. Hemoglobin as oxygen carrier, respiratory quotient.

UNIT III:

Circulation – structure and functioning of Heart - composition and functions of blood, mechanism of blood clotting, functioning of heart, cardiac cycle, heart beat – origin and regulation, blood pressure, ECG, diseases of heart.

UNIT IV:

Muscular system - ultra structure of skeletal muscle, mechanism of muscle contraction, theories and biochemical changes during contraction. Nervous system - CNS, PNSI, ANS. Neuron - structure and types, conduction of nerve impulses. Mechanism of photo and phonoreceptors.

UNIT V:

Excretion - products of excretion, excretory organs in animals, structure and functions of human kidney, mechanism of urine formation. Hypertension vs kidney disorders. Osmoregulation - osmoregulators, conformers, stenohaline and euryhaline, osmoregulation in fishes. Thermoregulation - hibernation, aestivation, diapause.

TEXT BOOK:

1. Hoar WS. General and Comparative Physiology. Prentice Hall of India, ND, 2004

REFERENCE BOOKS:

- 1. Eckert and Randal. Animal Physiology. CBS Pub., New Delhi, 2005
- Nagabhushanam, Kodarkar and Sarojini. Text Book of Animal Physiology. Oxford and IBH Pub., New Delhi, 1983
- Verma PS and Agarwal VK. Animal Physiology. 6th Edn. S. Chand and Company, 1997

Course Designer: DR. M. KALAIARASI

UNITS	TOPIC	LECTURE	MODE OF
UNIT I		HUUKS	ILAUTING
1.1	An overview of nutritional types and feeding mechanisms	3	Lecture 2 Discussion 1
1.2	Digestion - intracellular and extracellular	3	Lecture 2 video 1
1.3	Mechanism of absorption of carbohydrates, fats, and proteins, defecation	6	Lecture 4 video 2
UNIT II			
2.1	Structure of Lung	3	video 1 Lecture 2
2.2	External respiration - respiratory movements, breathing, ventilation	4	Lecture 2 peer 1 video 1
2.3	Process of gaseous exchange	5	Lecture 4 video 1
2.4	Respiratory pigments. Hemoglobin as oxygen carrier	4	video 1 Lecture 2 discussion 1
2.5	Respiratory quotient	2	Lecture
UNIT II	I		
3.1	structure and functioning of Heart	3	video 1 Lecture 2
3.2	composition and functions of blood, mechanism of blood clotting	4	Lecture 3 video 1

3.3	functioning of heart, cardiac cycle	5	video 1
			Lecture 4
3.4	heart beat – origin and regulation	5	video 2
			Lecture 3
3.5	Blood pressure, ECG, diseases of heart.	3	Discussion1
			video1
			Lecture 1
UNIT IV	7		
4.1	Muscular system - ultra structure of skeletal muscle,	8	Lecture 5
	mechanism of muscle contraction, theories and		video 2
	biochemical changes during contraction.		discussion 1
4.2	Nervous system - CNS, PNSI, ANS. Neuron - structure	8	video 2
	and types, conduction of nerve impulses		Lecture 5
			seminar 1
4.3	Mechanism of photo and phonoreceptors.	6	Lecture 4
			Video 2
UNIT V			
5.1	products of excretion, excretory organs in animals	6	Discussion 1
	Structure and functions of human kidney, mechanism of		Lecture 4
	urine formation. Hypertension vskidney disorders.		video 1
5.2	Osmoregulation - osmoregulators, conformers, stenohaline	6	Seminar 1
	and euryhaline, osmoregulation in fishes.		Lecture 4
			video 1
5.3	Thermoregulation - hibernation, aestivation, diapause	6	Lecture 4
			video 1
			discussion 1

Course	Prog	Programme Outcomes (Pos)				Programme Specific Outcomes (PSOs)						Mean	
Outcomes												scores	
(Cos)												of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO1	4	4	4	4	2	4	3	4	4	3	4	3	3.58
CO2	4	4	3	4	4	4	4	4	3	4	3	4	3.75
CO3	4	4	4	4	3	3	4	3	4	3	4	3	3.58
CO4	4	3	4	2	3	4	3	4	3	4	4	4	3.50
CO5	4	4	3	4	4	4	4	3	4	3	4	4	3.75
					Ν	Aean Ov	verall So	core					3.63

Result: The Score for this Course is 3.63 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of CC	$Ds = \frac{\text{Total of}}{1}$	Value N	Mean Overall Sco	re of $COs = Tot$	al of Mean Score
	Total No. of I	POs & PSOs		Тс	otal No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
ANALYSE	30%	30%

Programme	: M. Sc. ZOOLOGY	Course 7	Type : CC - II
Semester	: I	Hours	: 6/ W 90/ S
Subject Code	: P22CZ2	Credits	: 5

Pedagogy	Hours	Lecture	Peer Teaching	GD/Videos/	Tutor		ICT	
				ial				
	6	2	-	2		2		
PREAMBLE:		L				1		
This cours	se helps to	o understand	the basic concepts of	ecosystem and	d comn	nunity		
	Unit	Hrs	Knowledge					
At the end of the	semester,	the students	s will be able to			P/S	Level	
CO1: acquire know	owledge	in basic eco	system		1	14	K1	
CO2: understan	d the pr	inciples of	community ecology		2	17	K2	
CO3: analyse th	e signific	ance of natu	iral resources		3	23	K4	
CO4: understand effect of pollution418								
CO5:create awareness about environmental laws and disasters515K3								
SYLLABUS					1	1	1	

TITLE OF THE PAPER: ENVIRONMENTAL BIOLOGY

UNIT I: Abiotic factors – light and temperature.. Biogeochemical cycles - Nitrgen, Phosphorous and Sulphur.

UNIT II: Community ecology - community structure - ecological succession - types, causes and process - Trends in succession - concept of climax and significance of ecological succession. Population structure and distribution - growth curves, regulation of population – density dependent and independent. -

UNIT III: Ecosystem - concept, types, structure and functions - food chains, food webs, productivity and ecological pyramids. Habitat ecology -- Fresh water, Marine water and Terrestrial. Minerals - Energy from conventional and non-conventional resources - solar, natural gases, oil, petroleum and biogas. Forest - types

UNIT IV: Pollution - types - land, water, air, noise, radioactive and thermal pollution - sources,

effects, control measures. Ecosystem - concept, types, structure and functions - food chains, food webs, productivity and ecological pyramids. Ecological energetics and energy flow in ecosystem

UNIT V: EIA - objectives, benefits and process - methods of EIA - Environmental law and policy - social issues. Natural and Man-made disasters - types and management.

TEXT BOOK:

1. Sharma PD. Environmental Biology. Rastogi Pub., Meerut, 2009

REFERENCE BOOKS:

- Chary SN and Vyasulu V. Environmental Management. MacMillan India Ltd., New Delhi, 2009
- Joshi PC and Joshi N. A Text Book of Ecology and Environment. 1stEdn., Himalaya Pub., Mumbai, 2005
- 3. Odum EP. Fundamentals of Ecology. Akash Press, New Delhi, 2007
- Singh JS, Singh SP and Gupta SR. Ecology, Environment and Resource Conservation. Anama;ya Pub., New Delhi, 2008

Course Designer: DR. G. SASI REKA

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I			
1.1	Abiotic factors – light and temperature	4	Lecture (4 hrs)
1.2	Biogeochemical cycles - Nitrgen, Phosphorous and	10	Lecture (5 hrs)
	Sulphur		ICT (2 hrs)
			Tutorial (3 hrs)
UNIT II			
2.1	Community ecology - community structure	4	Lecture (4hrs)
2.2	Ecological succession - types, causes and process	4	Video (4 hrs)
2.3	Trends in succession - concept of climax and significance	3	Tutorial (3 hrs)

	of ecological succession		
2.4	Population structure and distribution - growth curves,	6	ICT (3 hrs)
	regulation of population – density dependent and		Tutorial (3 hrs)
	independent.		
UNIT III			
3.1	Ecosystem - concept, types, structure and functions	5	Lecture (5 hrs)
3.2	food chains, food webs, productivity and ecological	5	Lecture (5 hrs)
	pyramids.		Video (1 hr)
3.3	Habitat ecology – Fresh water, Marine water and	5	Lecture (5 hrs)
	Terrestrial		Video (1 hr)
3.4	Minerals - Energy from conventional and non-conventional	5	Lecture (4 hrs)
	resources - solar, natural gases, oil, petroleum and biogas		Video (1 hr)
3.5	Forest – types	3	Lecture (3hrs)
UNIT IV		L	
4.1	Pollution - types - land, water, air, noise - sources, effects,	6	Tutorial (3 hrs)
	control measures		GD (3 hrs)
4.2	Radioactive and thermal pollution - Sources, effects,	6	ICT (3 hrs)
	control measures		Tutorial (3hrs)
4.3	Ecological energetics and energy flow in ecosystem	6	Video (3hrs)
			Lecture (3 hrs)
UNIT V			
5.1	EIA - objectives, benefits and process	5	Video (2 hrs)
			Lecture (3 hrs)
5.2	Methods of EIA - Environmental law and policy, social	5	Lecture (3 hrs)
	issues.		Tutorial (2 hrs)
5.3	Natural and Man-made disasters - types and management.	5	Lecture (3 hrs)
			GD (2 hrs)

Course Programme Outcomes (POs)							amme S	Specific	· Outco	mes (PS	SOs)		Mean
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	scores
(COs)													of
													COs
CO1	4	3	4	4	4	4	4	4	4	4	4	4	4
CO2	4	3	4	3	4	4	3	4	4	4	4	4	4
CO3	4	4	4	3	4	4	4	4	4	4	4	4	4
CO4	3	4	4	4	4	4	4	4	4	4	4	4	4
CO5	4	4	4	4	4	3	4	4	4	4	4	4	4
				I	Mean	Overall	Score						4

Result: The Score for this Course is 4.0 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of CC	Ds = Total of	Value	Mean Overall Score of $COs = Total of Mean Score$			
	Total No. of I	POs & PSOs		То	otal No. of COs	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
ANALYSE	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	e : CC - III
Semester	: I	Hours	: 5/W 75/S
Subject Code	e : P22CZ3	Credits	:4

TITLE OF THE PAPER: MOLECULAR BIOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDE	/VIDEOS/TUTORIAL					
	5	2	-		2					
PREAMBLE:	PREAMBLE:									
This course	This course helps to gain knowledge on the molecular aspects of the living system and understand the									
gene functions	and its disorde	ers.								
	COU	JRSE OUTC	COME		Unit	Hrs	Knowledge			
At the end of the	Semester, the	Students wil	l be able to			P/S	Level			
CO1: Explain	concepts such	as gene struc	cture and function and	obtain an	1	15	K2			
understanding of	f genetics and	molecular bio	logy principles.							
CO2: Define, A	Analyze and e	xplain the ch	aracteristics of codon	and gene	2	15	К3			
expression at the	e level of Trans	scription.								
CO3: Describe	the mechanisr	n of gene ex	pression at the transla	ation level	3	15	К3			
and compare bet	and compare between Prokaryotes and Eukaryotes									
CO4: Explain ar	CO4: Explain and demonstrate the gene regulation using examples.									
CO5: Define, ex	plain and gene	eralize the mu	tation and oncogenes.		5	16	K3			
SYLLABUS										

UNIT I:

DNA - structure, forms and properties - replication of DNA, Messelsan & Stahl, Hershey- Chase experiment - enzymes in replication - mechanism of replication in prokaryotes and eukaryotes. RNA – types.

UNIT II:

Genetic code - codon characteristics and deciphering. Transcription - mechanism of transcription in prokaryotes and eukaryotes - initiation, elongation and termination - post transcriptional modification - RNA splicing.

UNIT III:

Translation - mechanism of translation in prokaryotes and eukaryotes - post translational

modifications.

UNIT IV:

Regulation of gene expression in prokaryotes - Operon concept - Lac, Trp and Ara operons – gene regulation in eukaryotes.

UNIT V:

Mutation - types - mutagenesis. Types of mutagenic agents - DNA repair - photo reactivation, excision, recombination and SOS - mechanisms. Oncogenes.

TEXT BOOKS:

Rastogi SC. - Cell and Molecular Biology. 2nd Edn., Taj Press, New Delhi, 2004.

REFERENCE BOOKS:

- 1. David Friefelder. Molecular Biology. Nanosa Pub., New Delhi, 1995.
- 2. Latchman DS. Basic Molecular and Cell Biology. 3rd Edn., Replika Press Pvt. Ltd., India, 2006.
- 3. Power C B. Cell Biology. 3rd Edn., Himalaya Pub., Bombay, 1990.
- Turner P C, Chennan A G M, Bates A D and White M R H. Molecular Biology. 2nd Edn., Vinod Vasishta, New Delhi, 2010.
- 5. Twyman RM. Advanced Molecular Biology 1st Edn., Vinod Vasishta Press, New Delhi, 1999.

Course Designer: DR. JOTHI SAM

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I			
1.1	DNA - structure, forms and properties.	4	Lecture - 2
			Tutorial – 1
			Video - 1
1.2	Replication of DNA, Messelsan & Stahl, Hershey - Chase	6	Lecture - 4
	experiment - enzymes in replication - mechanism of		Tutorial – 1
	replication in prokaryotes and eukaryotes.		Video - 1
1.3	RNA – types – tRNA, mRNA and rRNA.	5	Lecture - 3

			Tutorial – 2
UNIT II			
2.1	Genetic code - Codon characteristics and deciphering.	3	Lecture - 3
2.2	Transcription - mechanism of transcription in prokaryotes.	5	Lecture - 3
			Tutorial - 1
			Video - 1
2.3	Transcription in eukaryotes -initiation, elongation and	4	Lecture - 4
	termination.		
2.4	Post transcriptional modification - RNA splicing.	3	Lecture - 3
UNIT III			
3.1	Translation - mechanism of translation in prokaryotes.	5	Lecture - 3
			Tutorial – 1
			Video - 1
3.2	Translation in eukaryotes.	5	Lecture - 5
3.3	Post translational modifications.	5	Lecture - 3
			Tutorial – 1
			Video - 1
UNIT IV			
4.1	Regulation of gene expression in prokaryotes - Operon	6	Lecture - 4
	concept – Lac operon.		Tutorial - 1
			Video - 1
4.2	Trp and Ara operons.	4	Lecture - 4
4.3	Gene regulation in eukaryotes.	4	Lecture - 3
			Tutorial - 1
UNIT V			
5.1	Mutation - types - mutagenesis.	5	Lecture - 3
			Tutorial – 1
			Video - 1
5.2	Types of mutagenic agents.	4	Lecture - 4
5.3	DNA repair - photo reactivation, excision, recombination and	5	Lecture - 3
	SOS - mechanisms.		Tutorial – 2

5.4	Oncogenes	2	Lecture - 2

Course Outcomes (COs)	Prog	camme (Outcom	es (POs)	Programme Specific Outcomes (PSOs)						Mean scores of COs	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO1	4.0	3.6	3.8	3.8	2.8	4.0	3.8	3.5	3.2	3.6	3.0	3.5	3.55
CO2	3.4	2.8	3.4	3.6	2.8	4.0	3.6	3.6	3.2	3.5	2.8	3.5	3.35
CO3	3.5	2.8	3.4	3.6	3.0	4.0	3.6	3.7	3.2	3.5	2.8	3.5	3.38
CO4	3.5	2.8	3.4	3.6	3.0	4.0	3.6	3.6	3.4	3.6	2.8	3.5	3.40
CO5	3.5	3.6	3.3	3.5	3.0	3.5	3.5	3.5	3.4	3.2	2.8	3.4	3.35
					M	ean Ove	rall Scor	·e					3.41

Result: The Score for this Course is 3.41 (High Relationship)

Mapping	1-20%	21-40%	41-60% 61-80%		81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
$Mean Score of COs = \underline{Total of Value}$			Mean Overall Score of $COs = Total of Mean Score$			
	Total No. o	of POs & PSOs			Total No. of COs	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	: CC - IV
Semester	: I	Hours	: 6/W 90/S
Subject Code	: P22CZ4P	Credits	:4

TITLE OF THE PAPER: ANIMAL PHYSIOLOGY, ENVIRONMENTAL BIOLOGY AND MOLECULAR BIOLOGY - PRACTICAL

Pedagogy	Hours	Lecture	Demonstration		TUTORIAL					
	8	1	3	4						
PREAMBLE:										
The techniques	The techniques in Haematology, blood cell analysis, estimation of O2, CO2, Salinity and									
exposure to practicals related to environmental impact										
	Unit	Hrs	Knowledge							
At the end of the Seme	ester, the S	tudents will be able	e to		P/S	Level				
CO1: Enumerate the	RBC,WBC	, estimate Haemog	globin content	1	21	K3				
CO2: Apply clinical p	2	24	K3							
CO3: Isolate DNA	3	24	K4							
content using Paper and Thin layer chromatography										
CO4: Evaluate COD,	, BOD, alk	alinity, salinity an	d polluting factors	4	21	K4				

SYLLABUS

from various samples

UNIT I:

Total count of RBC and WBC Differential count of Leucocytes

Bleeding time and Clotting time Estimation of Hemoglobin Analysis of Haemin crystals

UNIT II:

Determination of Blood Pressure

Analysis of excretory products - urea, uric acid and ammonia

Estimation of oxygen consumption in Fish

Semen analysis - Motility and Total count

Spotters: Structure of muscle fibers, reflex arc, ECG

UNIT III:

Isolation of DNA from tissue sample

Quantitative estimation of Nucleic Acid – DNA/RNA

Spotters: Types of DNA, tRNA, Okazaki fragment

UNIT IV:

Estimation of dissolved oxygen in water samples

Estimation of carbon dioxide in water samples

Estimation of alkalinity

Estimation of salinity

Biological water quality analysis - pollution indicators

Estimation of Primary Productivity (Light and dark bottle method)

Spotters: Food web, Ecological Pyramids, Secchic disc

REFERENCE BOOKS:

1.Sinha J and Chatterjee AK. Advanced Practical Zoology. ArunabhaSen Pub., Kolkata, 2014.

2.Poddor T, Mukhopadhaya S and Das SK. An Advanced Laboratory Manual of Zoology. MacMillan Pub., New Delhi, 2010

3. Ghose KC and Manna B. Practical Zoology. New Clinical Book Agency, Kolkata, 2007

Course Designer: MRS . A. SHEELA

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I			
1.1	Total count of RBC and WBC	7	Tutorial – 7
1.2	Differential count of Leucocytes	7	Tutorial – 7
1.3	Bleeding time and Clotting time	7	Tutorial – 7
	Estimation of Hemoglobin		
	Analysis of Haemin crystals		

UNIT II			
2.1	Analysis of Haemin crystals	8	Demo – 8
	Determination of Blood Pressure		
	Estimation of oxygen consumption in Fish		
2.2	Analysis of excretory products – urea, uric acid and	8	Tutorial – 8
	ammonia		
	Spotters: Structure of muscle fibers, reflex arc, ECG		
2.3	Semen analysis – Motility and Total count	8	Tutorial – 8
	Spotters: Structure of muscle fibers, reflex arc, ECG		
UNIT III			•
3.1	Isolation of DNA from tissue sample	8	Demo – 8
3.2	Quantitative estimation of Nucleic Acid – DNA/RNA	8	Demo – 8
3.3	Paper and Thin layer Chromatography	8	Demo – 8
	Spotters: Types of DNA, tRNA, Okazaki fragment.		
UNIT IV			
4.1	Estimation of dissolved oxygen in water samples	12	Tutorial – 12
	Estimation of carbon dioxide in water samples		
	Estimation of alkalinity		
	Estimation of salinity		
4.2	Biological water quality analysis - pollution indicators	9	Demo – 9

Course Outcomes (COs)	Programme outcomes (POs)					Programme specific outcomes (PSOs)							Mean Scores of
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	COs
CO 1	4	3	3	4	4	4	4	5	4	5	4	3	3.91
CO 2	4	4	3	4	4	4	4	4	4	4	3	4	3.83
CO 3	4	4	4	4	4	4	4	4	3	4	4	4	3.91
CO 4	4	4	4	4	4	4	4	4	4	4	4	4	4.0
Mean overall score										3.91			

Result: The score for this course is **3.91** (High relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%	
Scale	1	2		3	4	5	
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor		Moderate	High	Very High	
Mean Score of $COs = \underline{Total of Value}$				Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total No. of I	POs & PSOs	Total No. of COs				

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type: DSEC -		
Semester	: I	Hours	: 5/W 75/S	
Subject Code	e : P22DSZ1A	Credits	:4	

TITLE OF THE PAPER: CLINICAL LAB TECHNOLOGY

Pedagogy	Hours	Lecture	Peer teaching	GD/VID	GD/VIDEO/TUTORIAL			
	5	3	-		2			
PREAMBLE:		·	•					
The course w	ill provide ba	asic knowledge of	n first aid and safe	ty measure	s, unde	erstand the		
principle and method	dology of clin	nical lab techniqu	ues, find placement	in Medica	l Labor	catory.		
	COURS	E OUTCOME		Unit	Hrs	Knowledge		
At the end of the Ser	mester, the St	udents will be abl	le to		P/S	Level		
CO1: To understand	d the laborate	ory designing and	safety methods of	1	15	K1		
First Aid in	laboratory.							
CO2: To analyses th	ne human bloo	od regarding type	s of blood groups	2	15	K3		
(A,B, AB,O)								
CO3: To understand	l theoretical k	nowledge about t	he specimen	3	15	K2		
collection and								
CO4: To describe th	4	15	K4					
stool								
CO5: To Explain the	5	15	K3					
and analysis t	he semen.							

SYLLABUS

UNIT I:

Laboratory designing and safety methods - laboratory designing, code of conduct for clinical laboratory, personal hygiene for laboratory technologists. Laboratory accidents - types, safety measures - First Aid in laboratory and precautions.

UNIT II:

Hematology - Phlebotomy (Peripheral and venous). Composition of blood plasma and corpuscles (self study). ABO Blood group system - Rh typing - blood components separation. Blood transfusion - compatibility testing. Chemical Examination - blood glucose, GTT, diabetes mellitus - types, urea, cholesterol, bilirubin.

UNIT III:

Urine - collection, storage and transport of urine sample. Physical properties - colour, volume, specific gravity, odour, turbidity. Chemical examination of urine - sugar, albumin, bile salts, bile pigments, urobilionogen, Bence-Jones proteins, ketones. Microscopic examination of urine deposits - cast, crystals and cells.

UNIT IV:

Stool - collection and transport of specimen – macroscopic examination – colour, odour, consistency. Chemical examination - Occult blood and pH. Microscopic examination - ova and cyst. **UNIT V:**

Sputum -collection and transport of specimen - macroscopic examination -consistency and appearance - microscopic examination - AFB staining. Semen - Semen analysis - collection, gross examination of specimen - microscopic examination - motility, total count and abnormality.

TEXT BOOKS:

 Mukherjee LK. Medical Laboratory Technology. Vol 3, 2ndEdn. Hill Pub. Ltd., New Delhi, 1988

REFERENCE BOOKS:

 Sood R. Medical Laboratory Technology - Methods and Interpretations. 5thEdn., Jaypee Pub., New Delhi.

Course Designer: MRS. P. YUVARANI

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I			
1.1	Laboratory designing and safety methods	3	Charts – 1
			Visual aids – 1
			Lecture – 1
1.2	Laboratory designing, code of conduct for clinical	3	Charts – 1
	laboratory,		Visual aids - 2
1.3	Personal hygiene for laboratory technologists	3	Lecture - 3

1.4	Laboratory accidents-types, safety measures	3	Charts – 2
			Visual aids -1
1.5	First Aid in laboratory and precautions.	3	Charts – 2
			visual aids - 1
UNIT II			
2.1	Composition of blood plasma, corpuscles	3	Charts – 1
			Lecture - 2
2.2	Blood group system - Rh typing	3	Lecture – 1
			Chart – 2
2.3	Blood components separation	3	Visual aids - 1
			Lecture – 2
2.4	Blood transfusion	3	Visual aids -1
			Lecture – 2
2.5	Chemical Examination	3	Lecture – 2
			Chart – 1
UNIT III			
3.1	Urine-collection, storage and transport of urine sample	4	Lecture - 3
			Chart – 1
3.2	Physical properties	3	Lecture - 2
			Chart – 1
3.3	Chemical examination	4	Visual aids – 2
			Lecture – 2
3.4	Microscopic examination	4	Visual aids - 2
			Lecture – 2
UNIT IV			
4.1	Stool - collection and transport of specimen	3	Lecture - 2
			Chart -1
4.2	Macroscopic examination	4	Visual aids - 2
			Lecture -2
4.3	Chemical examination	4	Visual aids - 2
			Lecture -2
4.4	Microscopic examination	4	Visual aids - 2
			Lecture -2
UNIT V		I	I
5.1	Sputum -collection and transport	3	Lecture - 2

			Chart- 1
5.2	Macroscopicexamination	3	Visual aids -1
			Lecture – 2
5.3	Microscopic examination	3	Visual aids -1
			Lecture – 2
5.4	Semen analysis	3	Visual aids-1
			Lecture – 2
5.5	Microscopic examination	3	Visual aids -1
			Lecture – 2

Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)								Mean scores				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	of COs
CO1	3	4	3	3	4	4	3	3	3	4	3	3	3.33
CO2	3	4	3	3	3	4	4	3	3	4	3	3	3.33
CO3	3	4	4	3	4	4	3	3	3	4	3	3	3.41
CO4	3	3	4	3	4	4	3	3	3	4	3	3	3.33
CO5	3	4	4	3	4	4	3	3	3	4	3	3	3.41
Mean Overall Score 3									3.36				

Result: The Score for this Course is 3.36 (High Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of COs =	Total of Va	lue	Mean Overall Score of $COs = Total of Mean Score$			
Total No. of Pos & PSOs Total No. of COs						No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Typ	e : DSEC - I
Semester	: I	Hours	: 5/W 75/S
Subject Code	: P22DSZ1B	Credits	:4

TITLE OF THE PAPER: CLIMATE CHANGE AND SUSTAINABILITY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/TUTORIAL					
	5	2	1	2					
PREAMBLE:			I	I					
To make t	he studen	its conceptu	alize, comprehend clim	ate change fo	orces; p	redict a	ind implement		
environmental su	ıstainabil	ity metrics a	and mitigation approacl	nes.					
	С	OURSE O	UTCOME		Unit	Hrs	Knowledge		
At the end o	of the Ser	mester, the S	Students will be able to			P/S	Level		
CO1: Identify, external of	, underst climate fo	and and list	st the causes of climaterpret evidences	ate change,	Ι	15	K2		
CO2: Compreh challenge	end and es on eco	illustrate system vuln	environmental consequent	uences and	II	15	К2		
CO3: Devel conserva	CO3: Develop technical skills to implement environmental conservation and sustainability						К3		
CO4: Predict and compute mitigation approaches in climate change						15	K3		
CO5: Compare and analyze new developments in sustainability V 15 K4 metrics and reporting tools Image: Compare and com							K4		

UNIT I: Climatic Systems and Variations

Global Climate System, Causes for Modern Climate Change, Internal Variability: Ocean-Atmosphere Variability, Ocean Currents, External Climate Forces: Greenhouse Gases, Orbital Variations, Solar Fluctuations, Volcanism, Plate Tectonics, Evidence and Measurement of Climate changes

UNIT II: Consequences and Challenges

Impacts on Life, Vegetation, Fauna, Glaciers and Ice Sheets Melting, Sea Level Changes, Economics of Climate Change, Climate Change and Water Scarcity, Coastal Ecosystem and Vulnerability, Threats to Forest and Biodiversity, Agriculture and Food Security, Energy Generation and Climate Change Mitigation.

UNIT III: Environmental Conservation and Sustainability

Technical Skills in Environment and Sustainability, Vulnerability, Adaptation and Livelihoods. Preservation of Biological Diversity, Sustainable Forest Management, Environmental Governance and Sustainability, Environmental Economics and Sustainability, Water Conservation and Sustainable Development, Challenges in Energy, Food and Agriculture.

UNIT IV: Mitigation Approaches in Climate Change

Climate and Weather Statistics, Climate Change Modelling, Carbon Emissions Reduction Technologies, Climate Change Research, Climatology Journals and Top Institutions, Governance for Climate Change, Clean Development Mechanism, Technology Options Fuel Switching and Carbon Sequestration

UNIT V: New Developments in Sustainability

Appropriate Technology and Sustainability Science, Consumption and Production Patterns, Sustainable Transport, Corporate Sustainability, Sustainability Metrics and Indices, Ecological and Carbon Footprint for Sustainability Measurement, Sustainability Measurement and Reporting Tools.

TEXT BOOKS:

1. Climate Change Biodiversity and Green Economy by H.S. Sharma S. Padmaja and Ganesh Sharma, Concept Publishing Company Pvt. Ltd. (2013).

REFERENCES:

- 1. Environment and Sustainable Development by M.H. Fulekar, Bhawana Pathak, R K Kale, Springer Nature (2013).
- 2. Sustainable Development in Digital Era by Dr. Aparna Mishra, Dr. Vikas Dahiya, Dr. Kamini Tandon, JSR Publishing House LLP; (2019).

Course Designer: DR.D. HELEN CHRISTINA

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I:	Climatic Systems and Variations		1
1.1	Global Climate System, Causes for Modern Climate	4	Lecture - 3 GD -1
	Change		
1.2	Internal Variability: Ocean-Atmosphere Variability,	5	Lecture -3 Peer
	Ocean Currents		teaching -1, GD -1
1.3	External Climate Forces: Greenhouse Gases, Orbital	6	Lecture - 4 GD -2
	Variations, Solar Fluctuations, Volcanism, Plate		
	Tectonics, Evidence and Measurement of Climate changes		
UNIT II	Consequences and Challenges	I	1
2.1	Impacts on Life, Vegetation, Fauna, Glaciers and Ice	5	Lecture - 3 Video -
	Sheets Melting, Sea Level Changes		1
			GD - 1
2.2	Economics of Climate Change, Climate Change and	3	Lecture - 2 Video -
	Water Scarcity		1
2.3	Coastal Ecosystem and Vulnerability, Threats to Forest	3	Lecture -2, Peer
	and Biodiversity		teaching -1
2.4	Agriculture and Food Security, Energy Generation and	4	Lecture - 3, Peer
	Climate Change Mitigation.		teaching - 1
UNIT II	: Environmental Conservation and Sustainability	I	1
3.1	Technical Skills in Environment and Sustainability,	3	Lecture - 3
	Vulnerability, Adaptation and Livelihoods		
3.2	Preservation of Biological Diversity, Sustainable Forest	4	Lecture - 2
	Management, Environmental Governance and		GD -2
	Sustainability		
3.3	Environmental Economics and Sustainability, Water	4	Lecture 3, Peer
	Conservation and Sustainable Development		teaching -1
3.4	Challenges in Energy, Food and Agriculture.	4	Lecture-2, GD - 2

UNIT IV	7: Mitigation Approaches in Climate Change		
4.1	Climate and Weather Statistics, Climate Change	5	Lecture -3, GD -2
	Modelling, Carbon Emissions Reduction Technologies		
4.2	Climate Change Research, Climatology Journals and Top	3	Lecture -2, Peer
	Institutions		teaching -1
4.3	Governance for Climate Change, Clean Development	4	Lecture -3, GD -1
	Mechanism		
4.4	Technology Options Fuel Switching and Carbon	3	Lecture -3
	Sequestration		
UNIT V	New Developments in Sustainability	I	
5.1	Appropriate Technology and Sustainability Science,	4	Lecture -3, Peer
	Consumption and Production Patterns		teaching -1
5.2	Sustainable Transport, Corporate Sustainability,	4	Lecture -2, peer
	Sustainability Metrics and Indices		teaching -2
5.3	Ecological and Carbon Footprint for Sustainability	3	Lecture -3
	Measurement		
5.4	Sustainability Measurement and Reporting Tools	4	Lecture -3,GD -1

Course Outcomes (COs)	Prog	Programme Outcomes (POs)			Omes (POs) Programme Specific Outcomes (PSOs)						Programme Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7				
CO1	4	4	5	4	2	-	3	4	4	3	-	-	2.75			
CO2	4	-	4	4	-	4	-	5	4	5	3	-	2.75			
CO3	5	4	4	3	3	-	4	4	3	4	-	-	2.8			
CO4	-	3	-	5	5	-	5	5	4	4	3	-	2.8			
CO5	-	3	-	5	5	-	5	5	4	4	3	-	2.8			
		1	1	<u> </u>	1	Mean	Overall S	Score	<u>I</u>	1	1	1	2.78			

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of COs	= <u>Total of Val</u>	lue	Mean Overall Score of $COs = Total of Mean Score$			
,	Total No. of PO	Os & PSOs	Total No. of COs			

Result: The Score for this Course is 2.78 (Medium Relationship)

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	: SEC - I
Semester	:I	Hours	: 2/W 30/S
Subject Code	: P22SEZ1	Credits	:2

TITLE OF THE PAPER: VECTOR BORNE DISEASES

Pedagogy	Hours	Lecture	Peer Teaching	GD/V	IDEOS/TUTORIAL		
	2	1	-	1			
PREAMBLE	PREAMBLE:						
To intro	duce the	students the basic	es of vector borne	disease	es in vi	iew of	public health
importance, it	ts habitats	, transmission, hea	alth impact on huma	an pop	ulation	and co	ntribute to the
general population by administering vector control measures.							
		COURSE OUTC	COME		Unit	Hrs	Knowledge
At the end of	the Semes	ster, the Students	will be able to			P/S	Level
CO1. Define	describe	and write about th	a details of vector		т	6	K1
behiteta interaction in the food chain, histic and chiefic factors				ors	I	0	K1
habitats, interaction in the food chain, blotic and abiotic factors							
CO2: Explai	in and par	aphrase Anthropo	notic vector disease	es and	II	6	K2
its health imp	pact on hu	mans					
CO3: Discus	s and sun	nmarize Zoonotic	vectors diseases a	nd its	III	6	K2
health impact on humans							
CO4: Include	e & prepa	re themselves and	l prepare the comm	nunity	IV	6	К3
on the awarer	ness about	arthropods of pul	olic importance				
CO5: Correla	ate and ap	ply vector contro	l strategies in hous	ehold	V	6	K4
and at comm	unity leve	el					
SYLLABUS					<u> </u>	1	1

Unit I: Vector Ecology

Introduction to Habits and habitats relevant to vectors - Species diversity - Food chain, food web,

ecological niche, prey predator relationships - factors influencing vector dispersal and migration.

Unit II: Anthroponotic diseases

Filariasis, Trypanosomiasis, tick typhus - Disease vectors - Life cycle of pathogens and transmission - health impact on human population.

Unit III: Zoonotic diseases

Cutaneous leishmaniasis, Plague, Leptospirosis - Disease vectors - life cycle and transmission - health impact on human population.

Unit IV: Arthropods of Public health importance

Houseflies, cockroaches, lice, bugs, scorpions, centipede, millipede, wasps, bees, beetles, spiders, ants - distribution and impact on human health -toxins, venoms - allergy, asthma.

Unit V: Vector Control Measures

Vector Control: objectives. Alternatives to chemical & microbial insecticides – Vector control at individual and community - Selection of appropriate control measures - Self protection measures - Types of vector control - Selective, integrated and comprehensive vector control

TEXT BOOKS:

Prepared course materials

REFERENCE BOOKS:

1. Tyagi B K., 2008. Vector Borne diseases: Epidemiology and Control; Scientific publishers.

2. David Claborn, 2020. Vector Borne diseases: Recent developments in Epidemiology and Control; Ebook – 978-83880-038-3

Course Designer: DR. D. HELEN CHRISTINA

UNITS	TOPIC	LECTURE HOURS	MODE OF TEACHING
UNIT I			
1.1	Introduction to Habits and habitats - Species	2	Peer learning -
	diversity - Food chain, food web, ecological niche		2

1.2	Prey predator relationships - Interaction with biotic	3	Lecture -1,
	and abiotic factors -		GD -1
1.3	Dispersal and migration.	1	Lecture - 1
UNIT II			
2.1	Filariasis - disease vector - life cycle and	2	Lecture -1,
	transmission - human health impact		Video -1
2.2	Visceral leishmaniasis - disease vector - life cycle	2	Lecture -1,
	and transmission - human health impact		chart -1
2.3	Trypanosomiasis - disease vector - life cycle and	2	Lecture -1,
	transmission - human health impact		Chart -1
UNIT II	Ι		
3.1	Cutaneous leishmaniasis - disease vector - life cycle	2	Lecture -1,
	and transmission - human health impact		Chart -1
3.2	Plague - disease vector - life cycle and transmission -	2	Lecture -1,
	human health impact		Chart -1
3.3	Leptospirosis - disease vector - life cycle and	2	Lecture -1,
	transmission - human health impact		Chart -1
UNIT IV	Ţ		
4.1	Houseflies, cockroaches, lice, bugs, scorpions,	2	Lecture -1,
	spiders - distribution and impact on human health		Peer teaching -
			1
4.2	Centipede, Millipede, wasps, bees, beetles, , ants	2	Lecture -1,
	distribution and impact on human health		Peer teaching -
			1
4.3	Toxins, venoms - allergy, asthma.	2	Lecture -1,
--------	--	---	-------------
			GD -1
UNIT V			
5.1	Vector Control: objectives. Alternatives to the use of	2	Lecture -1,
	insecticides (chemical & microbial) – Vector control		GD -1
	at individual or at community or at both levels		
5.2	Selection of appropriate control measures - Self-	2	Lecture -1,
	protection measures		GD -1
5.3	Types of vector control - Selective, integrated and	2	Lecture -2
	comprehensive vector control		

Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)										Mean scores		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	of
													COs
CO1	5	-	-	4	-	5	-	4	-	5	-	-	1.9
CO2	4	-	4	4	-	4	4	-	4	5	-	-	2.4
CO3	4	-	4	4	-	4	4	-	4	5	-	-	2.4
CO4	-	-	-	5	4	-	4	4	4	5	4	-	2.5
CO5	2	-	-	5	4	-	4	-	4	5	4		2.4
Mean Overall Score										2.3			

Result: The Score for this Course is 2.3 (Medium Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of CC	$Ds = \frac{Total of}{Total of}$	Value	Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total No. of I	Pos & PSOs	Total No. of COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
SYNTHESIS	30%	30%

Programme	: M. Sc. ZOOLOGY
Semester	: П
Subject Code	: P22CZ5

Course Type : CC - V Hours : 6/W 90/S Credits : 5

TITLE OF THE PAPER: APPLIED MICROBIOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/TUTORIAL							
	6	4	-	2							
PREAMBLE:	PREAMBLE:										
Study of	Study of this course aims to gain fundamental knowledge on various branches of microbiology										
and to get expo	and to get exposure to the techniques applied in various fields of microbiology										
	CO	URSE OUTC	OME		Unit	Hrs	Knowledge				
At the end of th	e Semester	, the Students	will be able to			P/S	Level				
CO1: Perfor	m microbi	al analysis o	of water ,presumpti	ve test,	1	15	K4				
confirmed test	and comple	ete test and g	ain the knowledge of	of water							
born pathogens	and preven	t the diseases									
CO2: Gain kno	owledge on	treatment of	sewage water for n	nicrobes	2	18	К3				
and apply biod	legradation	and bioremed	liation in day today l	ife							
CO3: Analyse	and expla	in role of mi	crobes in soil fertili	ty, Nif	3	18	K4				
genes nitrogen	fixation a	nd apply the	knowledge of biofe	rtilizers							
andVAm fungi	in Agricult	ure									
CO4: Apply th	e knowledg	ge of food and	d dairy microbiology	y in day	4	18	К3				
today life											
CO5: Analys	e the role	iology ,	5	21	K4						
fermentors and	its types a	ction of									
wine and citric	acid										

SYLLABUS

UNIT I:

Microbiology of water - Microbial analysis of water - sanitary tests for coli forms - MPN - Presumptive test, confirmed test, completed test- the membrane filter technique. Water borne pathogens - water purification.

UNIT II:

Environmental Microbiology - sewage treatment - physical, chemical and biological treatment - trickling filter, activated sludge & oxidation pond. Microbial leaching - copper.Biodegradation - petroleum, pesticides, xenobiotics. Bioremediation - types and its applications.

UNIT III:

Soil and Agricultural Microbiology - types of soil microbes - Role of microbes in soil fertility. Biological Nitrogen Fixation - Nitrogen fixing bacteria - biochemistry of N2 fixation - nitrogenase – Nif genes.Biofertilizers - Azolla. Mycorhizalbiofertilizer - VAM fungi,

UNIT IV:

Food and Dairy Microbiology - types and sources of microorganisms in food. (mould, yeast, bacteria) - Microbial contamination and spoilage of food. Food preservation - physical and chemical methods. Food-borne infections - bacterial and fungal.Fermented dairy products - cheese, butter.

UNIT V:

Industrial Microbiology - Bioreactor –basic design and types. Screening of industrially important microorganisms, strain improvement by gene manipulation techniques- media for fermentation.types of fermentation - submerged and solid state fermentation – downstream processing - microbial production of wine, citric acid and antibiotics (streptomycin).

TEXT BOOK:

 Dubey RC and Maheswari DK.A Text Book of Microbiology. S. Chand and Company Ltd., New Delhi, 2005

REFERENCE BOOKS:

- 1. Daniel JC. Environmental Aspects of Microbiology, Bright Sun Pub., Chennai, 1999
- 2. Fraier WC and Westhoff DC. Food Microbiology. 4th Edn., McGraw Hill, New York, 1988
- 3. Patel AH. Industrial Microbiology. Macmillan India Ltd. Pub. Chennai, 2005
- 4. Prescott LM, Harley JP and Klein DA. Microbiology. 2ndEdn., WMC Brown Pub., 1993
- SubbaRao NS. Soil Microbiology. 4thEdn. Oxford and IBH Pub. Co. Pvt. Ltd., New Delhi, 2004
- 6. VijayaRamesh K. Environmental Microbiology. MJP Pub., Chennai, 2004

Course Designer: DR. M. KALAIARASI

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT 1			
1.1	Microbial analysis of water - sanitary tests for coli forms	3	Lecture 2
			video 1
1.2	MPN - Presumptive test, confirmed test, completed test	5	Lecture 3 Video 2
1.3	Membrane filter technique	3	Lecture 2 video1
1.4	Water borne pathogens - water purification	4	video1 Lecture 3
UNIT II			
2.1	Sewage treatment - physical, chemical and biological treatment - trickling filter, activated sludge & oxidation pond.	6	Lecture 4 Video 2
2.2	Microbial leaching - copper.	2	Seminar 1 Lecture 1
2.3	Biodegradation - petroleum, pesticides, xenobiotics	5	Lecture 3 discussion1 video 1
2.4	Bioremediation - types and its applications	5	Seminar 1 Lecture 4
UNIT III			
3.1	Types of soil microbes - Role of microbes in soil fertility	4	Lecture 3 video 1
3.2	Biological Nitrogen Fixation - Nitrogen fixing bacteria - biochemistry of N2 fixation - nitrogenase	8	Lecture 5 Seminar 2 Video 1
3.3	Nif genes Biofertilizers- Azolla. Mycorhizalbiofertilizer - VAM fungi.	6	video 2 Lecture 4
UNIT IV			
4.1	Types and sources of microorganisms in food. (mould, yeast, bacteria)	3	Discussion 1 Lecture 2
4,2	Microbial contamination and spoilage of food	3	Lecture 2 Discussion 1
4.3	Food preservation - physical and chemical methods.	3	Lecture 2 Video 1
4.4	Food - borne infections – bacterial and fungal	5	Seminar 2 Lecture 3
4.5	Fermented dairy products - cheese, butter.	4	Lecture 3 Discussion 1

UNIT V			
5.1	Bioreactor –basic design and types.	5	Video 1
			Lecture 4
5.2	Screening of industrially important microorganisms,	5	
	strain improvement by gene manipulationtechniques		Lecture 4
			Seminar 1
5.3	Media for fermentation. Types of fermentation -	6	Lecture 4
	submerged and solid state fermentation – downstream		Video 1
	processing		Discussion 1
5.4	Microbial production of wine, citric acid and	5	Lecture 3
	antibiotics (streptomycin).		Seminar 1
			Discussion 1

Course Outcomes	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)							Mean scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	of COs
CO1	4	4	3	4	3	4	4	4	3	3	4	3	3.90
CO2	4	4	4	4	3	3	3	2	4	4	3	4	3.50
CO3	3	4	3	3	3	4	4	3	3	4	3	4	3.41
CO4	4	3	3	4	4	3	3	3	4	3	4	3	3.41
CO5	4	3	3	3	3	4	3	4	4	3	3	3	3.33
Mean Overall Score									3.51				

Result: The Score for this Course is 3.51 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of CC	Ds = Total of	Value	Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total No. of I	Pos& PSOs		Тс	otal No. of COs	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
ANALYSE	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type: CC - VI			
Semester	: 11	Hours	: 6/W 90/S		
Subject Code	: P22CZ6	Credits	: 5		

TITLE OF THE PAPER: BIOCHEMISTRY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/T	UTORI	AL	Charts/Models					
	6	3	1	1			1					
PREAMBI	PREAMBLE:											
The course enhance the students to develop an understanding about various biomolecules and												
to impart a comprehensive knowledge of the principles of biochemistry												
		COURSE (DUTCOME		Unit	Hrs	Knowledge					
At the end o	of the Semo	ester, the St	udents will be able	e to		P/S	levels					
CO1: Unde	rstand basi	ic biochemi	cal systems in the	biological	1	15	K1					
systems												
CO2: To lea	arn the fun	damental bi	iochemical princip	oles such as	2	15	K2					
structure of	bio molec	ules										
CO3: To ga	in ideas re	garding me	tabolic pathways		3	20	K4					
CO4: To ur	nderstand t	he regulatio	ns of biological a	nd biochemical	4	20	К3					
processes												
CO5: Analy	ze the me	5	20	K4								
metabolism	, the enzyn	nes.										
	a				1	1						

SYLLABUS

UNIT I:

Water - structure, physical properties ,Polarity - interaction of water -weak and non-covalent interaction, Ionization and dissociation of water, pH - buffers - Handerson-Hasselbach equation Biological buffer systems.

UNIT II:

Carbohydrates-classification,Structure and biological importance of glucose, lactose, starch, Carbohydrate metabolism - metabolic cycles and regulation of glycolysis, Glycogenolysis, gluconeogenesis, glycogenesis, HMP shunt,TCA cycle and Electron transport system.

UNIT III:

Proteins - aminoacids - structure, Classifications - physical and chemical properties of

aminoacids. Configuration of proteins - primary, secondary, tertiary and quarternary structures - Ramachandran plot,Metabolism of proteins - deamination , transamination,Transmethylation and Ornithine cycle.

UNIT IV:

Lipids - fatty acids –structure,types, classification, Structure of triglycerides-phospholipids – cholesterol, Biosynthesis of cholesterol,Degradation of fatty acids , β - Oxidation - formation of Ketone bodies.

UNIT V:

Enzymes - characteristics – classification,Enzyme action - enzyme kinetics ,Activation and inhibition of enzyme action ,Coenzymes - allostetric enzymes - abzymes and ribozymes,Enzymes of cell cycle regulation - CAKs adcDKs. Factors affecting enzyme action

TEXT BOOKS:

1. Dr. Ambika Shanmugam, Biochemistry Published by Author.

REFERENCE BOOKS:

1. Jain JL, Jain S and Jain N. Fundamentals of Biochemistry. S. Chand and Company, New Delhi, 2009.

2. Conn EE, Stumpf PK, Bruening G and Doi RH. Outlines of Biochemistry. John Wiley and Sons Inc., New York, 199

3. Lehninger L. Principles of Biochemistry. Mac Millen 6thEdn., Global Pub., 2013

4. Stryer L. Biochemistry. W.H. Freeman Company, 2010

5. Rober K. Murray, Daryl K. Grammer, Harper's Biochemistry McGraw Hill, Lange Medical Books. 25th edition.

6. E.S. West, W.R. Todd, H.S. Mason and J.T. van Bruggen, A Text Book of Biochemistry, Oxford and IBH Publishing Co., New Delhi, 1974.

7. Donald Voet, Judith G. Voet8. Biochemistry [with CD rom] (2004) by Publisher: John Wiley &Sons

Course Designer: DR. S. MALA

UNITS TOPIC LECTURE **MODE OF** HOURS TEACHING UNIT I 1.1 Water - structure, physical properties 3 Lecture -3 1.2 Polarity - interaction of water -weak and non-covalent 3 Lecture-2, interaction Video-1 1.3 Ionization and dissociation of water 2 Charts-1. lecture-1 1.4 pH - buffers - Handerson-Hasselbach equation 4 Lecture-2, Video-2 Biological buffer systems. 3 Models-1, 1.5 lecture 2 UNIT II 2.1 Carbohydrates-classification 3 Charts -1, lecture-2 Models1. 2.2 Structure and biological importance of glucose, lactose, 4 lecture-1, Peer starch. teaching -1 2.3 Carbohydrate metabolism - metabolic cycles and 3 Charts-1. regulation of glycolysis, Lecture-1, Peer teaching -1 2.4 Glycogenolysis, gluconeogenesis, glycogenesis, HMP Lecture -1, 3 shunt. Charts -1, Peer teaching -1 TCA cycle and Electron transport system. Charts-1, lecture 2.5 2 -1 **UNIT III** 3.1 Proteins - aminoacids - structure, 4 Lecture - 1, Model-1,Video-2

3.2	Classifications - physical and chemical properties of	5	Lecture-3, Peer
	aminoacids.		teaching -1
3.3	Configuration of proteins - primary, secondary, tertiary	6	Charts -2,
	and quarternary structures - Ramachandran plot.		lecture -2,
			Video-2
3.4	Metabolism of proteins - deamination, transamination.	3	Lecture -2, Peer
			teaching -1
3.5	Transmethylation and Ornithine cycle.	2	Lecture -1, Peer
			teaching -1
UNIT IV			
4.1	Lipids - fatty acids -structure, types, classification	4	Charts-1,
			Lecture-1, Peer
			teaching -2
4.2	Structure of triglycerides-phospholipids - cholesterol.	4	Models-
			1,Lecture-
			2,Video-1
4.3	Biosynthesis of cholesterol.	6	Charts-2,
			Lecture-2,
			Video-2
4.4	Degradation of fatty acids	3	Lecture -1, Peer
			teaching -2
4.5	β - Oxidation - formation of Ketone bodies.	3	Charts -1,
			lecture-1,Video-
			1
UNIT V			
5.1	Enzymes - characteristics – classification	5	Lecture -2, Peer
			teaching -2
			Chart-1
5.2	Enzyme action - enzyme kinetics	4	Charts-1,
			Lecture-1,
			Model-2
5.3	Activation and inhibition of enzyme action	4	Video -1,
			Lecture-3

5.4	Coenzymes - allostetric enzymes - abzymes and	3	Lecture -
	ribozymes		2,Video-1
5.5	Enzymes of cell cycle regulation - CAKs and CDKs.	4	Charts -1,
	Factors affecting enzyme action.		Lecture-2, Peer
			teaching -1

Course	Programme Outcomes (POs)				Progra	Programme Specific Outcomes (PSOs)							
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	scores
(COs)													of
													COs
CO1	4	-	4	4	-	4	1	4	4	4	4	4	3.1
CO2	4	-	4	4	-	4	2	4	3	4	4	4	3.1
CO3	4	1	4	4	-	4	-	4	4	4	4	4	3.1
CO4	4	2	4	4	1	4	3	4	4	4	4	4	3.3
CO5	4	1	4	4	-	4	2	4	4	4	4	4	3.3
			•	•	•	Mean	Overall	Score					3.18

Result: The Score for this Course is 3.18 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%		
Scale	1	2	3	4	5		
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0		
Quality	Very Poor	Poor	Moderate	High	Very High		
Mean Score of CC	$Ds = \frac{\text{Total of}}{1}$	Value	Mean Overall Score of COs = <u>Total of Mean Score</u>				
	Total No. of I	POs & PSOs		Тс	otal No. of COs		

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme : M. Sc. ZOOLOGY	Course Type: CC - VII
Semester : II	Hours : 5/W 75/S
Subject Code : P22CZ7	Credits : 3

TITLE OF THE PAPER: HUMAN GENETICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/VII	GD/VIDOES/TUTORIAL						
	5	3			2						
PREAMBLE:											
To understand the genetic principles based on karyotype, to update the knowledge on application											
oriented genetics.											
	COURSE OU	JTCOME		Unit	Hrs	Knowledge					
At the end of the Semest	er, the Students	will be able to)		P/ S	Level					
CO1: Gain basic knowle	edge on mendel	ian principles	, Analyse and interpr	et 1	15	K1					
the characteristics of au	utosomal domir	ant and rece	essive inheritance wi	th							
examples.											
CO2: Describe the prepar	ration of karyoty	pe and chrom	nosomal aberrations.	2	15	K1					
CO3: Incorporate the fu	undamentals of	cancer espec	ially in leukemia ar	nd 3	15	K2					
bone marrow transplantat	tion.										
CO4: Interprete and evaluation	uate the prenatal	and post nata	al diagnosis.	4	15	K2					
CO5: Understand and ap	ply the principle	s of genetics	in crime and law.	5	15	К3					

SYLLABUS

UNIT I:

Mendel's laws – application of Mendel's laws to human genetics. Principles and methods of pedigree analysis . Mendelian inheritance patterns - Autosomal dominant inheritance – Huntington disease. Autosomal recessive inheritance – phenyl ketoneuria. Sex linked inheritance – haemophilia, colour blindness.

UNIT II:

Sex determination in man. Human karyotype - preparation of karyotype. Abnormal karyotyping – Down's syndrome, Klinefelter's syndrome, Turner's syndrome. Sex related phenotypic effects – sex influenced traits, sex limited traits. Twin studies – monozygotic and dizygotic.

UNIT III:

Oncogenes - functions of proto - oncogenes, effects of oncogenes. Tumor suppressor genes -

knudson's two hit hypothesis - Loss of heterozygosity – neuro oncology. Apoptosis - Role of P53 – PTCH as a tumor suppressor. Genetic basis of leukemia – bone marrow transplantation, Epigenetics. **UNIT IV:**

Methods of prenatal diagnosis – Prenatal screening in pregnancy - neural tube defects, amniocentesis, chorionic villus sampling. Post natal diagnosis – fetal blood sampling, new born blood spot screening. Congenital hypothyroidism, sickle cell disease, Cystic fibrosis and medium chain acyl – CoA dehydrogenase deficiency.

UNIT V:

Application of genetics – DNA finger printing. Gene therapy. Pharmacogenetics and personalized medicine. Eugenics, euthenics and euphenics. Genetics of social behavior – Tourette syndrome and Alzheimer disease.

TEXT BOOKS:

1. Cummings M R . Human Genetics . Cengage Learning India Pvt. Ltd., New Delhi, 2009

REFERENCE BOOKS:

- 1. Gardner A and Davies T. Human genetics . Scion Pub . Ltd., UK, 2010
- 2. Lewin B . Genes VI. Oxford university press, New York, 2000
- 3. Verma PS and Agarwal VK . Genetics . S . Chand and company, New Delhi, 2008

Course Designer : DR. E. EMIMAL VICTORIA

UNITS	ТОРІС	LECTURE	MODE OF					
		HOURS	TEACHING					
UNIT I								
1.1 : Meno	1.1 : Mendel's laws – application of Mendel's laws to human genetics4							
			Tutorial-1					
1.2 : Princ	iples and methods of pedigree analysis	3	Lecture-2					
			Video -1					
1.1 : Auto	somal dominant inheritance – Huntington disease	2	Group					
			Discussion-2					
1.2 : Auto	somal recessive inheritance – phenyl ketoneuria	3	Lecture - 2					
			Tutorial-1					

1.3 : Sex linked inheritance – haemophilia, colour blindness	3	Lecture – 2
		Video 1
UNIT II	I	
2.1 : Sex determination in man	3	Lecture - 2
		Tutotial - 1
2.2 : Human karyotype - preparation of karyotype	4	Lecture - 3
		Video - 2
2.3: Abnormal karyotyping – Down's syndrome, Klinefelter's syndrome,	3	Lecture – 3
Turner's syndrome		
2.4: Sex related phenotypic effects – sex influenced traits, sex limited traits	2	Lecture – 3
2.5 : Twin studies – monozygotic and dizygotic	3	Lecture - 2
		Tutorial - 1
UNIT III		
3.1: Oncogenes – functions of proto – oncogenes, effects of oncogenes	3	Lecture - 2
		Tutorial - 1
3.2: Tumor suppressor genes – knudson's two hit hypothesis	3	Lecture - 2
		Tutorial - 1
3.3 : Loss of heterozygosity – neuro oncology	2	Tutorial – 2
3.4 : Apoptosis roll of P53 – PTCH as a tumor supressor	4	Lecture - 3
		GD -1
3.5: Genetic basis of leukemia – bone marrow transplantation –	3	Lecture – 3
epigenetics.		
UNIT IV		
4.1: Methods of prenatal diagnosis – neural tube defects, amniocentesis,	4	Lecture - 2
chorionic villus sampling.		Video - 2
4.2: Post natal diagnosis – fetal blood sampling, new born blood spot	3	Lecture – 3
screening		
4.3 : Congenital hypothyroidism, sickle cell disease	4	Lecture - 3
		Tutorial - 1
4.4 : Cystic fibrosis, medium chain acyl – CoA dehydrogenase deficiency.	4	Lecture - 3
		Tutorial-1
UNIT V		

5.1: Application of genetics – DNA finger printing, Gene therapy	5	Lecture-3
		Video -2
5.2 : Pharmacogenetics and personalized medicine	3	Lecture-2
		Tutorial -1
5.3 : Eugeneics, euthenics and euphenics	4	Lecture-3
		Tutorial-1
5.4 : Genetics of social behavior – Tourette syndrome and Alzheimer	3	Lecture-2
disease.		Tutorial-1

Course Outcomes	Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)							
(COs)	PO1	PO2	PO3	PO4	PO5		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	of COs
CO1	3	2	4	4	2		2	3	3.5	3	4	4.5	2	3.1
CO2	4	3	4.5	4	3.5		2	3	4	2	3	2	3	3.2
CO3	3	2	4	4	3		2	2	4	3	2	4	4	3.1
CO4	4	2	3	4	3		2	2	4	3.5	4.5	4	2	3.2
CO5	3.5	2	4	4	2.5		2	2.3	3	3.7	4.5	4	4.5	3.4
Mean Overall Score													3.24	

Result: The Score for this Course is 3.24 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of CC	Ds = Total of	Value	Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total No. of I	Pos & PSOs	Total No. of COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	e : CC - VIII
Semester	: П	Hours	: 6/W 90/S
Subject Code	: P22CZ8P	Credits	: 3

TITLE OF THE PAPER: APPLIED MICROBIOLOGY, BIOCHEMISTRY AND HUMAN GENETICS - PRACTICAL

Pedagogy	Hours	Lecture	Peer Teaching	GD/VI)/VIDOES/TUTORIAL				
	6	2	2		2				
PREAMBLE:									
To gain ba	sic knowl	edge on bio	chemical investigation	in clini	ical pra	actices	, Assess and		
evaluate microbi	ial interact	ion in in-viv	o condition and analyze	e distrib	ution of	f genet	tic characters		
	CO	URSE OUT	COME		Unit	Hrs	Knowledge		
At the end of the	e Semester	, the Student	s will be able to			P/S	Level		
CO1: Analyse	and inter	pret the qua	ntity of protein, carbol	nydrate	Ι	25	K4		
and lipid. Evalu	uate the q	uality of pr	otein, carbohydrate an	d lipid					
from biological	samples								
CO2. Underste	and the east	aconts of he	atorial anymeration and	lonnly	п	25	V2		
CO2: Understa					11	23	КJ		
the concepts to	test wate	r quality or	potability and milk of	quality.					
Demonstrate an	d interpret	t the bacteri	cidal action of antibio	tics by					
Kirby-Bauer me	thod.								
CO3: Calculate	e and parti	cipate in the	e preparation of buffer,	Molar	III	20	К3		
and Normal solu	itions; des	cribe the stru	cture of amino acids ar	nd gain					
knowledge on M									
CO4: Demonst	hart to	IV	20	K3					
evaluate human	traits and s	syndromes							

SYLLABUS

UNIT I:

- 1. Qualitative Estimation of carbohydrates, proteins and fats
- 2. Quantitative estimation of carbohydrates
- 3. Quantitative estimation of proteins
- 4. Quantitative estimation of lipids

UNIT II:

- 1. Serial Dilution Technique
- 2. Enumeration of microbial population from soil
- 3. Bacterial examination of water MPN method
- 4. Bacterial examination of water- Standard Plate Count (quantitative test)
- 5. Reductase test for milk Methylene Blue/Resazurin
- 6. Antibiotic sensitivity test- Kirby-Bauer method

UNIT III:

- 1. Preparation of Buffer Solution
- 2. Preparation of solution based on Normality and Molarity
- 3. Spotters: Amino acids types, structure of collagen, primary, secondary and tertiary structure, Ramachandran plot, Autoclave, Hot air oven, pH meter, Fermentors

UNIT IV:

1. Calculation of gene frequency using beads

2. Spotters: Pedigree analysis of human traits – autosomal dominant, autosomal recessive, X-linked dominant, X- linked recessive and Y- linked inheritance, Karyotypes-normal,

Turner's syndrome, Klinefelter's syndrome, Edwards's syndrome, DNA fingerprinting, Twins - identical, fraternal and Siamese twins

REFERENCE BOOKS:

- 1. Gangene SD, Human Genetics, 4th edn., Elsevier, 2012
- Guna Sekaran P. Laboratory Manual in Microbiology. New age International Pvt. Ltd., 2009
- 3. Jayaraman J. Laboratory Manual in Biochemistry. New Age International Pub., 2006
- 4. Kannan N. Laboratory Manual in General Microbiolgy. Palani Paramount Pub., 1995
- 5. Wilson K and Walker J. Practical Biochemistry. Cambridge University Press, 1995

Course Designer: DR. D. HELEN CHRISTINA

UNITS	TOPIC	PRACT HOURS	MODE OF TEACHING
UNIT I		noens	
1.1	Qualitative Estimation of carbohydrates, proteins and fats	6	Demo - 2, Practical - 4
1.2	Quantitative estimation of carbohydrates	6	Demo - 2 Practical - 4
1.3	Quantitative estimation of proteins	7	Demo - 1 Practical - 6
1.4	Quantitative estimation of lipids	6	Demo - 2 Practical - 4
UNIT II			
2.1	Serial Dilution Technique	3	Practical - 3
2.2	Enumeration of microbial population from soil	4	Demo - 1 Practical - 3
2.3	Bacterial examination of water – MPN method	4	Demo - 1 Practical - 3
2.4	Bacterial examination of water- Standard Plate Count	5	Demo - 1

	(quantitative test)		Practical - 4
2.5	Reductase test for milk – Methylene Blue/Resazurin	4	Practical - 4
2.6	Antibiotic sensitivity test- Kirby-Bauer method	5	Demo - 1 Practical - 4
UNIT II	[
3.1	Preparation of Buffer Solution	4	Demo, Peer teaching - 4
3.2	Preparation of solution based on Normality and Molarity	4	Demo, Peer teaching - 4
3.3	Amino acids - types	4	Tutorial - 4
3.4	structure of collagen, primary, secondary and tertiary structure,	4	Tutorial - 4
3.5	Ramachandran plot, Autoclave, Hot air oven, pH meter, Fermentors	4	Tutorial - 4
UNIT IV	,		
4.1	Calculation of gene frequency using beads	6	Demo -2 Practical -4
4.2	Pedigree analysis of human traits – autosomal dominant, autosomal recessive, X-linked dominant	6	Demo -2 Tutorial-4
4.3	X- linked recessive and Y- linked inheritance, Twins - identical, fraternal and Siamese twins	4	Tutorial-4
4.4	Karyotypes-normal, Turner's syndrome, Klinefelters syndrome, Edwards's syndrome; DNA fingerprinting	4	Tutorial-4

Course Outcomes	Programme Outcomes (Pos) Programme Specific Outcomes (PSOs)								Mean scores of COs				
(COS)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO1	5	4	-	-	-	4	5	5	6	-	-	-	2.3
CO2	5	4	-	4	-	5	4	5	-	5	-	-	2.6
CO3	5	5	-	-	-	5	5	3	-	2	-	-	2.08
CO4	5	-	4	-	-	5	4	3	-	4	-	-	2.08
	Mean Overall Score									2.3			

Result: The Score for this Course is 2.3 (Medium Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of	COs = Total of	Value	Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total No. of Po	os & PSOs	Total No. of COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	: DSEC - II
Semester	: П	Hours	: 5/W 75/S
Subject Code	: P22DSZ2A	Credits	:4

TITLE OF THE PAPER: GENOMICS AND PROTEOMICS

Pedagogy	Hours	Lecture	Peer Teaching	GD/Video/Tutorial				
	5	2	1					
PREAMBLE	•		1					
The course	e will provide knowle	dge about the l	basic principles of G	enomic	s and Pr	oteomics and		
its applications	s in various fields							
	COURSE O	UTCOME		Unit	Hrs	Knowledge		
At the end of t	he Semester, the Stu	lents will be ab	ble to		P/S	Level		
CO1: Gain	knowledge about r	ecent developn	nents in 'OMICS'	1	10	K1		
techn	ology							
CO2: Unders	tand various types of	genes, their fu	inctions and	2	18	K2		
express	ion pattern in prokar	yotes and euka	ryotes.					
CO3: Elucida	te various separatio	n and expression	on techniques of	3	17	K3		
protein	and their application	s in proteomics	S.					
CO4: Gain kr	nowledge on various	gene predictior	techniques and	4	15	K3		
protein	structure prediction	methods and ap	pply them to predict					
structure of protein								
CO5: Apply a	nd analyse various c	omputational n	nethods in drug	5	15	K4		
designin	ıg.							

SYLLABUS

UNIT I:

Biological databases - types -classification with examples- SRS, ENTREZ similarity search - FASTA and BLAST - sequence alignment types - applications of Bioinformatics.

UNIT II:

Genomics - types - Prokaryotic and Eukaryotic genome structure - Genomes of *E.coli* and human. Human Genome Project - an overview.Gene expression analysis-cDNAs and ESTs-SAGE

- DNA Microarray - Applications of Microarray.

UNIT III:

Proteomics - Types-Separation of protein by Gel Elelctrophoresis. Identification of protein by peptide mass fingerprinting, Mass Spectrometry-MALDI – MALDI - TOF. Protein expression analysis - applications of Proteomics

UNIT IV:

Gene prediction Methods - Lab based, Feature based, Homology based and HMM based approaches - Protein structure prediction - computational tools for primary and secondary structure of proteins - comparative modeling.

UNIT V:

Application of genomics and proteomics - drug development – pharmacogenomics - targetlead – hits - Lipinski's rule – CADD - - Ligand and -Structure based drug designing- docking types. Tools for docking.-

TEXT BOOKS:

1.Ignacimuthu S. Basic Bioinformatics. Narosa Pub. House, New Delhi, 2008

- 2. Singh J. Discovering Genomics and proteomics. Manglam Pub., New Delhi, 2009
- 3. Solomon KA. Molecular Modeling and Drug Design. MJP Pub., Chennai, 2008

REFERENCE BOOKS:

- Higgs PG and Attwood TK. Bioinformatics and Molecular Evolution. Blackwell Pub., 2005
- Krawetz SA and Womble DD. Introduction to Bioinformatics A Theoretical and Practical Approach. Humana Press, New Jersey, 2009
- 3. Larson RS. Bioinformatics and Drug Discovery. Humana Press, New Jersey, 2008.

Course Designer: DR. V. KABILA

UNITS	TOPIC	LECTRE	MODEOF
UNIT I		пкз.	ILACHING
1.1	Biological databases - types –classification with	4	Lecture - 2
	examples		Video - 2
1.2	SRS, ENTREZ similarity search - FASTA and BLAST	4	Lecture - 2
	- sequence alignment types		Tutorial - 2
1.3	Applications of Bioinformatics	2	Lecture - 2
UNIT II			
2.1	Genomics - types - Prokaryotic and Eukaryotic genome	5	Lecture - 2
	structure		Video -2
2.2	Genomes of E.coli and human. Human Genome Project	4	Lecture - 3
	- an overview.		Tutorial - 1
2.3	Gene expression analysis-cDNAs and ESTs - SAGE	5	Lecture - 5
2.4	DNA Microarray - Applications of Microarray	4	Lecture - 2
			Video - 2
UNIT- I	Ι		
3.1	Proteomics - Types-Separation of protein by Gel	5	Lecture - 4
	Elelctrophoresis		Video - 1
3.2	Identification of protein by peptide mass fingerprinting	4	Lecture - 2
			Tutorial - 2
3.3	Mass Spectrometry-MALDI – MALDI – TOF	3	Lecture - 2
			Video - 1
.4	Protein expression analysis	4	Lecture - 3
			Tutorial - 1
3.5	Applications of Proteomics	1	Lecture - 1
UNIT IV	V		
4.1	Gene prediction Methods - Lab based, Feature based,	5	Lecture - 3
	Homology based and HMM based approaches		Tutorial - 2
4.2	Protein structure prediction - computational tools for	6	Lecture - 3
	primary and secondary structure of proteins		Video - 3

4.3	comparative modeling	4	Lecture - 1
			Video - 3
UNIT V			
5.1	Application of genomics and proteomics	3	Lecturer - 3
5.2	drug development – pharmacogenomics - target-lead –	5	Lecture - 3
	hits - Lipinski's rule –		Video - 2
5.3	CADD –Ligand and-Structure based drug designing	4	Lecture - 2
			Tutorial - 2
5.4	Docking - types. Tools for docking.	3	Lecture - 2
			Tutorial - 1

Course	Prog	gramn	ne Out	come	5	Progr	Programme Specific Outcomes (PSOs)						Mean
Outcomes (POs)								scores of					
(COs)													COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO1	4	4	2	4	2	4	4	4	4	4	4	-	3.3
CO2	4	4	4	4	3	4	4	4	4	4	3	-	3.5
CO3	4	4	4	4	3	4	4	4	4	4	4	-	3.6
CO4	4	3	4	3	4	4	4	4	4	4	3	-	3.5
CO5	4	4	4	4	4	4	4	4	3	4	3	-	3.5
Mean Overall Score									3.48				

Result: The Score for this Course is 4.0 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score	of $COs = Tot$	al of Value	Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total No. of	f POs & PSOs	Total No. of COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
REMEMBERING	20%	20%
UNDERSTANDING	20%	20%
APPLICATION	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	: DSEC - II
Semester	: П	Hours	: 5/W 75/S
Subject Code	: P22DSZ2B	Credits	:4

TITLE OF THE PAPER: COMPUTATIONAL BIOLOGY

Pedagogy	Hours	Lecture	Peer Teaching		GD/Videos/Tutorial				
	5	3	-	2					
PREAMBLE:	PREAMBLE:								
The course will introduce basic principles and concepts of computational methods for									
biological data analysis and interpretation and to impart interdisciplinary expertise in biological									
science, Statistics and Computer Science.									
	COUR	SE OUTCON	/IE		Unit	Hrs	Knowledge		
At the end of the s	At the end of the Semester, the Students will be able to								
CO1: understand	1	6	K1						
CO2: acquire know	owledge on th	ne methods of I	hypothesis testing,		2	14	K2		
statistical inference	e and designi	ng experiment	S						
CO3: analyse and	l interpret the	biological data	a in a statistical		3	16	К3		
perspective	correctly and	contextually							
CO4: carryout co	rrelation and	regression ana	lysis and recognize	;	4	12	К3		
theoretical	distributions								
CO5: apply princ:	iples of dem	onstrate the m	astery of concepts	of skills	5	12	K2		
for biologic	al data manag	gement and and	alysis						
SYLLABUS									
UNIT I: Biosta	tistics - Desc	riptive Statist	ics						
Introduction - measures of central tendency - arithmetic mean, geometric mean, harmonic									
mean, median a	mean, median and mode - measures of dispersion - range, quartiles, mean deviation, variance,								

standard deviation, standard error and coefficient of variation.

Unit II: Inferential Statistics I

Probability distributions – binomial – Poisson – normal distribution – steps in hypothesis testing procedure – student's t – test and its applications in experimental biology.

UNIT III: Inferential Statistics II

Chi - square test - goodness of fit and contingency tables - ANOVA - assumptions -

types – one-way and two-way ANOVA.

UNIT IV: Correlation and Regression

Correlation - types - methods of determining correlation - Computation and interpretation of

Karl Pearson's correlation coefficient - coefficient of determination - Spearman's rank correlation

coefficient - regression - types.

UNIT V: Bioinformatics

Nucleic acid databases - DDBJ - protein sequence databases - NBRF - PIR and PSD -

database similarity searches -FASTA-BLAST-Multiple Sequence Alignment - Phylogenetic

trees - structure, construction and interpretation.

Text Book

1. Gurumani N. *An Introduction to Biostatistics*. Chennai: MJP Publishers, 2nd Edition, Triplicane, 2005.

Reference Books

1. Agarwal S.K. Bioinformatics. New Delhi: APH Publishing Corporation, 2008.

2. Thiagarajan B. and Rajalakshmi Pa. *Computational Biology*. Chennai: MJP Publishers, 2009.

3. Khan I and Khanum A. *Introductory Bioinformatics*. Hyderabad: Ukaaz Publications, 1st edition, 2004.

Course designer: DR. V. KABILA

UNITS	ΤΟΡΙΟ	LECTURE HRS	MODE OF
UNIT I		III. 5.	TEACHING
1.1	Introduction – measures of central tendency - arithmetic	6	Lecture-3
			Tutorial-3
	mean, geometric mean, harmonic mean, median and		
	mode		
1.2	Measures of dispersion – range, quartiles, mean	6	Lecture-3
	deviation variance standard deviation standard error and		Video-3
	deviation, variance, standard deviation, standard error and		
	coefficient of variation		
UNIT II			
2.1	Probability distributions – binomial – Poisson –	6	Lecture-3
			Tutorial-3
	normal distribution.		
2.2	Steps in hypothesis testing procedure – student's t – test	6	Lecture-3
	and its applications in experimental biology		Tutorial-3
UNIT- III			
3.1	Chi – square test – goodness of fit and contingency	6	Lecture-3
			Video-3
	tables		
3.2	ANOVA – assumptions – types	6	Lecture-3
			Video-3
3.3	One-way and two-way ANOVA.	5	Lecture-2
			Demo-2
			Tutorial-1
UNIT IV			
4.1	Correlation - types - methods of determining	7	Lecture-3
	conclusion types methods of determining		Lecture-2
	correlation		Demo-?
	Computation and interpretation of Karl Pearson's		Denie 2
	correlation coefficient		
4.2	Coefficient of determination - Spearman's rank	7	Lecture-2
			Tutorial-2

correlation coefficient -Regression -Tytpes		Demo-3
•		
Nucleic acid databases - DDBJ – protein sequence	7	Lecture-5
		Demo-2
databases - NBRF – PIR and PSD		
FASTA-BLAST-Multiple Sequence Alignment	6	Lecture-3
		Demo-3
Phylogenetic trees – structure, construction and	7	Lecture-3
		Tutorial-1
interpretation.		Demo-3
	correlation coefficient -Regression -Tytpes Nucleic acid databases - DDBJ – protein sequence databases - NBRF – PIR and PSD FASTA -BLAST – Multiple Sequence Alignment Phylogenetic trees – structure, construction and interpretation.	correlation coefficient -Regression -TytpesNucleic acid databases - DDBJ - protein sequence7databases - NBRF - PIR and PSD7FASTA -BLAST - Multiple Sequence Alignment6Phylogenetic trees - structure, construction and interpretation.7

Course Outcomes (COs)	Prog	grammo	e Outco	omes (PC)s)	Programme Specific Outcomes (PSOs)					Os)	Mean scores of Cos	
	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	
CO1	4	3	4	3	2	3	4	4	4	4	3	-	3.1
CO2	4	4	3	4	3	4	4	4	4	4	4	-	3.6
CO3	4	4	4	3	4	3	4	3	4	4	4	-	3.4
CO4	4	4	4	4	3	4	3	4	4	3	4	-	3.4
CO5	4	4	4	4	3	4	3	3	3	3	4	-	3.2
Mean Overall Score									3.34				

Result:	The	Score	for	this	Course	is	3.34	(High	Relationship))
----------------	-----	-------	-----	------	--------	----	------	-------	--------------	----

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of CO	$Ds = \frac{Total of}{Total of}$	Value	Mean Overall Score of $COs = Total of Mean Score$			
	Total No. of	Pos & PSOs	Total No. of COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
REMEMBERING	20%	20%
UNDERSTANDING	20%	20%
APPLICATION	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	e: SEC - II
Semester	: II	Hours	: 2/W 30/S
Subject Code	:P22SEZ1	Credits	:2

TITLE OF THE PAPER: CLIMATE CHANGE AND HUMAN HEALTH

Pedagogy	Hours	Lecture	Peer Teaching	GD/V	IDOES/TUTORIAL						
	30	19	6		5						
PREAMBLE											
To underst	and global o	levastation or	n environment, clima	ate cha	nge and	associat	ted health				
implications or	n human po	pulation and t	to apply the concept	s in cre	eating sc	cial awa	areness				
	COU	RSE OUTCO	OME		Unit	Hrs	Knowledge				
At the end of the	he Semester	r, the Students	s will be able to			P/S	Level				
CO1: Define	, describe a	and write abo	out the details of C	limate	Ι	6	K1				
Change, Glob	al warming	, variability, n	natural disasters and	IPCC							
CO2: Explain	and parapl	nrase Water a	nd Air quality , poll	utants	Π	6	K2				
and related di	sease impac	et on humans									
CO3: Discus	ss and sum	marize Clima	te change impact or	n food	III	6	K2				
quality, securi	ty and Food	l borne diseas	ses								
CO4: Include	& prepare	themselves ar	nd prepare the comm	nunity	IV	6	K3				
on the awaren	ess about th	ne Physiologi	cal impacts influence	ed by							
climate change											
CO5: Correla	te, recogniz	e and disting	uish mental health r	elated	V	6	K4				
issues impacted by disasters and climate change											

SYLLABUS

UNIT I:

Concepts and definition of Climate Change, Global warming and Climate change – climate variability – Impact on environment – Natural disasters – Storm, Cyclone, Flood, fire, drought, heatwave. The Inter-governmental Panel on Climate Change (IPCC) – Acts and Policies.

UNIT II:

Water and Air quality – types of pollutants / contaminants – allergens, dust, ground level ozone, temperature, chemicals, pathogens - climate change impact, Air borne diseases – respiratory disorders – droplet infection, asthma, bronchitis; Water borne diseases – cholera, typhoid;

UNIT III:

Climate change impact on food quality and security; health challenges – malnutrition, Food borne diseases – diarrhoea, colitis infection

UNIT IV:

Physiological impacts – Morbidity and Mortality, Brief account on the occurrence of climate change influenced cardiovascular, dermatological diseases, birth outcome, fertility issues, pubertal timing, cancer, neurological disorder, diabetes and obesity.

UNIT V:

Mental health and Climate change: Disasters and mental health – acute impacts of flood, heatwave and drought – mental health issues – Brief account on Post traumatic stress disorder, anxiety, major depressive disorder, substance abuse, suicidal ideation, survivors issues

TEXT BOOKS:

Prepared course materials

REFERENCE BOOKS:

1. Mridula Ramesh, The Climate Solution: India's Climate Change Crisis and What We Can Do About It by, Hachette India (2018).

Malancha Chakrabarty, Climate change and food security in India; ORF issue brief,
2016

COURSE DESIGNER: DR. D. HELEN CHRISTINA

UNITS	TOPIC	LECTURE	MODE OF		
		HOURS	TEACHING		
LINITT I					
UNITI					
1.1	Concepts and definition of Climate Change, Global warming and Climate change – climate variability	2	Lecture - 2		
1.2	Impact on environment – Natural disasters – Storm, Cyclone, Flood, fire, drought, heatwave	2	Lecture - 1, GD -1		
1.3	The Inter-governmental Panel on Climate Change (IPCC) – Acts and Policies.	2	Lecture - 2		
UNIT II					
2.1	Water and Air quality – types of pollutants / contaminants – allergens, dust, ground level ozone, temperature, chemicals, pathogens - climate change impact	2	Lecture -1, Video -1		
2.2	Air borne diseases – respiratory disorders – droplet infection, asthma, bronchitis	2	Lecture -1, Video -1		
2.3	Water borne diseases – cholera, typhoid;	2	Lecture -1, Peer teaching -1		
UNIT II	[
3.1	Climate change impact on food quality and security	3	Lecture-2 GD 1		
3.2	health challenges – malnutrition	1	Peer learning 1		
3.3	Food borne diseases – diarrhoea, <i>Escherichia coli</i> infection	2	Lecture 1, Peer teaching -1		
UNIT IV					
4.1	Physiological impacts – Morbidity and Mortality,	1	Lecture -1		
4.2	Brief account on the occurrence of climate change influenced cardiovascular, dermatological diseases, birth outcome,	2	Lecture -1, Peer teaching -1		
4.3	Brief account on the occurrence of climate change influenced fertility issues, pubertal timing, cancer, neurological disorder, diabetes and obesity.	3	Lecture -1, GD- 2		

UNIT V			
5.1	Disasters and mental health – acute impacts of flood, heatwave and drought	2	Lecture -1, Peer teaching -1
	5		touching 1
5.2	Mental health issues – Brief account on Post traumatic stress disorder, anxiety, major depressive disorder	2	Lecture -2
5.3	Mental health issues – Brief account on substance abuse suicidal ideation survivors issues	2	Lecture -2

Course	rse Programme Outcomes (POs) Programme Specific Outcomes (PSOs)							Mean					
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	scores
(COs)													of
													COs
CO1	5	3	-	3	3	4	-	-	4	5	-	-	2.3
CO2	4	4	-	4	-	4	4	4	-	5	-	-	2.4
CO3	4	4	-	-	4	3	4	5	-	4	-	-	2.3
CO4	3	4	-	4	-	4	4	-	4	5	-	-	2.3
CO5	4	4	-	4	-	4	-	-	4	4	4	-	2.3
	-	-	•		Mean	Overal	Score				•		2.3

Result: The Score for this Course is 2.3 (Medium Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%		
Scale	1	2	3	4	5		
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0		
Quality	Very Poor	Poor	Moderate	High	Very High		
Mean Score of COs =	Total of Val	ue	$Mean Overall Score of COs = \underline{Total of Mean Score}$				
То	otal No. of Pos &	& PSOs	Total No. of COs				

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
REMEMBERING	20%	20%
UNDERSTANDING	20%	20%
APPLICATION	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	e : CC - IX
Semester	: 111	Hours	: 6/W 90/S
Subject Code	: P22CZ9	Credits	: 5

TITLE OF THE PAPER: IMMUNOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	GD/Videos/Tutorial				
	5	2	1		2			
PREAMBLE:								
This course l	nelps to un	derstand the bas	sic concepts of immune s	stem an	d imm	une response		
and apply the know	ledge in ba	sic research in l	Immunology					
	COUI	RSE OUTCOM	IE	Unit	Hrs	Knowledge		
At the end of the ser	nester, the	students will be	able to		P/S	Level		
CO1: Acquire know	vledge in b	oasic immune sy	stem	1	18	KI		
CO2: Understand	the p	rinciples of	various immunologica	2	18	K2		
techniques and	apply	them in	immunodiagnosis of					
diseases								
CO3: Develop in	n depth	knowledge on	activation of immune	3	18	K2		
system								
CO4: Understand	d the im	mune response	in major health issues	4	18	K3		
such as transplantation and cancer								
CO5: Analyse the	immune re	eactions against	various pathogens,	5	18	K4		
allergens, self antige	ens and vac	cines						

SYLLABUS

UNIT I:

Historical perspectives of Immunology. Types of immunity - Innate Immunity, acquired immunity - active and passive immunity. Cells and organs of immune system -structure and functions

UNIT II:

Humoral immune response - antigens. Antibodies - structure, functions and isotypes of

immunoglobulin. Mechanism of humoral immune response - production of antibodies. Antigen and antibody interactions. Cell mediated immune response - types of T cells - Mechanism of CMI

UNIT III:

Cytokines - T cell activation and differentiation - B cell activation and differentiation. Complement - activation - classical, alternative and lectin pathways. Regulation of complement activation - Biological consequences of complement

UNIT IV:

Major Histo-compatibility Complex - Structure and functions of MHC class I and class II molecules. Transplantation Immunology - Graft rejection - Graft versus Host reaction - HLA Tissue typing. Tumor immunology - types of Tumor - Tumor antigens - Immune response to tumors - Immunodiagnosis of tumor.

UNIT V:

Hyper sensitive reactions – types. Auto immunity - Organ specific and systemic auto immune diseases. Host immune response to bacteria (*Mycobacterium tuberculosis*), virus (HIV) and parasite (*Plasmodium vivax*). Vaccines - types

TEXT BOOK:

 GolKindt TJ, Goldsby RA and Osborne BA. Kuby Immunology. W.H. Freeman and Company, New York, 2007

REFERENCE BOOKS:

- 1. Roit I M. Essentials of Immunology. ELBS Blackwell Scientific Pub., London, 2007
- 2. Tizard K. Immunology An Introduction. Saunders College Pub., Philadelphia, 1983

Course Designer: DR. H. VIJAYA RANI
UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I		L	
1.1	Historical perspectives of Immunology	2	Lecture (2 hr)
1.2	Types of immunity - Innate Immunity, acquired immunity	8	Lecture (5 hrs)
	- active and passive immunity		Video (3 hrs)
1.3	Cells and organs of immune system -structure and	8	Lecture (4 hrs)
	functions		Video (1 hr)
			Tutorial (3 hrs)
UNIT II		L	
2.1	Humoral immune response - antigens	3	Lecture (3 hrs)
2.2	Antibodies - structure, functions and isotypes of	3	Lecture (2 hr)
	immunoglobulin		Video (1 hrs)
2.3	Mechanism of humoral immune response - production of	2	Tutorial (2 hr)
	antibodies		
2.4	Antigen and antibody interactions	6	Lecture (2 hrs)
			video (4 hrs)
2.5	Cell mediated immune response - types of T cells -	4	Lecture (2 hr)
	Mechanism of CMI		video (2 hrs)
UNIT II	[
3.1	Cytokines	4	Lecture (4 hrs)
3.2	T cell activation and differentiation	4	Peer Teaching
			(4 hrs)
3.3	B cell activation and differentiation	4	Peer Teaching
			(4 hrs)
3.4	Complement - activation - classical, alternative and lectin	4	Lecture (2 hrs)
	pathways		Video (2 hrs)
3.5	Regulation of complement activation - Biological	2	Peer teaching

	consequences of complement		(2 hrs)
UNIT IV	7		
4.1	Major Histo-compatibility Complex - Structure and	6	Lecture (3 hrs)
	functions of MHC class I and class II		Peer Teaching
	molecules		(3 hrs)
4.2	Transplantation Immunology - Graft rejection - Graft	6	Lecture (2 hrs)
	versus Host reaction – HLA- Tissue typing		Video (3 hrs)
			Peer Teaching
			(1 hr)
4.3	Tumor immunology - types of Tumor - Tumor antigens -	6	Lecture (3 hrs)
	Immune response to tumors Immunodiagnosis of tumor		Video (3hrs)
UNIT V		I	
5.1	Hyper sensitive reactions - types	5	Lecture (2 hrs)
			Video (2 hrs)
			Peer Teaching
			(1 hr)
5.2	Auto immunity - Organ specific and systemic auto	5	Lecture (1 hr)
	immune diseases		Video (2 hrs)
			Tutorial (2 hrs)
5.3	Host immune response to bacteria (Mycobacterium	4	Lecture (2 hrs)
	tuberculosis), virus (HIV) and parasite		Peer Teaching
	(Plasmodium vivax)		(2 hrs)
5.4	Vaccines - types	4	Lecture (2 hrs)
			Peer Teaching
			(2 hrs)

Course	Course Programme Outcomes (POs) Programme Specific Outcomes (PSOs)								Mean				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	scores of COs
CO1	4	4	4	3	4	4	2	4	3	3	3	3	3.41
CO2	4	4	4	3	4	4	4	4	4	4	3	3	3.75
CO3	4	4	4	3	4	4	4	4	4	4	3	3	3.75
CO4	4	4	4	4	4	4	4	4	4	4	3	3	3.83
CO5	4	4	4	3	4	4	4	4	4	4	3	3	3.75
Mean Overall Score										3.69			

Result: The Score for this Course is 3.69 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1 2		3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of CC	$Ds = \frac{\text{Total of}}{1}$	Value	Mean Overall Score of $COs = Total of Mean Score$			
	Total No. of I	Pos & PSOs		Тс	otal No. of COs	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Typ	e : CC - X
Semester	: 111	Hours	:6/W 90/S
Subject Code	: P22CZ10	Credits	: 5

TITLE OF THE PAPER: DEVELOPMENTAL BIOLOGY

Pedagogy	Hours	Lecture	Peer teaching	GD/VIDEOS/TUTORIAL				
6 3 1 2								
PREAMBLE:	·							
The studen	nts gets fami	liarized with	n the basic facts and prob	lems o	f biolog	y of de	evelopment.	
	COU	RSE OUTC	OME		Unit	Hrs	Knowledge	
At the end of the S	Semester, th	e Students v	vill be able to			P/S	Level	
CO1: Demonstra	ate knowle	dge of th	e fundamental concept	s in	1	18	K1	
development of an	n organism.							
CO2: Describe the	e mechanisr	n of fertiliza	tion and its significance		2	18	K2	
CO3: Demonstrat	e an underst	anding of cl	eavage and blastulation		3	18	K3	
CO4: Acquire	knowledge	in morphe	ogenetic movements d	uring	4	18	K3	
gastrulation								
CO5: To unders	CO5: To understand theoretical aspects of organogenesis and the							
techniques in IVF	and birth c	ontrol meas	ures.					

SYLLABUS

UNIT I:

Gametogenesis - spermatogenesis - origin of primordial germ cells - differentiation of spermatozoa - structure and motility of sperm. Oogenesis - Development of oocytes - types of eggs - biochemical changes during oogenesis.

UNIT II:

Mechanism of fertilization - activation of sperm and ovum – interaction of sperm and ovum - sperm entry - egg surface changes - biochemical, physiological - significance of fertilization - post fertilization changes.

UNIT III:

Cleavage and Blastulation – types of cleavage –patterns of cleavage - influence of yolk in cleavage - products of cleavage - blastula and morula. Biochemical changes during cleavage. Fate map and cell lineage.

UNIT IV:

Gastrulation - morphogenetic movements - epiboly, emboly - invagination, involution, polyinvagination, concrescence, cell proliferation, divergence and extension. Sea urchin gastrulation. Biochemical changes during gastrulation, - nuclear activation and gene activities during gastrulation.

UNIT V:

Organogenesis – development of Brain and Eye. Cellular interaction - differentiation and organogamy. Organizer - Spemann's primary organizer - mechanism of induction. Metamorphosis in amphibia. Regeneration in amphibia. Cryopreservation of gametes and embryos – *invitro* fertilization and embryo transfer - sperm banking - birth control measures.

TEXT BOOK:

 Balinsky BI and Fabian BC. An Introduction to Embryology. 5thEdn., CBS college Pub., 2012

REFERENCE BOOKS:

- 1. Berril NJ. Developmental Biology. Tata McGraw Hill Pub., New Delhi, 1974
- Bradley M, Patten M and Carlson BM. Foundations of Embryology. Tata McGraw Hill Book Company, 1974
- Verma PS and Agarwal VK. Chordate Embryology. S. Chand and Company Ltd., New Delhi, 2011

Course Designer : MRS. N. AMUTHA

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I			
1.1	Gametogenesis-spermatogenesis and oogenesis.	6	Lecture -3

			Video-3
1.2	Differentiation of spermatozoa and motility of sperm.	6	Lecture -3
			Charts - 3
1.3	Biochemical changes in oogenesis	6	Lecture -6
UNIT I I			
2.1	Mechanism of fertilization	6	Lecture -2
			Video demo 4
2.2	Biochemical, physiological - significance of fertilization	6	Lecture -3
			Video demo-3
2.3	Post fertilization changes.	6	Lecture -4
			Video demo-2
UNIT II	I		
3.1	Cleavage and Blastulation - patterns of cleavage	5	Lecture -3
			Video dem- 2
3.2	Biochemical changes during cleavage.	5	Lecture -3
			Video demo 2
3.3	Fate map and cell lineage.	5	Lecture -3
			video demo- 2
UNIT IV	7		
4.1	Gastrulation - morphogenetic movements	5	Lecture-3
			video - 2
4.2	Gastrulation in Sea urchin	5	Lecture-4 –
			chart-1
4.3	Biochemical changes during gastrulation	5	Lecture-4
			video - 1
UNIT V			
5.1	Organogenesis – development of Brain and Eye	5	Lecture-4
			chart - 1
5.2	Organizer - Spemann's primary organizer - mechanism of	5	Lecture-
	induction.		3,video-2
5.3	invitro fertilization and embryo transfer - birth control	5	Lecture-3
	measures.		video- 2

Course Outcomes (COs)		Prograi	nme o (POs)	utcome	S		Programme specific outcomes (PSOs)					Mean Scores of COs	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO 1	3	3	3	3	2	4	-	3	4	3	4	4	3.0
CO 2	4	4	3	-	3	4	-	4	4	3	3	4	3.0
CO 3	3	-	4	3	3	4	3	3	4	4	4	4	3.25
CO 4	4	2	-	3	3	4	3	3	3	4	4	4	3.1
CO 5	4	3	-	3	4	4 - 4 4 4 4 4							3.2
Mean overall score									3.1				

Result: The score for this course is **3.1** (High)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of CC	$Ds = \frac{\text{Total of}}{1}$	Value	Ν	Iean Overall Scor	re of $COs = Tot$	al of Mean Score
	Total No. of I	Pos & PSOs	Total No. of COs			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20 %	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	: CC - XI
Semester	: 111	Hours	: 5/W 75/S
Subject Code	: P22CZ11	Credits	:4

TITLE OF THE PAPER: BIOPHYSICS AND BIOSTATISTICS

Pedagogy	Hours	Lecture	Peer teaching	VI	VIDEOS/TUTORIAL		
	5	2	1		2		
PREAMBLE:							
This paper will	enlighten	the principle	es of biophysics and biostati	stics a	nd hov	v to apply the	
biophysical knowl	edge in wo	rking of biol	ogical systems and statistics i	n biolo	gical r	esearch	
	COURS	SE OUTCO	ME	Unit	Hrs	Knowledge	
At the end of the Seme	ester, the St	tudents will l	be able to		P/S	Level	
CO1: Demonstrate k	nowledge	of the funda	mental concepts in Physics	1	10	K2	
and Biology.							
CO2: Describe the pr	rinciples that	at govern bio	molecular interactions and	2	12	K3	
understand the	application	of Radio isc	otopes in Biology				
CO3: Demonstrate an	understand	ling of the ce	entral concepts of modern	3	17	K2	
statistical theory	¥						
CO4: Acquire knowle	edge in data	collection a	nd its presentation.	4	18	K1	
CO5: Elucidate th	e results	of statistica	al analysis accurately and	5	18	K4	
effectively; Make app	ropriate use	e of statistica	l software.				
SYLLABUS						I	
UNIT 1:							
Intra and intermolecular interactions in biological systems - ionic and covalent bonds -							
hydrogen bonds	hydrogen bonds - peptide bonds - Vander Waal's forces. Transport across membranes - types of						
transport - active and passive transport. Osmosis - exosmosis and endosmosis, exocytosis and							

endocytosis.

UNIT II:

Bioenergetics - ATP structure, formation and breakdown in living systems. Redox couples. Impulse conduction in nerve and muscle. Electro encephalogram and Cathode Ray Oscilloscope. Radio isotopes - applications of radioisotopes in biology.

UNIT III:

Introduction to Biostatistics. Sampling - Representative sample, sample size, sampling bias and sampling techniques. Types of data, methods of collection of primary and secondary data, classification, tabulation. Graphical representation of data – graphical and diagramatic.

UNIT IV:

Measures of central tendency - Mean, median, mode. Measures of dispersion - standard deviation, standard error, variance, range, mean deviation, quartile deviation and coefficient of variation. Correlation - positive and negative correlation, calculation of Karl - Pearsons co-efficient of correlation.

UNIT V:

Regression - Linear regression and regression equation. Calculation of an unknown variable using regression equation. ANOVA - one way classification. Tests of significance - Chi-square test (Theory & problem), Student's t test.

TEXT BOOKS:

1. Arora MP. Biophysics. Himalaya Pub., 2007

2.Palanichamy S and Manoharan M. Statistical Methods for Biologists. Paramount Pub., 2008

REFERENCE BOOKS:

- 1. Lehninger L. Biochemistry. Kalyani Pub., New Delhi, 2012
- 2. Subramanian MA. Biophysics Principles and Techniques. MJP Pub., Chennai, 2005
- Palanichamy S and Shanmugavelu M. Principles of Biophysics. PalaniPramount Pub., 2002
- 4. Pagano M and Gauvreau. K. Principles of Biostatistics. Duxbury Press, USA, 2000

Course Designer: MRS. A. SHEELA

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I			I
1.1	Intra and intermolecular interactions in biological systems -	5	Lecture - 3
	ionic and covalent bonds-hydrogen bonds - peptide bonds -		Video demo -
	Vander Waal's forces.		2
1.2	Transport across membranes - types of transport - active and	5	Lecture - 3
	passive transport.		Video demo -
			2
1.3	Osmosis - exosmosis and endosmosis, exocytosis and	5	Experimental
	endocytosis.		demo -5
UNIT II			
2.1	ATP structure, formation and breakdown in living systems.	5	Lecture –3
	Redox couples.		video
			demonstratio
			n -2
2.2	Impulse conduction in nerve and muscle.	5	Lecture -3
			video
			demonstratio
			n -2
2.3	Electro encephalogram and Cathode Ray Oscilloscope.Radio	5	Lecture -3
	isotopes - applications ofradioisotopes in biology.		video
			demonstratio
			n-2
UNIT II	Ι	1	1
3.1	Sampling - Representative sample, sample size, sampling	5	Experiment -
	bias and sampling techniques.		3 Group
			activity-2
3.2	Types of data, methods of collection of primary and	5	Experiment -

	secondary data, classification, tabulation.		3 Group
			activity-2
3.3	Classification, tabulation., representation of data – graphical	5	Experiment -
	and diagramatic.		3 Group
			activity-2
UNIT IV	7	I	I
4.1	Measures of central tendency - Mean, median, mode	5	Lecture -3
			Assignment -
			2
4.2	Measures of dispersion - standard deviation, standard error,	5	Lecture -3
	variance, range, mean deviation, quartile deviation and		Assignment -
	coefficient of variation.		2
4.3	Correlation - positive and negative correlation, calculation of	5	Lecture -3
	Karl - Pearsons co-efficient of correlation.		Assignment -
			2
UNIT V			
5.1	Linear regression and regression equation. Calculation of an	5	Lecture -3
	unknown variable using regression equation.		Assignment -
			2
5.2	ANOVA - one way classification.	5	Lecture -3
			Assignment -
			2
5.3	Tests of significance - Chi-square test (Theory & problem),	5	Lecture -3
	Student's t test.		Assignment -
			2

Course Outcomes (COs)	Programme outcomes s (POs)				Programme specific outcomes (PSOs)					Mean Scores of COs			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO 1	4	3	4	4	3	4	3	4	4	5	3	4	3.75
CO 2	4	4	4	4	4	4	4	4	4	4	4	5	4.08
CO 3	4	3	4	3	3	4	4	3	3	4	4	4	3.58
CO 4	4	4	5	4	4	4	4	4	5	4	4	5	4.25
CO 5	4	4	4	4	5	4	5	4	4	5	3	4	4.0

Result: The score for this course is **3.93** (High relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
$Mean Score of COs = \underline{Total of Value}$			Mean Overall Score of $COs = Total of Mean Score$		
	Total No. of I	POs & PSOs		Тс	otal No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUTION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	: CC	- XII
Semester	: 111	Hours	: 6/W	90/S
Subject Code	: P22CZ12P	Credits	:4	

TITLE OF THE PAPER: IMMUNOLOGY, DEVELOPMENTAL BIOLOGY AND BIOPHYSICS AND BIOSTATISTICS - PRACTICAL

Pedagogy	Hours	Lecture	Demonstration	Tutorial				
	6	1	4		1			
PREAMBLE:	·							
This cours	e helps to acquire	e practical know	vledge on various in	nmunol	ogical	techniques,		
mounting of chicl	mounting of chick embryo and to apply statistical techniques in Zoology							
	COURSE (DUTCOME		Unit	Hrs	Knowledge		
At the end	of the Semester, t	he Students will	be able to		P/S	Level		
CO1: Carry out	mmunodiagnostic	techniques		1	25	K4		
CO2: Demonstra	te immunological t	echniques used i	in research	2	25	K4		
CO3: Carry out	mounting of chick	embryo		3	15	K2		
CO4: Apply stat	istical techniques in	n research		4	15	К3		
CO5: Acquire pra	actical knowledge	on developmenta	al biology and	5	10	K1		
biophysics								
SYLLABUS					1			
UNIT I: Prepa	aration of antigen							
Sepa	ration of lymphocy	rtes						
Aggl	utination tests - W	IDAL – Slide an	d tube test					
RA t	est							
ASO	test							
UNIT II: Prec	pitation tests - Out	chterlony's Doub	ole Immuno Diffusion	n test (O	DD)			
Cour	ter Current Immur	o Electrophores	is (CIE)					
Roc	ket Immuno Electro	ophoresis (RIE)						
Rapi	d Plasma Region 7	Test (RPR)						
Dem	onstration of ELIS	A						

UNIT I	II: Serial sections of Chick embryo					
	Mounting of Chick Blastoderm					
UNIT I	V: Data collection – Primary and Secondary data,					
	Calculation of Mean, Median, Mode and SD					
	Representation of Data - Tabulation, Histogram and Pie diagram					
UNIT V	Spotters: Oogenesis and Spermatogenesis					
	Chick - Four cell stage, 48 hrs stage, 56 hrs stage, 72 hrs and 96 hrs stage					
	Membrane transport mechanism - active and passive transport					
REFERENCE BOOKS:						
1. I	Dubey RC and Maheswari DK. Practical Microbiology. S. Chand and Company Ltd., New					

- Delhi, 20082. Gunasekaran P. Laboratory Manual in Microbiology. New Age International Ltd. Pub., 2009
- Palanichamy S and Manoharan M. Statistical Methods for Biologists. Paramount Pub., 2008
- 4. Subramanian MA. Biophysics Principles & Techniques. MJP Pub., Chennai, 2005

Course Designer: DR. H. VIJAYARANI

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT 1			
1.1	Preparation of antigen	6	Demo (4 hrs)
			Lecture (2hrs)
1.2	Separation of lymphocytes	6	Demo (4 hrs)
			Lecture (2hrs)
1.3	Agglutination tests - WIDAL – Slide and tube test	7	Demo (5 hrs)
			Tutorial (2hrs)
1.4	RA test, ASO test	6	Demo (4 hrs)
			Tutorial (2hrs)
UNIT II			
2.1	Precipitation tests - Ouchterlony's Double Immuno Diffusion	6	Demo (5 hrs)
			Lecture (1 hrs)

	test (ODD)		
2.2	Counter Current Immuno Electrophoresis (CIE)	6	Demo (5 hrs)
			Lecture (1 hrs)
2.3	Rocket Immuno Electrophoresis (RIE)	6	Demo (5 hrs)
			Lecture (1 hrs)
2.4	Rapid Plasma Region Test (RPR)	3	Demo (3 hrs)
2.5	Demonstration of ELISA	4	Demo (4 hrs)
UNIT III		I	I
3.1	Serial sections of Chick embryo	8	Demo (5 hrs)
			Tutorial (3hrs)
3.2	Mounting of Chick Blastoderm	7	Demo (5 hrs)
			Tutorial (2hrs)
UNIT IV			
4.1	Data collection – Primary and Secondary data	5	Tutorial (5hrs)
4.2	Calculation of Mean, Median, Mode and SD	5	Tutorial (3hrs)
			Lecture (2hrs)
4.3	Representation of Data -Tabulation, Histogram and Pie	5	Tutorial (4hrs)
	diagram		Lecture (1hrs)
UNIT V	·	1	I
5.1	Spotters: Oogenesis and Spermatogenesis	3	Lecture (2 hrs)
			Demo (1 hr)
5.2	Spotters: Four cell stage, 48 hrs stage, 56 hrs stage, 72 hrs	3	Lecture (2 hrs)
	and 96 hrs stage	_	Demo (1 hr)
53	Snotter: Membrane transport mechanism - active and passive	<u> </u>	Lecture (2 hrs)
5.5	transport	т	Demo (2 hrs)
	transport		

Course	Programme Outcomes (POs)					Program	Programme Specific Outcomes (PSOs)							
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	of COs	
CO1	4	4	4	4	4	4	4	4	4	4	4	4	4	
CO2	4	4	4	4	4	4	4	4	4	4	4	4	4	
CO3	3	3	3	3	2	4	4	4	2	4	2	2	3	
CO4	4	4	4	4	4	4	4	4	4	4	4	4	4	
CO5	4	-	2	2	-	4	3	2	3	4	3	3	2.5	
Mean Overall Score											3.5			

Result: The Score for this Course is 3.5 (High Relationship)

Mapping	1-20%	21-40%		41-60%	61-80%	81-100%
Scale	1	2		3	4	5
Relation	0.0-1.0	1.1-2.0		2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor		Moderate	High	Very High
Mean Score of CC	Ds = <u>Total of</u> Total No. of Pc	<u>f Value</u> os & PSOs	Me	ean Overall So	core of COs =	 <u>Total of Mean Score</u> Total No. of COs

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme: M. Sc. ZOOLOGYSemester: IIISubject Code : P22DSZ3A

Course Type : DSEC - III Hours : 5 P/W 75 P/S Credits : 4

TITLE OF THE PAPER: RESEARCH METHODOLOGY AND BIOTECHNIQUES

Pedagogy	Hours	Lecture	Peer Teaching	GD/Vio	leos/Tut	eos/Tutorial/				
	5	4	-	Demo	nstration 1	<u>n</u>				
DDEAMDIE.										
PKEAMBLE:										
The course will provide knowledge about the basic principles of Genomics and Proteomics and its										
applications in va	rious fields									
COURSE OUTC	COME				Unit	Hrs	Knowledge			
At the end of the			P/S	Level						
CO1: Understand		1	10	K1						
CO2: Elucidate tl	he research p	roblem, desig	gn and techniques of		2	17	K2			
literature survey										
CO3: Formulate	research hypo	othesis and lis	st out various compo	nents of	3	18	K3			
a thesis and also t	o understand	how to appl	y ethical aspects in v	vriting a						
thesis										
CO4: Gain know	ledge on basi	c principles of	of centrifuge and		4	15	K3			
Chromatography	and apply th									
CO5: Enumerate		5	15	K4						
electrophoresis ar	nd apply ther	n in experim	ental work							

SYLLABUS

UNIT I:

Introduction-Objectives and Types of Research - Descriptive & Analytical, Applied and Fundamental, Quantitative, Qualitative, Conceptual and Empirical types - Research Process - Steps involved in Research Process.

UNIT II:

Formulation of Research Problem-selecting and defining research problem-Research designreliability and validity, steps of research design. Literature Review - Primary and Secondary Sources -Offline and online sources-journals, monographs and books.

UNIT III:

Formulation of research hypothesis -Thesis writing- components of thesis - Literature citation-Reference Management tool - Mendley and Endnote. Research ethics- ethical issues in animal experiments - CPESEA guidelines - plagiarism.

UNIT IV:

Biotechniques:

Chromatography - Principles and methodology of column, ion exchange and affinity chromatography - GLC and HPLC.

Centrifugation: Ultracentrifuge, Differential and gradient centrifugation - Principles, methodology and applications

UNIT V:

Spectrophotometry - Principles - colorimeter and Spectrophotometer- MethOodology and applications.

Electrophoresis: types (AGE, PAGE), principles - Methodology and applications

TEXT BOOKS:

- Kothari C.R. Research Methodology -Methods and Techniques. New Age International publishers.2004
- 2. Misra S.B., Alok S. Handbook of Research Methodology. Educreation Publishing.
- 3. Jayaraman J. Laboratory Manual of Biohemistry, New Age International Publications.2006
- 4. David T.Plummer. Introduction to Practical Biochemistry, Tata-McGraw Hill Publication Company Ltd.1999.

REFERENCE BOOKS:

- 1. Bhome S., and Jha N. Research Methodology . Himalaya Publishing House, 2013.
- 2. Wilson K and Walker J. Principles and Techniques of Biochemistry and Molecular Biology Cambridge University Press, 2010.

Course Designer: DR. V. KABILA

UNITS	TOPIC	LECTRE	MODE OF
		HRS.	TEACHING
UNIT I			
1.1	Introduction-Objectives and Types of Research	4	Lecture -
			2
			Video - 2
1.2	Descriptive& Analytical, Applied and Fundamental,	4	Lecture - 3
	Quantitative, Qualitative, Conceptual and Empirucal types		Tutorial - 1
1.3	Research Process-Steps involved in Research Process	2	Lecture - 2
LINIT H			
	F		
2.1	Formulation of Research Problem-selecting and defining	5	Lecture - 2
	research problem		Turorial - 2
			Video - 1
2.2	Research design-reliability and validity, steps of research	4	Lecture - 3
	design.		Tutorial - 1
2.3	Literature Review-Primary and Secondary Sources-	4	Lecture - 5
2.4	Offline and online sources-journals, monographs and books	4	Lecture - 2
			Tutorial - 2
UNIT- II	[
3.1	Formulation of research hypothesis -Thesis writing-	5	Lecture-4
	components of thesis		GD-1
3.2	Literature citation-Reference Management tool.	5	Lecture-3
			Video-2

3.3	Reference Management tool-Mendley and Endnote	4	Lecture-1
			Tutorial-1
			Video-2
3.4	Research ethics- ethical issues in animal experiments-	4	Lectuire-2
	CPESEA guidelines-plagiarism.		GD-2
UNIT IV			
4.1	Chromatography-Principles and methodology of column,	5	Lecture - 3
	ion -exchange. chromatography		Tutorial - 2
4.2	GLC and HPLC	5	Lecture - 3
			Tutorial - 2
4.3	Centrifugation: Differential and gradient centrifugation-	5	Lecture - 3
	Ultracentrifuge - Principles and applications		Tutorial - 2
UNIT V			
5.1	Spectrophotometry - Principles of colorimetry -colorimeter	6	Lecturer - 3
	and Spectrophotometer.		Tutorial - 3
5.2	Colorimeter and Spectrophotometer - procedure and	5	Lecture - 2
	applications		Tutorial - 3
5.3	Electrophoresis: principles-types-procedure and application	4	Lecture - 2
			Tutorial - 2

Course Outcomes	Prog (POs	ramm s)	e Outo	comes		Programme Specific Outcomes (PSOs)						Mean scores	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	01 005
CO1	4	4	4	4		4	3	4	3	3	4	1	3.2
CO2	4	3	3	4		4	3	4	4	3	4		3.0
CO3	3	4	3	4		4	4	3	3	4	3	1	3.0
CO4	4	4	3	4		4	3	4	4	3	4	1	3.1
CO5	4	4	3	4	-	4	4	4	3	4	3		3.1
Mean Overall Score											3.1		

			-							
Dogulte	The	Saama	for	thia	Common	ia	2 1 1	(III:ah	Dolotionchi	-)
Result:	ппе	Score	IOF	LIIIS	Course	-18	5.10	(птап	Relationsin	
		~ • • • •			000000	-~		(B		· • ·

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%		
Scale	1	2	3	4	5		
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0		
Quality	Very Poor	Poor	Moderate	High	Very High		
- •							
Mean Score of	COs = Total	l of Value	Mean Overall Score of COs = <u>Total of Mean Score</u>				
	Total No. of I	POs & PSOs	Total No. of COs				

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
REMEMBERING	20%	20%
UNDERSTANDING	20%	20%
APPLICATION	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	: DSEC - III
Semester	: III	Hours	: 5/W 75/S
Subject Code	: P22DSZ3B	Credits	:4

TITLE OF THE PAPER: ECONOMIC ZOOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	G	D/Vide	os/Tutor	rial				
	5	3	-	2							
PREAMBL	PREAMBLE:										
• This course will enhance knowledge and practical understanding about sericulture, Apiculture,											
Lac c	Lac culture, vermicompost, Fishery Biology, Poultry, and Dairy Farming and										
• to de	velop entrepreneu	rial skills.									
	COU	RSE OUTCO	OME		Unit	Hrs	Knowledge				
At the end of	the Semester, the		P/S	Levels							
CO1: gain l	knowledge on ben	eficial insects	s such as silkworm,	honey	1	17	K1				
bee and lac in	nsects and their sig	gnificance in l	Indian economy								
CO2: unders	stand various meth	odology used	l in vermi technolog	у У	2	20	K2				
practices and	apply them in var	ious fields									
CO3: gain k	knowledge about v	various cattle	breeds and their dise	eases	3	11	K2				
CO4: unde	rstand and apply k	nowledge ab	out poultry industry	and their	4	12	K3				
products											
CO5: to und	derstand about var	ious fishes, fi	shery industry and t	heir	5	15	K4				
significance											

SYLLABUS

UNIT I:

Beneficial insects- Silk worm- life cycle, types of silk, silk production in India. Honey bee - social organization, chemical composition of honey, value of honey, bee wax and bee venom. Bee keeping in India, Lac insect cultivation - harvesting, processing, composition, uses and properties. Lac Industry in India.

UNIT II:

Earthworms – Characteristics. Classification of Earthworm based on habitat – Epigeic species, Endogeic species and Anecic species. Vermiculture and vermi composting – definition, scope, importance and Environmental requirements in vermicomposting. Culture methods - small scale and large scale – pit method, heap method and windrow method. Applications of vermiculture – agricultural and horticultural practices. Vermicast, vermiwash.

UNIT III:

Dairy industry - two breeds of dairy animals - Cow-Sindhi and Jersy-Buffalo - Murrah and Jaffarabadi, Feeding stuffs, any three diseases of dairy animals (anthrax, calf pneumonia and mastitis). Milk and milk products.

UNIT IV:

Poultry industry- indigenous breeds- Aseel and Chittagong, exotic breeds- Leghorn and Rhode islandred, food and feed formula. Diseases of poultry- Ranikhet, fowl pox, fowl cholera. Poultry products - egg, poultry meat and poultry manure.

UNIT V:

Fishery industry and Animal products- edible fishes - *Catla, RohuTilapia* and *Chanos*, Economic importance of fishes. Ornamental fishes - Goldfish, Angel fish, Fighter fish, Gourami fish, Guppy, Molly, Mosquito fish, Paradise fish, Tiger barb, Zebra fish - significance. Pharmaceutical products from animals.

TEXT BOOK:

1. ManjuYadav. Economic zoology. Discovery Pub., 2003

REFERENCE BOOKS:

1. Gnanamani MR. Modern Aspects of Poultry keeping . Deepam Pub., 2010

2. MalhotraP. Economic zoology. Adhyayan Pub., 2008

3. Sinha RK. Hand book of Fish and Fisheries. Agrotech Press, 2014

Course Designer: DR.V. KABILA

COURSE CONTENTS	AND LECTURE SCHEDULE
-----------------	----------------------

UNITS	ТОРІС	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I			
1.1	Silk worm- life cycle, types of silk, silk production	5	Lecture 3,
	in India		Demo-2
1.2	Honey bee - social organization, chemical	7	Lecture – 3
	composition of honey, value of honey, bee wax and		Tutorial-2
	bee venom. Bee keeping in India,		Discussion-2
1.3	Lac insect cultivation - harvesting, processing,	5	Lecture – 3,
	composition, uses and properties. Lac Industry in		Trata dia 1.0
	India		Tutorial-2
UNIT II			
2.1	Classification of Earthworm based on habitat –	5	Lecture –
	Epigeic species.		3,Tutorial-2
	Endogeic species and Anecic species.		
2.2	Vermiculture and vermi composting - definition,	5	Lecture – 3,
	scope, mportance and Environmental requirements in		Demo=2
	vermicomposting.		
2.3	Culture methods - small scale and large scale – pit	5	Lecture-
	method, heap method and windrow method		1Demo-4
2.4	Applications of vermiculture –	5	Lecture – 3
	agricultural and horticultural practices. Vermicast,		Discussion 2
	vermiwash.		Discussion-2
UNIT III			
3.1	Dairy industry - two breeds of dairy animals - Cow-	6	Lecture – 2
	Sindhi and Jersy-Buffalo - Murrah and Jaffarabadi.		Tutorial-2
	Feeding stuffs		video-2
3.2	Three diseases of dairy animals (anthrax, calf	5	Lecture – 3
	pneumonia and mastitis). Milk and milk products.		Discussion-2
UNIT IV			
4.1	Indigenous breeds- Aseel and Chittagong, exotic	4	Lecture –2
	breeds- Leghorn and Rhode islandred, food and feed		Video and
	formula.		photos-2

4.2	Diseases of poultry- Ranikhet, fowl pox, fowl	4	Lecture –2
	cholera. Poultry products		Video and
			photos-2
4.3	Poultry products - egg, poultry meat and poultry	4	Lecture –2
	manure.		Video and
			photos-2
UNIT V			
5.1	Edible fishes - Catla, RohuTilapia and Chanos,	5	Lecture - 3,
	Economic importance of fishes.		Demo – 2
	1		
5.2	Ornamental fishes	5	Lecture - 3
			Phoos/viseo- 2
5.3	Pharmaceutical products from animals.	5	Lecture - 3,
			Photos/video -
			2

Course	Irse Programme outcomes					Programme specific outcomes						Mean	
Outcomes (COs)	(POs)					(PSOs)						Scores of COs	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO1	4	3	4	3	4	4	4	3	3	3	3	4	3.5
CO2	4	3	3	3	4	3	3	4	3	3	4	4	3.4
CO3	4	3	3	3	4	2	3	3	3	3	4	3	3.1
CO4	4	3	3	3	4	3	4	3	3	3	4	4	3.4
CO5	4	3	3	3	4	3	4	3	3	3	4	4	3.4
Mean overall score											3.36		

Result: The score for this course is 3.36 (High relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
	-			_		
Mean Score of COs =	<u>Total of Valu</u>	ue	Mean Overall Score of COs = <u>Total of Mean Score</u>			
Tot	al No. of POs &	PSOs		Tot	al No. of COs	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
REMEMBERING	20%	20%
UNDERSTANDING	20%	20%
APPLICATION	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Typ	be : NMEC
Semester	: П	Hours	: 2/W 30/S
Subject Code	: P22NMZ1	Credits	: 2

TITLE OF THE PAPER: BRAIN AND HUMAN BEHAVIOUR

Pedagogy	Hours	Lecture	Peer Teaching	GD/V	D/VIDOES/TUTORIAL						
	2	1	-		1						
PREAMBLE	:	L		1							
To intr	oduce the am	nazing brai	n facts and its func	tions	for no	n-biolo	gy students;				
and to make the	nem learn, unde	rstand and	associate the behavior p	attern	with br	ain acti	vity.				
	COUR	SE OUTCO	OME		Unit	Hrs	Knowledge				
At the end of the	ne Semester, the	e Students v	vill be able to			P/S	Level				
CO1: Acquir	re knowledge	about the	structure and function	ns of	Ι	6	K1				
brain a	nd describe it	with basic	understanding								
CO2: Distin	nguish and cansmitters and	explain l its function	the types of neur ons	cons,	II	6	K2				
CO3: Unders	stand the proc	ess of lea	rning and associate	with	III	6	K2				
ındıvıd	luals' behavioi	r patterns									
CO4: Integrat through	te the concepts h self-understa	tion	IV	6	К3						
CO5: Interp	ret emotions a	iges,	V	6	K4						
recogn Proctio	ize stress and	nind;									
	c Suess mana	gement									

SYLLABUS

UNIT I:

Architecture of Brain - Cerebrum - Frontal, Parietal, Occipital and Temporal lobes. Cerebellum, Brain stem - Mid brain, Pons, Medulla oblongata.Limbic system – Thalamus, hypothalamus, amygdala and hippocampus.Functions of different parts of brain.

UNIT II:

Nervous system - Functional description of Central, Peripheral and Autonomic nervous system in brief. Neurons - Motor and Sensory. Neurotransmitters - acetylcholine, adrenalin, endorphins, serotonin, dopamine - functional significance.

UNIT III:

Learning - Classical conditioning, Instrumental or Operant conditioning, reinforcement, Reward and punishment learning.

UNIT IV:

Thought process - Problem solving and Decision making. Motivation - needs and drives – Biological motives.

UNIT V:

Emotion and Stress - Biological basis of emotion - types of emotion - influence of emotions on behavior. Types and Sources of Stress - physical, psychological and biological symptoms. Stress management.

TEXT BOOK:

1. Fundamentals of Psychology, Published by School of Social Sciences, TNOU, 2012 **REFERENCE BOOKS:**

1. Garrett B. Brain and Behaviour. 4thEdn., SAGE Pub., 2007

 Pfaff DW and Joels M. Hormones, Brain and Behaviour. 3rdEdn., Elsivier Pub., 2016

Course Designer: DR.D. HELEN CHRISTINA

UNITS	ΤΟΡΙΟ	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I		1	1
1.1	Architecture of Brain - Cerebrum - Frontal,	2	Lecture -1,
	Parietal, Occipital and Temporal lobes.		Video-1
1.2	Cerebellum, Brain stem - Mid brain, Pons, Medulla	1	Lecture 1
	oblongata		
1.3	Limbic system – Thalamus, hypothalamus,	1	Lecture - 1
	amygdala and hippocampus.		
1.4	Functions of different parts of brain.	2	Lecture -1, GD-1
UNIT I	Ι		
2.1	Nervous system - Functional description of	2	Lecture - 2
	Central, Peripheral nervous system in brief.		
2.2	Autonomic nervous system in brief. Neurons -	2	Lecture -1,
	Motor and Sensory. Neurotransmitters -		Video-1
	acetylcholine, adrenalin		
2.3	Endorphins, serotonin, dopamine - functional	2	Lecture - 2
	significance		
UNIT I	II		
3.1	Learning - Classical conditioning	2	Lecture-1, Peer
			Teaching -1
3.2	Instrumental or Operant conditioning,	2	Lecture - 2
	reinforcement		
3.3	reward and punishment learning	2	Lecture-1, Peer
			Teaching -1

UNIT	UNIT IV									
4.1	Thought process	1	Lecture - 1							
4.2	Problem solving and Decision making.	2	Lecture-1, GD-1							
4.3	Motivation - needs and drives	2	Lecture - 2							
4.4	Biological motives.	1	Lecture - 1							
Unit V		·								
5.1	Emotion and Stress - Biological basis of emotion	2	Lecture-1, GD -1							
5.2	Types of emotion - influence of emotions on behavior	1	Lecture - 1							
5.3	Types and Sources of Stress - physical, psychological and biological symptoms.	2	Lecture-1, GD-1							
5.4	Stress management.	1	Lecture - 1							

Course	Programme Outcomes (Pos) Programme Specific Outcomes (PSOs)							Mean					
Outcomes													scores
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	of COs
601													
	4	-	4	-	-	5	-	3	4	4	2	-	2.3
CO2	5	-	-	3	-	5	4	-	4	4	-	-	2.08
CO3	5	-	-	-	3	5	3	-	-	4	4	-	2.07
CO4	5	-	-	3	-	5	3	4	4	-	3	-	2.3
CO5	5	-	-	-	4	5	-	5	-	5	3	-	2.3
	Mean Overall Score										2.2		

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score o	of $COs = $	Total of Value	Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total N	No. of Pos & PSOs		Тс	otal No. of COs	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc ZOOLOGY	Course Type	e: CC - XIII
Semester	: IV	Hours	: 6/W 90/S
Subject Code	: P22CZ13	Credits	: 4

GD/Videos/Tutorial Pedagogy Hours Lecture **Peer Teaching** 1 2 6 3 **PREAMBLE:** This course helps to gain knowledge on basic techniques and tools of biotechnology and understand the application of biotechnology in various fields. **COURSE OUTCOME** Hrs Unit Knowledge P/S At the end of the Semester, the Students will be able to Level **CO1:** Acquire knowledge on the tools of genetic engineering 1 12 K2 **CO2:** Understand the principle and methodology 2 K3 22 of basic techniques in genetic Engineering **CO3:** Learn advanced techniques in genetic Engineering 3 20 K4 **CO4:** Apply skills to develop genetically modified organisms 4 18 K4 CO5: Apply skills to develop recombinant vaccines and to assess the 5 18 K4 biosafety and other regulations of biotechnology

TITLE OF THE PAPER: ANIMAL BIOTECHNOLOGY

SYLLABUS

UNIT I:

Tools of Genetic Engineering - Vectors - plasmids, bacteriophage, cosmids, shuttle vectors, yeast vectors. Enzymes - exonucleases, endonucleases, restriction endonucleases, ligases, reverse transcriptases, polymerases, terminal transferases, isozymes. Probes and molecular markers - RFLP, RAPD.

UNIT II:

Techniques in Genetic Engineering - selection and isolation of desired genes, gene splicing, introduction of rDNA into host, selection of clone containing DNA insert, PCR, DNA finger printing, blotting techniques, DNA sequencing, genomic library, cDNA library.

UNIT III:

Gene cloning - Gene transfer in animals - gene transfer technology, expression of induced genes. Animal cell culture- cell culture, culture media, monolayer and suspension culture, cell lines, somatic cell fusion and Hybridoma technology. Organ culture - techniques, advantages and applications.

UNIT IV:

Transgenic Animal Technology - production of transgenic animals, Genetically Modified Organisms - Gene knockouts, Gene silencing, Transgenic Mice, Sheep and Fishes, uses of transgenic animals.

UNIT V:

Medical Biotechnology - production of recombinant vaccines. Problems related to biotechnology - social, cultural, economic and legal problems, safety in biotechnology, Bioethics, Intellectual Property Rights, and Patenting.

TEXT BOOK:

 Dubey RC. A Text Book of Biotechnology. Multicolor IllustratuiveEdn., S. Chand Pub., New Delhi, 2006

REFERENCE BOOKS:

- Brown TA. Gene Cloning An Introduction. 4thEdn., Black Bell Science Ltd., New Delhi, 2001
- Primrose SB. Principles of Gene manipulation. Old R.N. and 6thEdn., Black Bell Science Ltd., New Delhi, 2003
- 3. U. Biotechnology. 1stEdn., Books and Allied (P) Ltd., 2005

Course Designer: DR. H. VIJAYARANI

UNITS	TOPIC	LECTURE	MODE OF	
		HOURS	TEACHING	
UNIT I		I	1	
1.1	Tools of Genetic Engineering - Vectors - plasmids,	8	Lecture(3hrs)	
	bacteriophage, cosmids, shuttle vectors, yeast vectors		Video (3 hrs)	
			GD (2 hrs)	
1.2	Enzymes - exonucleases, endonucleases, restriction	4	Lecture 2hrs)	
	endonucleases, ligases, reverse		Tutorial	
	transcriptases, polymerases, terminal transferases,		(2hrs)	
	isozymes			
UNIT II	1	1		
2.1	Techniques in Genetic Engineering - selection and	6	Lecture(2hrs)	
	isolation of desired genes, gene splicing, introduction of		Peer teaching	
	rDNA into host, selection of clone containing DNA		(2hrs)	
	insert		Video (2 hrs)	
2.2	PCR, DNA finger printing	4	Lecture(4hrs)	
2.3	Blotting techniques, DNA sequencing	8	Lecture(4hrs)	
			Peer teaching	
			(2 hrs)	
			Video (2 hrs)	
2.4	Genomic library, cDNA library	4	Lecture (3	
			hrs)	
			Video (1hr)	
UNIT III	I			
3.1	Gene cloning - Gene transfer in animals - gene transfer	8	Video (4 hrs)	
	technology, expression of induced genes		Tutorial(4hrs)	
3.2	Animal cell culture- cell culture, culture media,	8	Peer teaching	
	monolayer and suspension culture, cell lines, somatic		(4 hrs)	
	cell fusion and Hybridoma technology		GD (4 hrs)	
3.3	Organ culture - techniques, advantages and applications	4	Lecture (4	

			hrs)
UNIT I	V		i
4.1	Transgenic Animal Technology - production of	6	Lecture (5 hrs)
	transgenic animals		Video (1 hrs)
4.2	Genetically Modified Organisms - Gene knockouts,	6	Lecture (4 hrs)
	Gene silencing		Peer teaching (2 hrs)
4.3	Transgenic Mice, Sheep and Fishes, uses of transgenic	6	Lecture (4 hrs)
	animals.		Peer teaching (2 hrs)
UNIT V			
5.1	Medical Biotechnology - production of recombinant	6	Lecture (4 hrs)
	vaccines		Video (2 hrs)
5.2	Problems related to biotechnology - social, cultural,	6	Lecture (4 hrs)
	economic and legal problems		GD (2 hrs)
5.3	Safety in biotechnology, Bioethics, Intellectual Property	6	Lecture (2 hrs)
	Rights, and Patenting.		GD (1 hr)
			Peer teaching (3 hrs)

Course	e Programme Outcomes (Pos)				Programme Specific Outcomes (PSOs)					Mean			
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	scores
(Cos)													of Cos
CO1	4	4	4	4	4	4	4	4	4	4	4	4	4
CO2	4	4	4	4	4	4	4	4	4	4	4	4	4
CO3	4	4	4	4	4	4	4	4	4	4	4	4	4
CO4	4	4	4	4	4	4	4	4	4	4	4	4	4
CO5	4	4	4	4	4	4	4	4	4	4	4	4	4
Mean Overall Score							4						

Result: The Score for this Course is 4.0 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of CO	Ds = <u>Total of</u> Total No. of I	<u>Value</u> POs & PSOs	Mean Overall Score of COs = $\frac{\text{Total of Mean Score}}{\text{Total No. of COs}}$			

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL	
KNOWLEDGE	20%	20%	
UNDERSTANDING	20%	20%	
APPLY	30%	30%	
EVALUATION	30%	30%	
Programme	: M. Sc. ZOOLOGY	Course Type	: CC - XIV
--------------	------------------	--------------------	------------
Semester	: IV	Hours	: 6/W 90/S
Subject Code	: P22CZ14	Credits	:4

TITLE OF THE PAPER: ENTOMOLOGY

Pedagogy	Hours	Lecture	Peer teaching	GD/VIDEOS/TUTORIAL
	6	3	1	2

PREAMBLE:

This will enable the students to understand the basic concept of insect biology and evolutionary relationships of insect orders and families and to have a deeper understanding of several aspects of insect biology.

COURSE OUTCOME	Unit	Hrs	Knowledge
At the end of the Semester, the Students will be able to		P/S	Level
CO1: Acquire the knowledge about insect classification with examples	1	18	K2
CO2: Compare the morphology of insect organ systems.	2	18	K3
CO3: Understand the physiology of insects in a comparative manner.	3	18	K1
CO4: Identify the insect pests, their control methods and pesticide applications and to develop the skills in rearing beneficial insects.	4	18	K4
CO5: Enhance the productivity of agricultural crops through insect pest management.	5	18	K4

SYLLABUS

UNIT I:

Classification - Insect classification up to order level. General characters and classification up to family level - Hemiptera, Lepidoptera and Coleoptera.

UNIT II:

Insect Morphology - morphology of head, thorax and abdomen. Appendages - antennae, legs and genitalia. Wing structure and mechanism of flight. Mouth parts - types, morphology and feeding mechanism.

UNIT III:

Insect Physiology - respiratory system - tracheal, aquatic and plastron respiratory mechanism. Excretory system. Reproduction - male and female reproductive system, structure of testis and ovary, mechanism of spermatogenesis and oogenesis with secial reference to vitellogenesis.Metamorphosis - types of larvae and pupae.

UNIT IV:

Life Cycle, rearing and economic importance of honey bee, lac insect and silk worm. Damages caused, life cycle and control measures of *Schistoceragregaria*, *Leptocoryzaacuta*, *Triboliumcastaneum*.

UNIT V:

Vector borne diseases - Malarial and Dengue vectors – life cycle and control measures. Methods of insect control - Principles and methods of pest control - physical, mechanical, chemical and biological control - *Bacillus thuringiensis*, *Beauveriabassiana*, Nuclear Polyhedrosis virus, Cytoplasmic polyhedrosis virus, Parasitoids. Integrated Pest Management.

TEXT BOOK:

1. Tembhare DB. Modern Entomology. Himalaya Pub., 2012

REFERENCE BOOKS:

- Vasantharaj David B and Ananthakrishnan TN. General and Applied Entomology. TaTa McGraw Hill, New Delhi, 2010
- Chapman.RF. The Insect Structure and Function. Cambridge University Press London, 2008
- WiggleWorth VB. The Principles of Insect Physiology. English Language Book Society and Methuen and Co. Ltd., 2007
- Vasantharaj David B and Kumaraswami T. Elements of Economic Entomology. Popular Book Depot, Chennai, 2000

Course Designer: MRS. A. SHEELA

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT I		I	
1.1	Insect classification up to order level.	6	Chart – 1,
			Lecture - 5
1.2	General characters and classification up to family level -	8	Lecture - 6,
	Hemiptera, Lepidoptera		Video demo – 2
1.3	General characters and classification up to family level -	4	Lecture - 6,
	Coleoptera,		Video demo – 2
UNIT II			
2.1	Insect Morphology - morphology of head, thorax and	8	Demo with
	abdomen. Appendages - antennae, legs and genitalia.		specimen - 5,
			Lecture -3
2.2	Wing structure and mechanism of flight.	4	Demo with
			specimen - 1,
			Lecture -3
2.3	.Mouth parts - types, morphology and feeding mechanism.	6	Demo with
			specimen - 4,
			Lecture - 2
UNIT II			
3.1	Insect Physiology - respiratory system - tracheal, aquatic	6	Lecture - 3,
	and plastron respiratory mechanism. Excretory system.		Video demo -3
3.2	Reproduction - male and female reproductive system,	6	Lecture -3,
	structure of testis and ovary, mechanism of		Video demo - 3
	spermatogenesis and oogenesis with special reference to		
	vitellogenesis.		
3.3	Metamorphosis - types of larvae and pupae.	6	Lecture - 3,
			video demo - 3
UNIT IV		1	
4.1	Life Cycle, rearing and economic importance of honey bee,	8	Lecture - 5,
	lac insect		Video/Field

			visit - 3
4.2	Life Cycle, rearing and economic importance of silk worm	4	Lecture - 2,
			Video/Field
			visit-2
4.3	Life cycle and control measures of Schistoceragregaria,	6	Lecture - 3,
	Leptocoryzaacuta, Triboliumcastaneum.		
UNIT V			
5.1	Vector borne diseases - Malarial and Dengue vectors	6	Lecture-4,
5.2	Methods of insect control - Principles and methods of pest	6	Seminar -4,
	control - physical, mechanical, chemical and biological		Group activity -
	control		2
5.3	Integrated Pest Management.	6	Lecture-5,
			Video demo-1

Course Outcomes (Cos)	Programme outcomes (POs)Programme specific outcomes (PSOs)						Mean Scores of Cos						
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
CO 1	4	3	3	3	3	4	3	3	4	4	3	4	3.41
CO 2	4	3	4	3	3	4	4	4	3	4	3	3	3.5
CO 3	4	3	3	3	3	4	4	4	3	3	3	4	3.41
CO 4	4	4	4	4	4	4	4	4	5	4	4	5	4.16
CO 5	5	5	4	5	5	5	4	4	5	4	4	5	4.25
Mean overall score									3.74				

Result: The score for this course is 3.74 (High relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
Mean Score of Co	s = Total of	Value	Mean Overall Score of Cos = <u>Total of Mean Score</u>		
	Total No. of I	Pos & PSOs	Total No. of Cos		

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUTION	30%	30%

Programme	: M.Sc. ZOOLOGY	Course Typ	e : CC - XV
Semester	: IV	Hours	: 5/W 75/S
Subject Cod	le : P22CZ815	Credits	: 4

TITLE OF THE PAPER: BIODIVERSITY AND CONSERVATION STRATEGIES

Pedagogy	Hours	Lecture	Peer Teaching	GD/VIDEOS/	TUTO	RIA	ICT
				L			
	5	2	-	2			1
PREAMBL	.E:						
Thi	s course he	lps to unders	stand the benefits and	l values associat	ed with	biodi	versity and
gain knowle	dge on the	scientific an	d technical concepts a	and skills relating	g to bio	divers	ity.
		COURSE	OUTCOME		Unit	Hrs	Knowledge
At the end o	f the Semes	ster, the Stud	lents will be able to			P/S	Level
CO1: Unde	erstand, dese	cribe the cor	ncepts of biodiversity		1	17	K2
CO2: Outlin	ne the sourc	es and value	es of biodiversity and	list down the	2	16	K2
benefits.							
CO3: Expla	in and anal	yze the meg	adiversity zone in Ind	ia and discuss	3	14	K4
the threats.	the threats.						
CO4: Discuss the methods and types of biodiversity conservation					4	15	K2
CO5: Under	rstand and c	lescribe the	Biodiversity Act - org	ganizations	5	13	К3
involved							
CIVIT A DI	a				•		

SYLLABUS

UNIT I:

Biodiversity - types - Genetic, species and ecosystem. Regional, national and global patterns of biodiversity - α , β and γ . Evenness, abundance, richness and biodiversity indices. Ecosystem diversity.

UNIT II:

Sources and values of biodiversity - food, drugs, medicines, industry. Ecotourism – aesthetic, cultural and scientific benefits of biodiversity – ecosystem services – ecosystem functioning.

UNIT III:

India - A mega biodiversity zone - Hotspots in India. Endemic species, endangered species,

Vavilovian centres of origin. Key stone species, IUCN, Red Data Book - Threats to biodiversity - species extinction.

UNIT IV:

Conservation of biodiversity - types of conservation management - *In-situ* - Wild life sanctuaries, national parks, sacred grooves, botanical and zoological gardens. *Ex-situ* - Tissue culture and gene Bank - challenges in conservation of biodiversity - Land and water

UNIT V:

Biodiversity conservation - Biodiversity Act - organizations involved - India -global - Future Conservation strategies for India – carrying capacity of the system. Enhancement of the protected areas – Stress on Integrated Development Research impetus - types - strategies opportunities and options.

• Field Trip to Wild life and Biodiversity Conservation Centres.

TEXT BOOK:

Joshi PC and Namita J. Biodiversity and Conservation. APH Pub., New Delhi, 2004

REFERENCE BOOKS:

- 1. Biswas S. Indian biodiversity for the present millennium Global prospect and perspectives. Satish Serial Pub., New Delhi, 2006
- 2. Krishnamoorthy KV. Introduction to Biodiversity. Oxford and IBH, 2003
- Dadhich LK and Sharma AP. Biodiversity strategies for conservation. APH PUB., New Delhi, 2002

Course Designer: DR. G. SASI REKA

UNITS	TOPIC	LECTURE	MODE OF
		HOURS	TEACHING
UNIT 1			
1.1	Biodiversity - types - Genetic, species and ecosystem.	6	Lecture - 6
	Regional, national and global patterns of biodiversity - α,β and		
	$\boldsymbol{\gamma}.$ Evenness, abundance, richness and biodiversity indices.		

	Ecosystem diversity.		
1.2	Regional, national and global patterns of biodiversity - α , β and γ . Evenness, abundance, richness and biodiversity indices. Ecosystem diversity.	7	Lecture - 5 ICT - 2
1.3	Ecosystem diversity	4	Lecture - 4
UNIT II			
2.1	Sources and values of biodiversity - food, drugs, medicines, industry.	3	Lecture - 3
2.2	Ecotourism – aesthetic, cultural and scientific benefits of biodiversity – ecosystem services – ecosystem functioning	5	Lecture - 2 Tutorial - 2 Video - 1
2.3	Ecosystem services	4	Lecture - 3 ICT - 1
2.4	Ecosystem functioning.	4	Lecture - 2 Tutorial - 2
UNIT II	I		
3.1	India - A mega biodiversity zone	4	Lecture - 2 Tutorial - 2
3.2	Hotspots in India. Endemic species, endangered species,	4	Lecture - 2
	Vaviloviancentres of origin.		Tutorial - 2
3.3	Key stone species, IUCN, Red Data Book	4	Lecture - 2 Tutorial - 2
3.4	Threats to biodiversity - species extinction	2	Lecture - 2
UNIT IV	I		
4.1	Conservation of biodiversity - types of conservation	7	Lecture - 5
	management - In-situ - Wild life sanctuaries, national parks,		Tutorial - 2
	sacred grooves, botanical and zoological gardens.		
4.2	<i>Ex-situ</i> - Tissue culture and gene Bank	4	Lecture - 2 Tutorial - 2
4.3	Challenges in conservation of biodiversity - Land and water	4	Lecture - 2
UNIT V			Tutorial - 2
5.1	Biodiversity conservation - Biodiversity Act - organizations involved - India -global	5	Lecture - 2 Tutorial - 2 ICT - 1
5.2	Future Conservation strategies for India – carrying capacity of the system.	4	Lecture - 3 ICT - 1

5.3	Enhancement of the protected areas - Stress on Integrated	4	Lecture - 4
	Development Research impetus - types - strategies		
	opportunities and options.		

Course Outcomes	rse Programme Outcomes (POs) Programme Specific Outcomes (PSOs)						Mean scores						
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	of COs
CO1	4	4	4	4	4	4	4	4	3	3	4	4	4
CO2	4	4	4	4	4	4	4	4	4	4	4	4	4
CO3	4	4	4	4	4	4	4	4	4	4	4	4	4
CO4	4	4	4	4	4	4	4	4	4	4	4	4	4
CO5	3	4	3	4	4	4	4	4	4	4	4	4	4
	Mean Overall Score										4		

Result: The Score for this Course is 4.0 (High Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score of COs = <u>Total of Value</u>			Mean Overall Score of $COs = Total of Mean Score$			
	Total No. of I	POs & PSOs		Тс	tal No. of COs	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
ANALYSE	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	e : DSEC - IV
Semester	: IV	Hours	: 5/W 75/S
Subject Code	: P22DSZ4A	Credits	:4

TITLE OF THE PAPER: FORENSIC BIOLOGY

Pedagogy	Hours	Lecture	Peer Teaching	GD/VID	/VIDOES/TUTORIAL				
	5	2	2		1				
PREAMBLE:		<u> </u>							
To introduce the	students	the basic c	oncepts of forensics and	crime rel	ated appli	cations and to			
create awareness ab	out the le	gal aspects	of forensic law and cyber	crime.					
	COUR	RSE OUTC	OME	Uni	t Hrs	Knowledge			
At the end of the Se	mester, th	ne Students	will be able to		P/S	Level			
CO1: List & cate	egorize f	forensic ev	idences and crime sce	ene I	14	K1			
identity; an	alyze an	d relate so	cio economic offences	to					
the present	societal	scenario							
CO2: Classify fin	nger prin	nts, describ	be post mortem chang	es, II	15	K2			
understand	and in	nterpret b	lood group and Di	NA					
paternity te	st								
CO3: Generalize	and e	xplain abc	out insects of forensi	ics, III	16	K2			
venoms and	d poison	s. Discus	s and summarize rela	ted					
medico-lega	al issues								
CO4: Classify na	arcotic d	lrugs and	cosmetics; Associate	the IV	15	К3			
symptoms a	symptoms and explain its effects on humans								
CO5: Distinguish	and app	ly informa	tion technology and le	gal V	15	K4			
aspects rel	ated to	forensics;	gain knowledge ab	out					
Enforcemen	nt agenci	es							

SYLLABUS

UNIT I:

Scope of forensics - history - evidences and their classification - specific socio economic offences against human body, property, terrorism, pollution, adulteration - crime scene - establishment of identity.

UNIT II:

Finger printing - primary classification and computerized prints - Types of injuries wounds - signs and symptoms of death time - post mortem changes- Blood stains, grouping, and identification- disputed paternity and DNA tests.

UNIT III:

Forensic entomology and forensic medicine - biology of insects of forensic importance - study of maggots – sarcophagi - venoms and poisons - Medico legal issues of organ transplantation - organ racketing - euthanasia- sexual offences- rape, semen analysis.

UNIT IV:

Food poisons and narcoanalysis - classification and sources of drugs, narcotics, cosmetics and abortificients- physiological and psychological effects - toxic nature of poisoning - sources of poisons - Narco analysis.

UNIT V:

Information technology and legal aspects - cyber crime - law of robotics - super imposing techniques - e-com and intelligent systems - laws of copyrights and patents. Forensic sourcing - Enforcement agencies - public and private - police, CBI - National Institute of criminology and forensic science - Interpol, prisons and rehabilitation.

TEXT BOOKS:

1. Forensic Biology, Lesson notes prepared by DDE, Madurai Kamaraj University,

2014

REFERENCE BOOKS:

1. Ignatius, P.C, Forensic Medicine and Toxicology, 2nd edn, Letterwave Books, 2016

Course Designer: DR. D. HELEN CHRISTINA

UNITS	TOPIC	PRACT.	MODE OF
		HOURS	TEACHING
UNIT I		I	
1.1	Scope of forensics - history - evidences and their	4	Lecture - 3 GD
	classification		-1
1.2	Specific socio economic offences against human	5	Lecture -3,
	body, property, terrorism, pollution, adulteration		Peer teaching -
			1, GD -1
1.3	Crime scene - establishment of identity.	5	Lecture - 4,
			GD -1
UNIT II		I	
2.1	Finger printing - primary classification and	2	Lecture -1,
	computerized prints		Video -1
2.2	Types of injuries - wounds - signs and symptoms of	5	Lecture - 4,
	death time		Peer teaching-1
2.3	Post mortem changes, Blood stains, grouping, and	4	Lecture - 3,
	identification		Peer teaching-1
2.4	Disputed paternity and DNA tests	4	Lecture - 2,
			Peer teaching-1

UNIT I	II		
3.1	Forensic entomology and forensic medicine -	3	Lecture - 3
	biology of insects of forensic importance - study of		
	maggots		
3.2	Sarcophagi - venoms and poisons	5	Lecture - 3,
			Video - 2
3.3	Medico legal issues of organ transplantation - organ	4	Lecture - 3,
	racketing		Peer teaching-1
3.4	Euthanasia, Sexual offences - rape, semen analysis	4	Lecture - 4
UNIT I	V		1
4.1	Food poisons and narcoanalysis - classification and	5	Lecture -3, GD
	sources of drugs, narcotics, cosmetics and		- 2
	abortificients		
4.2	Physiological and psychological effects	3	Lecture -2,
			Peer teaching-1
4.3	Toxic nature of poisoning - sources of poisons	4	Lecture - 3,
			ICT - 1
4.4	Narco analysis	3	Lecture - 3
UNIT V	7		
5.1	Information technology and legal aspects - cybercrime -	5	Lecture - 4,
	law of robotics		ICT -1
5.2	Super imposing techniques - e-com and intelligent	4	Lecture - 2,
	systems		ICT - 2
5.3	Laws of copyrights and Patents	2	Lecture - 2,
5.4	Forensic sourcing - Enforcement agencies - public and	4	Lecture - 3,
	private - police, CBI - National Institute of criminology		

and forensic science - Interpol, prisons and	GD -1
rehabilitation.	

CourseProgramme OutcomOutcomes					(POs)	Programme Specific Outcomes (PSOs)						Mean scores of	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	COs
CO1	4	-	-	5	-	5	4	-	3	4	4	-	2.4
CO2	5	-	5	4	-	5	-	4	3	4	4	-	2.8
CO3	5	-	3	4	-	5	-	4	3	4	3	-	2.6
CO4	5	-	-	3	5	5	-	4	3	4	3	-	2.6
CO5	5	-	-	4	5	4	-	4	-	5	4	-	2.6
				Mean Overall Score									

Result: The Score for this Course is 2.6 (Medium Relationship)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%	
Scale	1	2	3	4	5	
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0	
Quality	Very Poor	Poor	Moderate	High	Very High	
Mean Score	of COs =	Total of Value	Mean Overall Score of COs = <u>Total of Mean Score</u>			
	Total 1	No. of Pos & PSOs		Tota	al No. of COs	

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
EVALUATION	30%	30%

Programme	: M. Sc. ZOOLOGY	Course Type	: DSEC - IV
Semester	: IV	Hours	: 5/W 75/S
Subject Code	: P22DSZ4B	Credits	:4

Pedagogy	Hours	Lecture	Peer Teaching	GI	GD/VIDEOS/TUTORIAL			
	5	2	1		2			
PREAMBL	E:							
The course	The course will provide basic knowledge on the broad field of Animal Behaviour and to learn							
about the bel	about the behavioural pattern in various group of animals							
	CO	URSE OUTCOM	E		Unit	Hrs	Knowledge	
At the end of	the Semester	the Students will be	e able to			P/S	Level	
CO1: Acc	quire knowle	dge of fundament	al concepts in a	nimal	Ι	15	K1	
behav	vior and to k	now about the pion	eers and significan	ce of				
anim	al behavior rel	ating inheritance an	nd relationships					
CO2: Expla	in and integr	n and	II	15	К3			
ecolo	gical aspects of	of orientation ,habit	selection and aggre	ession				
of A	nimal behavio							
CO3: Relate	habituation,	conditioning and r	easoning behav	ior of	III	15	K4	
Anim	Animals							
CO4: Unde	rstand the pr	roximate control o	of hormones of a	nimal	IV	15	K2	
behav								
aggregation of animals								
CO5: To rel	ate theory and	nimal	V	15	K4			
comr	nunication an	d social behavior	to solve problem	ms in				
socie	ty							

TITLE OF THE PAPER : ANIMAL BEHAVIOUR

SYLLABUS

UNIT I:

Behaviour - Types and mechanism of animal behaviour. Pioneers of animal behavior - Karl von Frisch, Konard Lorenz and Nikolaas Tinbergen. Significance of animal behaviour. Reflexes and complex behaviour. Evolution and ultimate causation- Inheritance behaviour and relationships **UNIT II:**

Communication - Chemical, visual, olfactory and auditory, species specificity of songs, evolution of language in primates. Ecological aspects of behaviour: Habitat selection, food selection, optimal foraging theory, anti-predator defences, aggression, homing territoriality, dispersal, host parasite relations.

UNIT III:

Biological rhythms – Circadian, Lunar and circannual rhythms, orientation and navigation, migration of fishes, turtles and birds. Learning and memory Conditioning, habituation, insight learning, association learning and reasoning.

UNIT IV:

Neural and hormonal control of behaviour. Genetic and environmental components in the development of behaviour. Motivation: Drive, timing and interaction of drives, physiological basis of motivation, hormones and motivation, aggregation.

UNIT V:

Reproductive behavior - Evolution of sex and reproductive strategies, mating systems, courtship, sexual selection, parental care. Social behaviour, aggregations, schooling in fishes, flocking in birds, herding in mammals, group selection, kin selection, altruism, reciprocal altruism, inclusive fitness, social organization in insects and primates.

TEXT BOOK:

1. Agarwal VK. Animal Behaviour (Ethology). S. Chand Pub., New Delhi, 2013

REFERENCE BOOKS:

- Lcock J. An Evolutionary Approach. Sinauer Association, Sunderland, Mass, USA, 2013
- 3. Bradbury JW and Vehrencamp SL. Principles of Animal Communication. Sinauer

Association, Sunderland, Mass, US, 2011

 Clutton-Brock TH. The Evolution of Parental Care. Princeton University Press, Princeton, NJ, USA, 2012

Course Designer: DR. C. RANI VIJAYA

UNITS	TOPIC	LECTURE	MODE OF	
		HOURS	TEACHING	
UNIT I				
	Behaviour - Types and mechanism of animal	3	Lecture -2,	
1.1	behaviour. Pioneers of animal behavior - Karl		Peer Teaching-	
	von Frisch, Konard Lorenz and Nikolaas		1	
	Tinbergen			
1.2	Pioneers of animal behavior - Karl von Frisch,	2	Lecture -1,	
	Konard Lorenz and Nikolaas Tinbergen		Peer teaching-1	
1.3	Significance of animal behaviour. Reflexes and	5	Lecture -30,	
	complex behaviour.		GD-2	
1.4	Evolution and ultimate causation	2	Lecture -2	
1.5	Inheritance behaviour and relationships.	3	Lecture -2, GD	
			1	
UNIT II		1		
2.1	Communication - Chemical, visual, olfactory and	3	Lecture -2,	
	auditory		GD-1	
2.2	Species specificity of songs, evolution of language	3	Lecture -2,	
	in primates.		Video - 1	
2.2	Ecological aspects of behaviour: Habitat selection,	4	Lecture-2,	
	food selection, optimal foraging theory, anti-		Video - 2	
	predator defences,			
2.3	Aggression, homing territoriality, dispersal, host	5	Lecture -3,	
	parasite relations.		Video -2	
UNIT II	I			
3.1	Biological rhythms - Circadian and circannual	5	Lecture -3, GD	
	rhythms		2	
3.2	Orientation and navigation, migration of fishes,	4	Lecture -2,	
	turtles and birds.		Video-2	

3.3	Learning and memory	2	Lecture -2		
3.4	Memory Conditioning, habituation, insight	4	Lecture -3,		
	learning, association learning and reasoning.		Video -1		
UNIT IV	V		•		
4.1	Neural control of behaviour	3	Lecture-3		
4.2	Hormonal control of behaviour	2	Lecture - 2		
4.3	Genetic and environmental components in the	3	Lecture-2, Peer		
	development of behaviour.		teaching -1		
4.4	Motivation: Drive, timing and interaction of	4	Lecture-2, GD		
	drives, physiological basis of motivation,		-2		
4.5	Hormones and motivation, aggregation	3	Lecture-2, Peer		
			teaching-1		
UNIT V					
5.1	Reproductive behavior - Evolution of sex and	5	Lecture-3,		
	reproductive strategies, mating systems, courtship,		Video -2		
	sexual selection, parental care.				
5.2	Social behaviour, aggregations, schooling in fishes	3	Lecture – 2,		
			Video -1		
5.3	Flocking in birds, herding in mammals	2	Lecture-2		
5.4	Group selection, kin selection, altruism, reciprocal	3	Lecture -3		
	altruism, inclusive fitness				
5.5	Social organization in insects and primates.	2	Lecture-2		

Course Outcomes (COs)	e Programme outcomes (POs)					Programme specific outcomes (PSOs)						Mean scores of COs	
	PO1	PO 2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	
C01	5	-	3	3	-	4	-	3	3	3	-	-	2.08
CO2	5	4	3	-	3	4	3	4	-	3	-	-	2.25
CO3	4	-	4	3	-	-	3	4	4	-	4	-	2.16
CO4	5	-	4	4	-	4	3	4	-	5	-	-	2.4
CO5	5	-	5	-	4	-	4	3	3	5	5	-	2.8
Mean overall score										2.3			

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
$Mean Score of COs = \underline{Total of Value}$			Mean Overall Score of COs = <u>Total of Mean Score</u>		
	Total No. of P	os & PSOs	Total No. of COs		

Result: The score for this course is 2.3 (Medium relationship)

BLOOM'S TAXANOMY	INTERNAL	EXTERNAL
KNOWLEDGE	20%	20%
UNDERSTANDING	20%	20%
APPLY	30%	30%
ANALYSE	30%	30%